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a b s t r a c t

One approach to estimating a species tree from a collection of gene trees is to first estimate

probabilities of clades from the gene trees, and then to construct the species tree from the estimated

clade probabilities. While a greedy consensus algorithm, which consecutively accepts the most

probable clades compatible with previously accepted clades, can be used for this second stage, this

method is known to be statistically inconsistent under the multispecies coalescent model. This raises

the question of whether it is theoretically possible to reconstruct the species tree from known

probabilities of clades on gene trees.

We investigate clade probabilities arising from the multispecies coalescent model, with an eye

toward identifying features of the species tree. Clades on gene trees with probability greater than 1/3

are shown to reflect clades on the species tree, while those with smaller probabilities may not. Linear

invariants of clade probabilities are studied both computationally and theoretically, with certain linear

invariants giving insight into the clade structure of the species tree. For species trees with generic edge

lengths, these invariants can be used to identify the species tree topology. These theoretical results both

confirm that clade probabilities contain full information on the species tree topology and suggest future

directions of study for developing statistically consistent inference methods from clade frequencies on

gene trees.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A fundamental problem in evolutionary biology is to deter-
mine relative relatedness of species, usually by seeking a rooted
tree that diagrammatically depicts these relationships. Although
phylogenetic methods of inferring relationships between genes
sampled from individuals in the different species are now highly
developed, such gene trees are not species trees. Even in the
absence of errors due to estimating gene trees from DNA
sequences, gene tree topologies need not match the underlying
species tree. In recent years, various methods have been proposed
for inferring species trees from genetic data (Degnan and
Rosenberg, 2009; Edwards, 2009; Knowles and Kubatko, 2010).
Many of these methods first estimate gene trees, and then resolve
the possible conflicts among them to obtain an overall estimate of
the species tree.

An important cause of gene tree conflict is the population
effect of incomplete lineage sorting, in which gene lineages coa-
lesce in ancestral populations earlier than the time these lineages

first enter a common ancestral population. The multispecies

coalescent model (Pamilo and Nei, 1988; Rosenberg, 2002;
Rannala and Yang, 2003; Degnan and Salter, 2005; Degnan and
Rosenberg, 2009) is commonly used to model this process,
producing a distribution of rooted gene trees given a rooted
species tree topology and branch lengths (a measure of time
and population size on each edge of the species tree).
The multispecies coalescent provides a natural framework for
incorporating population effects, allowing gene trees to possibly
be discordant with the species tree (see Fig. 1), a phenomenon
that is very common in multilocus studies (Rokas et al., 2003;
Ebersberger et al., 2007; Cranston et al., 2009).

Although the distribution of gene tree topologies from the multi-
species coalescent determines the species tree (Allman et al., 2011),
estimating this distribution is difficult because there are so many
possible topologies: ð2n�3Þ!! when n species are under study. Thus
most topologies are unlikely to be observed among a moderate
number of gene trees. An alternative is to estimate a smaller set of
probabilities which is a function of gene tree probabilities but that
still retains enough information to identify the species tree. Other
works have considered rooted triples (Degnan et al., 2009; Ewing
et al., 2008; Liu et al., 2010) and unrooted gene tree topologies
(Allman et al., 2011; Larget et al., 2010). Another possibility, which is
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our focus here, is to use probabilities that a gene tree has a given
clade, a set of leaves descended from a node of the gene tree that is
not ancestral to any other leaves in the gene tree. The probability of a
clade under the multispecies coalescent (or any model of gene tree
generation) is obtained by simply adding the probabilities of all gene
trees that display the given clade (Degnan et al., 2009).

The probability of a clade can be estimated from a collection of
gene trees by considering the proportion of gene trees displaying
the clade. Since this procedure does not take into account
uncertainty in the gene trees, which are themselves estimates
from genetic data, a more sophisticated method would quantify
the uncertainty in the clades by using posterior probabilities or
bootstrap support values for clades obtained from Bayesian or
maximum likelihood analyses of the gene trees. The software
BUCKy (Ané et al., 2007), for example, takes this approach, using
posterior probabilities for clades and additionally incorporating a
prior distribution for the amount of gene tree conflict to yield a
concordance factor for each clade.

One of the most straightforward methods for constructing a
species tree from clade probabilities is to use greedy consensus, in
which the clade with the highest probability (or concordance
factor) is accepted, provided it is compatible with previously
accepted clades. This process is repeated until a fully resolved tree
is formed (Bryant, 2003). This procedure is implemented in
BUCKy to construct a concordance tree, which is sometimes
interpreted as an estimated species tree (Cranston et al., 2009).

To justify a greedy approach, one needs to investigate whether
the most probable clades tend also to be clades on the species
tree. Indeed, we show in Section 4 that under the multispecies
coalescent, any clade with probability greater than 1/3 must be on
the species tree, suggesting that the standard majority-rule
consensus (which only accepts clades occurring more than 50%
of the time) is very conservative in this setting. If the greedy
consensus approach is used for clades with probability greater
than 1/3 (leaving the tree unresolved with respect to clades with
lower probability), then this ‘‘not-too-greedy’’ consensus
approach is not misleading, in the sense that it asymptotically
cannot return a false species tree clade as the number of loci
approaches infinity.

In contrast, previous results have shown that when greedy
consensus is applied without restrictions on clade probabilities,
the returned tree can be misleading (i.e., for some species trees, as
the number of loci increases, the greedy consensus method is
increasingly likely to produce a tree that disagrees with the true
species tree) for some sets of branch lengths (Degnan et al., 2009).
These ‘‘too-greedy zones’’ of edge lengths occur on 4-taxon

asymmetric species trees and on any species tree topology with
five or more leaves. Thus, caution must be used when probabil-
ities of clades are less than 1/3; it is not obvious how to determine
which low-probability clades are on the species tree, even if clade
probabilities are known exactly. Other examples show that the
most probable k-clade (a clade of kZ2 elements), is not necessa-
rily a clade on the species tree, even if the species tree is known to
have a k-clade.

Undeterred by these negative results, we show in Sections 5
and 6 that under the multispecies coalescent with one lineage
sampled per species, the set of clade probabilities does identify
the species tree topology for generic branch lengths for any
number of species. The proof is based on discovering a linear
combination of clade probabilities (a linear invariant) that is
equal to zero for any branch lengths on any species tree with a
given clade. In theory, if clade probabilities are known, it is
therefore possible to identify the species tree by determining all
of its clades.

Finally, in Section 6 we extend our results, in part, to cases
where the species tree is non-binary and where an arbitrary
number of lineages is sampled per species.

Although we frame our questions within the framework of the
multispecies coalescent, a careful reading of our arguments
reveals that the essential feature of the model that we use is that
lineages are exchangeable. If two gene lineages are present in the
same population at a particular point in time on the species tree,
then above that point, the model assumes that both lineages
behave the same way. Much of this work, then, should be robust
to variations on the coalescent model that preserve exchange-
ability. Though we do not pursue this here, one could, for
instance, consider versions of the multispecies coalescent model
in which more than two lineages coalesce simultaneously, as in
the L-coalescent (Eldon and Wakeley, 2006; Pitman, 1999).

While one might be tempted to use the vanishing of clade
invariants for direct inference of clades on a species tree, doing so
would require overcoming several obstacles. First, evaluating
these invariants on empirical clade probabilities from previously
inferred gene trees will rarely yield zero exactly, due to both
sampling and gene tree inference errors. Thus it would be
necessary to understand the variance of these polynomial values,
in order to formulate an appropriate way of determining when
values are sufficiently close to zero to indicate a likely clade.
Second, the clade invariants we present are not all the constraints
on clade probabilities arising from a given species tree. Our clade
invariants are all linear equalities, and higher degree equalities
can be shown to exist computationally. Moreover, one should
expect the existence of non-trivial inequality constraints as well.
Ignoring these additional constraints is likely to degrade perfor-
mance of any such method.

Thus while our linear clade invariants suggest a statistically
consistent method of identifying a species tree, how they would
perform in practice is unclear. It remains a challenge to incorpo-
rate the insight they provide into a practical method that outper-
forms greedy consensus on most finite data sets. Nonetheless, our
results demonstrate that sound statistical inference from clade
probabilities is possible.

On a more technical note, there is a key difference in under-
standing clade probabilities versus many other sets of probabil-
ities related to gene trees or species trees: the failure of
marginalization arguments. As this difference plays an important,
but unspoken, part throughout this work, we highlight it here.

The problem of establishing identifiability of a species tree
from unrooted gene tree probabilities that was taken up pre-
viously (Allman et al., 2011) is superficially similar to the clade
problem of this paper. Both unrooted gene tree probabilities and
clade probabilities can be obtained by summing probabilities of

Fig. 1. Gene trees within a species tree. In the multispecies coalescent, gene

lineages sampled from species are assumed to coalesce (form nodes in the gene

tree) no more recently than their most recent common ancestor (MRCA) in the

species tree. Coalescence of lineages in populations more ancient than their MRCA

can lead to gene tree topologies that are discordant with the species tree topology.

Using upper case letters for gene lineages sampled from their corresponding

species, failure of the A and B lineages to coalesce in their MRCA population makes

any of the ð32Þ coalescences between A, B, and C equally likely under the model in

the MRCA population of a, b, and c. (a) The gene tree is ((((B,C),A),D),E). (b) The

gene tree is (((B,C),A), (D,E)).
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appropriate rooted gene trees. The sum is either over all rooted
gene trees with the same unrooted topology or over all rooted
gene trees that have the clade in question.

Note also that the probability of a gene tree on a subset of the
taxa can be obtained by summing probabilities of gene trees on
the full set that display the given gene tree when restricted to the
subset. As an example, if there are four lineages, A, B, C, and D, the
probability that a gene tree restricted to lineages A, C, and D has
the topology ððC,DÞ,AÞ can be obtained by marginalizing over B:

PsR
½ððC,DÞ,AÞ� ¼Ps½ðððC,DÞ,AÞ,BÞ�þPs½ðððC,DÞ,BÞ,AÞ�

þPs½ðððB,CÞ,D,Þ,AÞ�þPs½ðððB,DÞ,CÞ,AÞ�

þPs½ððA,BÞ,ðC,DÞÞ�, ð1Þ

where s is the species tree on all four taxa, and sR is a reduced
species tree obtained by removing the species with lineage B.
We can therefore think of the probability of the gene tree on the
reduced set of taxa as a linear combination of the gene tree
probabilities on the full set of taxa (where the coefficients of the
linear combination are either 0 or 1). Moreover this margin-
alization formula is independent of the topology of the 4-taxon
species tree.

Such marginalization of a gene tree distribution to fewer taxa
is possible for either rooted or unrooted gene trees. Consequently,
for most arguments in Allman et al. (2011) it was sufficient to
focus on small trees, with at most five taxa. Indeed, similar
marginalization arguments are standard throughout phylogenetic
theory.

Unfortunately, a marginalization approach fails for studying
clades when the species tree is unknown. Given clade probabil-
ities arising from an n-taxon species tree s under the multispecies
coalescent, one would like to be able to determine clade prob-
abilities arising from an induced k-taxon tree displayed on s.
However, probabilities of clades on the k-taxon induced tree
cannot be obtained from a linear combination of the clade
probabilities associated with the n-taxon species tree without
knowledge of the species tree. That is, for clades there is no linear
formula analogous to (1) which is independent of the species tree.
We demonstrate this formally in the case where k¼3 and n¼4 in
Appendix A.

This inability to marginalize clade probabilities without know-
ing the species tree topology motivated looking for an invariant
that would hold for clades on trees of any size. Although only
linear invariants are needed in the proof of identifiability, the
invariants constructed for k-clades involve a linear combination
of 2k�1 clade probabilities. These rather elaborate invariants and
the inability to marginalize clade probabilities to smaller trees
lead to a different flavor for the proof of species tree identifiability
from clade probabilities.

2. Definitions

Let X be a finite set, whose elements we refer to as taxa.
A species tree on X means a pair s¼ ðc,lÞ, where c is a rooted,
topological tree whose leaves are bijectively labelled by elements
of X , and l¼ ðl1, . . . ,lkÞ is a collection of lengths for the internal
branches of c. We refer to c as a species tree topology, and always
assume all internal nodes of c except the root have degree at least
3. If all internal nodes except the root have degree 3 and the root
has degree 2, we say that c and s are binary.

We use a modified Newick notation for species trees, as in
Allman et al. (2011), in which we do not specify the lengths of
pendant edges, since only the lengths of internal edges affect
probabilities of gene tree topologies under the multispecies
coalescent. For example, we write ðða,bÞ : t,cÞ for a 3-taxon species
tree with one internal edge with length t, measured in coalescent

units. If there is a constant effective population size, N, over an
edge of the species tree, then a length of t indicates that the edge
represents Nt generations (Degnan and Rosenberg, 2009). For
varying effective population size, a non-linear scaling is needed to
relate coalescent units to generations. Species trees are thus not
assumed to be ultrametric in coalescent units.

In discussing trees, we find it convenient in various settings to
use either spatial or temporal terminology. For instance, if (v, w)
is a directed edge in c pointing away from the root, then we may
say that v is above, or an ancestor, of w and that w is below, or a
descendant, of v. Natural extensions of these terms should be clear
from context.

We denote taxa in X by lower case letters such as a,b,c, . . . . To
distinguish between taxa and sampled genes from those taxa, we
use the corresponding upper case letters A,B,C, . . . to denote the
genes, with the set X g denoting the full set of genes, one for each
taxon. Similarly, a subset of taxa CDX has a corresponding subset
of genes Cg DXg . A sampled gene tree from the multispecies
coalescent model on s will thus have leaves labelled by Xg , and in
general may have any topology, regardless of the species tree
topology c. More specifically, by a gene tree T we mean a binary,
rooted topological tree with leaves bijectively labelled by Xg . We
emphasize that for this article gene trees are topological only,
with no edge lengths specified. We require that gene trees be
binary, since under the multispecies coalescent only binary gene
trees have positive probability.

Definition. If c is a species tree topology on X , and ADX , then
the most recent common ancestor of A, MRCAðAÞ, is the node of c
that is ancestral to all elements of A and which is a descendant of
any other node ancestral to all elements of A.

Definition. Let descX ðvÞDX denote the elements of X descended
from a node v of a species tree topology c on X , so that if ADX ,
then ADdescX ðMRCAðAÞÞDX . A clade C on c is a subset of X such
that C¼ descX ðMRCAðCÞÞ.

The notions of MRCA and clade extend to gene trees in an
obvious way, replacing X , c, C, with Xg , T, Cg in the definitions.

Definition. For a gene tree T, the set of all clades on T is denoted
HðTÞ. Similarly, for a species tree s¼ ðc,lÞ the set of clades on c is
denoted HðsÞ ¼HðcÞ.

In discussing the relationships between a subset Y of the taxa
X on a tree c, we use the terminology of a displayed tree: a tree
obtained from the full tree by first passing to the rooted subtree
spanned by Y, and then suppressing any non-root nodes of degree
2 (Semple and Steel, 2003). As an example, the species tree in
Fig. 1 displays ððb,dÞ,eÞ. Such 3-taxon trees displayed within a
larger tree are also called rooted triples. The notion of displayed
trees can be applied in the context of either species trees (with or
without branch lengths) or gene trees.

A detailed presentation of the multispecies coalescent model
has been given previously (Allman et al., 2011), so we omit
repeating that here. Because we focus in this paper on the
probabilities of observing gene trees or clades on gene trees
under that model, we fix the following notation.

Definition. Under the multispecies coalescent model on a fixed
species tree s on taxa X , the probabilities of a gene tree T, and a
clade Cg on gene trees are denoted PsðTÞ and PsðCgÞ, respectively.

If more than one lineage is sampled per species, a general-
ization of our results on species tree identifiability still holds. For
this extension, we require the following definitions. (See Fig. 2 for
an example.)

E.S. Allman et al. / Journal of Theoretical Biology 289 (2011) 96–10698
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Definition. Let X ¼ fx1, . . . ,xng be a taxon set, with 9X9¼ n. Let
d¼ ðd1, . . . ,dnÞ be the number of individuals sampled from species
xi, i¼ 1, . . . ,n. With xij, 1r jrdi, denoting the individuals in taxon xi,
Xn ¼ fxijg is the set of all sampled individuals, so 9Xn9¼

Pn
i ¼ 1 di.

An extended species tree sn ¼ ðcn,l,dÞ on X is a species tree

ðcn,lÞ on Xn such that for each 1r irn all the leaves xij, 1r jrdi

have a common parent in cn.

The pruned species tree topology c on X is obtained from cn by

labelling the parent of the xij by xi for each i with di41, and then

excising the leaves xij and the pendant edges on which they lie.

Note that while an extended species tree gives rise to a species
tree by the pruning process, in an extended species tree a branch
length is assigned to those edges which become pendant in the
species tree whenever there are two or more sampled individuals
in the taxon. Since our notion of a species tree in this paper does
not have pendant edge lengths, an extended species tree thus
carries more edge length information than the associated species
tree.

Gene trees arising from the coalescent model on an extended
species tree have leaves labelled Xg ¼ fX11, . . . ,X1d1

, . . . ,Xn1,
. . . ,Xndn

g and are, with probability 1, binary. One readily checks
that the probability of such a gene tree under the multispecies
coalescent on the extended species tree is exactly the same as the
probability of the gene tree under a multiple individual sampling
scheme on the species tree (with some pendant edge lengths)
obtained by pruning. Indeed, this is why we have introduced such
trees. We will use them to easily extend results where one
individual is sampled per species to the multiple sampling
situation, in Proposition 13 and Corollary 14.

Finally, note that by construction, for each i¼ 1, . . . ,n, the set
Ai ¼ fxi1, . . . ,xidi

g is a clade on the extended species tree. But of
course a set ðAiÞg ¼ fXi1, . . . ,Xidi

g need not be a clade on any given
gene tree.

3. Arbitrary gene tree distributions

Though the remainder of this paper is concerned only with the
gene tree distribution arising from the multispecies coalescent
model, in this section we investigate clade probabilities for
arbitrary binary gene tree distributions. The main observation is
that without special assumptions on the gene tree distribution,
the clade probabilities do not contain enough information to
recover the gene tree distribution.

Note that every gene tree must have as clades all singleton sets
of gene labels, as well as the full set Xg . We refer to these as trivial

clades. Any other nonempty subset Cg �Xg is a clade on some
gene trees, but not others.

For an arbitrary distribution of gene trees on a taxon set X , let
PðTÞ denote the probability of gene tree T. Then for each subset
Cg DXg , the probability that Cg is a clade on a gene tree is

PðCgÞ ¼
X

T

PðCg9TÞPðTÞ ¼
X

T

IðCg AHðTÞÞPðTÞ,

where I is the indicator function with values of 1 or 0. Note that
the probability of any trivial clade is therefore 1.

We emphasize that the clade probabilities for an n-taxon
species tree s do not form a probability distribution. The presence
of different clades may not be mutually exclusive events (for
instance, if Cg � C0gÞ, and their probabilities do not sum to 1.

Proposition 1. If 9X9¼ n, then for any distribution of binary gene

trees the sum of the probabilities of all non-trivial clades is n�2.

Proof. Denoting n-taxon gene trees by T,X
Cg � Xg
non-trivial

PðCgÞ ¼
X
Cg � Xg
non-trivial

X
T

IðCg AHðTÞÞPðTÞ ¼
X

T

X
Cg � Xg
non-trivial

IðCg AHðTÞÞPðTÞ:

But since each binary gene tree has n�2 non-trivial clades, this
shows thatX
Cg � Xg
non�trivial

PðCgÞ ¼
X

T

ðn�2ÞPðTÞ ¼ n�2: & ð2Þ

Theorem 2. For an arbitrary distribution of binary gene trees on a

taxon set X with 9X9Z4, the gene tree probabilities PðTÞ cannot be

identified from the clade probabilities PðCgÞ.

Proof. The set Xg has 2n
�n�2 subsets Cg with 2r9Cg9rn�1.

Using Proposition 1, the clade probabilities can thus be specified
by a point in a ð2n

�n�3Þ-dimensional vector space. However,
there are ð2n�3Þ!!¼ 1 � 3 � � � ð2n�3Þ binary gene trees on Xg , so a
gene tree distribution is specified by a point in a
ðð2n�3Þ!!�1Þ-dimensional vector space. But since

ð2n�3Þ!!�142n
�n�3

when nZ4, and the map from gene tree probabilities to clade
probabilities is linear, the map is not invertible at any point. &

We note that for an arbitrary distribution on multifurcating
gene tree topologies, the trivial invariant in Eq. (2) need not hold.
However, the argument establishing Theorem 2 can be modified
to apply to such distributions, since the number of multifurcating
trees is greater than the number of binary ones.

4. Highly probable gene tree clades are species tree clades

For the remainder of the paper, we assume that both gene tree
probabilities PsðTÞ and clade probabilities PsðCgÞ arise from the
multispecies coalescent on a species tree s¼ ðc,lÞ.

Theorem 3. Let s¼ ðc,lÞ be a binary species tree on X , with edge

lengths li4eZ0. Under the multispecies coalescent model, suppose

Cg �Xg has clade probability PsðCgÞZð1=3Þexpð�eÞ. Then C is a

clade on s; that is, CAHðsÞ.
Furthermore, if ð1=3Þexpð�eÞ is replaced with any smaller number,

this statement is no longer true for all such choices of species trees

and non-trivial clades: For any ko ð1=3Þexpð�eÞ, there exists a

species tree s on X and a taxon set C�X with 1o9C9o9X9 such

that C is not a clade on s, yet PsðCgÞZk.

Proof. If C is a trivial clade, there is nothing to show, so we may
assume 1o9Cg9o9X9. We prove the contrapositive: if C is not a
clade on c, then PsðCgÞo ð1=3Þexpð�eÞ.

Fig. 2. (a) A gene tree with multiple lineages sampled from several species within

a species tree. The taxa are X ¼ fx1 ,x2 ,x3 ,x4 ,x5g with d¼ ð3;1,1;2,1Þ lineages

sampled from them. (b) The extended version of the species tree with taxa

Xn ¼ fx11 ,x12 , . . . ,x51g and one lineage sampled per taxon. Under the multispecies

coalescent, the probability of any clade Ag �Xn

g is the same for both the species

trees in (a) and in (b).
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Suppose C is not a clade on the species tree, so there exist a,bAC
and cAX \C such that c does not display the rooted triple ðða,bÞ,cÞ.

Thus, the rooted triple probability satisfies PsðððA,BÞ,CÞÞo
ð1=3Þexpð�eÞ (Nei, 1987). But then

ð1=3Þexpð�eÞ4PsðððA,BÞ,CÞÞZPsðCgÞ,

since ððA,BÞ,CÞ is displayed on every gene tree on which Cg is

a clade.

To establish the last claim of the theorem, we construct an

example. For any set C with 1o9C9o9X9, pick some aAC, and

some cAX \C. Let C0 ¼ C=fag. Consider a binary species tree s
which has a subtree of the form ðða,cÞ : d,TC0 : gÞ, where T 0C is any

rooted tree on C0. Note then that C is not a clade on s.

By taking g to be large, the probability that the lineages from C0

coalesce below MRCAðfa,cg [ C0Þ can be made as close to 1 as

desired. Because the probability that lineages A and C fail to

coalesce within time d is expð�dÞ, by also choosing d� e the

probability that three lineages (one for A, one for C, and one for C0gÞ
enter the ancestral population above this MRCA can be made as

close to expð�eÞ as we wish. Thus the probability that Cg will be a

clade on a gene tree can be made as close to ð1=3Þexpð�eÞ as we

wish. &

Setting e¼ 0 yields Corollary 4.

Corollary 4. Let s be a binary species tree on taxa X , with positive

edge lengths. Under the multispecies coalescent model, suppose C�X
is such that PsðCgÞZ1=3. Then C is a clade on s.

Furthermore, this statement is no longer true for 1o9C9o9X9 if 1/3

is replaced with any smaller number.

If the species tree is not binary, a slightly weaker result holds,
requiring a strict lower bound on the clade probability.

Theorem 5. Suppose the species tree s is not necessarily binary, and

C�X is such that PsðCgÞ41=3. Then C is a clade on s.

Furthermore, this statement is no longer true for 1o9C9o9X9 if 1/3

is replaced with any smaller number.

Proof. To show C is a clade, we suppose cAX\C and demonstrate
that c=2descX ðMRCAðCÞÞ. Choose a,bAC such that MRCAðCÞ ¼
MRCAðfa,bgÞ. Note that PsðððA,BÞ,CÞÞZPsðCgÞ since any gene tree
displaying the clade Cg must display the rooted triple ððA,BÞ,CÞ.
This implies PsðððA,BÞ,CÞÞ41=3 and thus that the rooted triple
ðða,bÞ,cÞ is displayed on s. Thus c=2descX ðMRCAðCÞÞ.

That 1/3 cannot be replaced with a smaller number is a

consequence of Corollary 4. &

5. Clade invariants

A clade invariant for a species tree topology is a polynomial in
the probabilities of clades on gene trees that vanishes for all edge
length assignments to the species tree. More completely, a clade
invariant associated to an n-taxon species tree topology c is a
multivariate polynomial in 2n

�n�2 indeterminates (one for every
non-trivial clade) which evaluates to zero at any vector of clade
probabilities PsðCgÞ arising from s¼ ðc,lÞ, regardless of the
values of l.

Proposition 1 gives an example of a clade invariant for binary
gene trees that, in addition, is independent of all features of c
except the number of taxa:X
Cg � Xg

non-trivial

PsðCgÞ�ðn�2Þ ¼ 0:

We call this the trivial invariant, and emphasize that it is satisfied
by clade probabilities from any species tree on X .

Clade invariants can be computed for small trees using
computational algebra software, such as Singular (Greuel et al.,
2009). For each edge length li, one sets Li ¼ expð�liÞ, and then
expresses the clade probabilities as multivariate polynomials in
the Li. Gröbner basis methods for variable elimination then allow
one to determine generators of the polynomial ideal of all clade
invariants. Such computations were useful in formulating the
general construction of certain linear invariants given below. The
existence of these clade invariants forms the basis for our proof of
species tree topology identifiability in Section 6.

Theorem 6. Let AD! X be a subset of taxa with at least two elements,
and CDX \A a non-empty set of taxa not in A. For distinct a,bAA, let

A0 ¼A\fa,bg. Then if A is a clade on s,

X
SDA0

PsðSg [ fAg [ CgÞ

 !
�

X
SDA0

PsðSg [ fBg [ CgÞ

 !
¼ 0: ð3Þ

We note that this theorem applies to any species tree, includ-
ing non-binary ones. Moreover, since a non-binary species tree s
can be thought of as any of its binary resolutions with length
0 assigned to any introduced edges, the clade probabilities arising
from such a s will satisfy the polynomials of the theorem for
every binary resolution. Thus in the statement of the theorem the
phrase ‘if A is a clade on s’ can be replaced with ‘if A is a clade on
a binary resolution of s.’

For the proof, it is useful to have the notion of compatible
clades:

Definition. Two clades, Ag and Bg are compatible if Ag \ Bg ¼ |,
Ag DBg , or Bg DAg .

If a clade Ag is on a gene tree T, then all other clades appearing
on T must be compatible with Ag .

The proof of Theorem 6 uses partitions of subsets of the taxon
set X that occur as follows: Consider an internal node v of s, and
let A¼ descX ðvÞ. Then in a realization of the coalescent process on
s, some of the lineages of genes in Ag may coalesce below v, so
that there are 9A9 or fewer lineages at v. Each such lineage
determines a subset of Ag , namely its descendants, and hence the
set of lineages determines a partition of A.

As an example, consider the species tree in Fig. 1. For the set
A¼ fa,b,cg, the partition at MRCAðAÞ in both subfigures is
ffag,fbg,fcgg. Note that the partition of such a set A is not affected
by any coalescent events occurring in the MRCA population, but
only by those below. The only other partition of A possible for this
species tree is ffa,bg,fcgg. For the set A¼ fa,b,c,dg, the partition at
MRCAðAÞ in Fig. 1a is ffag,fb,cg,fdgg, and in Fig. 1b is ffa,b,cg,fdgg.

Proof of Theorem 6. Suppose A is a clade on c, with
v¼MRCAðAÞ. Letting pðAÞ ¼ fA1, . . . ,Akg denote a partition of A,
we also use pðAÞ to denote the event that the coalescent process
on s produces lineages at v defining this partition.

We will condition on this event: Specifically, recalling the

notion of a coalescent history (Degnan and Salter, 2005),

PsðpðAÞÞ ¼
X

T

X
history hT ,

hT consistent
with pðAÞ

PsðT ,hT Þ: ð4Þ

For B�X the joint probability PsðBg ,pðAÞÞ is computed similarly,

by restricting the outer sum on the right side of Eq. (4) to those

gene trees that have clade Bg . Then

PsðBg9pðAÞÞ ¼
PsðBg ,pðAÞÞ
PsðpðAÞÞ

,
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and by the law of total probability, we have the clade probability

PsðBgÞ ¼
X
pðAÞ

PsðBg9pðAÞÞPsðpðAÞÞ:

Thus, to establish Eq. (3), it is enough to show that

X
SDA0

Ps Sg [ fAg [ Cg9pðAÞ
� � !

�
X
SDA0

Ps Sg [ fBg [ Cg9pðAÞ
� � !

¼ 0

ð5Þ

holds for all choices of partition pðAÞ.
To establish Eq. (5), we show that non-zero terms cancel

pairwise. However, which terms cancel depends on the partition,

so for the remainder of the argument we fix pðAÞ, and assume the

partition sets are indexed so that aAA1.

Note first that if bAA1 as well, then we are conditioning on an

event that requires that the A and B lineages have coalesced into

one below v. Thus, any clade on a gene tree that includes A and Cg

must include B, because we have assumed that C is non-empty.

Similarly, any clade that includes B and Cg must include A.

Therefore, all probabilities in Eq. (5) are zero, so the

equation holds.

Otherwise, assume bAA2. We wish to give a bijective corre-

spondence between non-zero clade probabilities in the first sum

in Eq. (5) and equal clade probabilities in the second sum, with

the correspondence dependent on the partition pðAÞ. That is, we

wish to show that for each S1 �A0, there is a corresponding

S2 �A0 such that

Ps½ðS1Þg [ fAg [ Cg9pðAÞ� ¼Ps½ðS2Þg [ fBg [ Cg9pðAÞ�: ð6Þ

Consider first the case when ðS1Þg [ fAg [ Cg is compatible with

the clades ðA1Þg , . . . ,ðAkÞg . Because C is non-empty, this occurs

exactly when S1 [ fag is the union of some of the Ai. Thus we have

S1 [ fag ¼A1 tT
j
Aij ,

for some ij, with all unions here disjoint. Moreover, since

b=2S1 [ fag, A2 does not appear in this expression. We therefore

define S2 by the expression of disjoint unions

S2 [ fbg ¼A2 tT
j
Aij :

Eq. (6) then holds, since for the coalescent process on s above v

the lineages corresponding to A1 and A2 are exchangeable. This

gives us a bijection between S1 �A0 and S2 �A0 for which either

(and hence both) of the probabilities in Eq. (6) are non-zero.

For all other S1, S2, the sets S1 [ fAg [ Cg and S2 [ fBg [ Cg are

not compatible with pðAÞ, and hence these probabilities are zero.

&

As a simple corollary, we immediately obtain what we call
‘cherry-swapping’ invariants, which express that the probability
of any clade containing exactly one taxon of a 2-clade on the
species tree is unchanged when that taxon is swapped out for the
other taxon in the 2-clade.

Corollary 7 (Cherry-swapping invariants). Suppose fa,bg is a 2-clade

on a species tree with taxa X . Then for any CDX \fa,bg,

PsðfAg [ CgÞ�PsðfBg [ CgÞ ¼ 0:

To illustrate Theorem 6, we consider next all species tree
topologies on 5 or fewer taxa, and discuss invariants produced by
this construction. For notational ease, we denote gene tree clades
by juxtaposition of labels, rather than by sets, so, for instance

fA,B,D,Eg will be denoted ABDE. Our focus is on those invariants
associated to 3- and 4-clades, and we do not explicitly list cherry-
swapping invariants except for the 3-taxon tree.

Example. For the species tree topology c¼ ðða,bÞ,cÞ, the cherry-
swapping invariant,

PsðACÞ�PsðBCÞ ¼ 0

is the only one produced by Theorem 6.

Example. For the 4-taxon caterpillar tree topology c¼ ððða,bÞ,cÞ,dÞ,
in addition to the three cherry-swapping invariants, we find for
A¼ fa,b,cg the invariants

ðPsðADÞþPsðABDÞÞ�ðPsðCDÞþPsðBCDÞÞ ¼ 0,

ðPsðBDÞþPsðABDÞÞ�ðPsðCDÞþPsðACDÞÞ ¼ 0,

ðPsðADÞþPsðACDÞÞ�ðPsðBDÞþPsðBCDÞÞ ¼ 0,

for A0 ¼ fbg, A0 ¼ fag, and A0 ¼ fcg, respectively. We note that there
are relations between these: the second invariant is obtained from
the first by a cherry-swapping move, and the third is the sum of two
cherry-swapping invariants.

For the 4-taxon balanced tree topology, c¼ ðða,bÞ,ðc,dÞÞ, only the

six cherry-swapping invariants are obtained.

Example. If c is either the 5-taxon caterpillar tree topology
ðððða,bÞ,cÞ,dÞ,eÞ, or the balanced tree topology ððða,bÞ,cÞ,ðd,eÞÞ, con-
sider A¼ fa,b,cg.

Then for A0 ¼ fbg, we obtain for various choices of C,
ðPsðADÞþPsðABDÞÞ�ðPsðCDÞþPsðBCDÞÞ ¼ 0, ð7Þ

ðPsðAEÞþPsðABEÞÞ�ðPsðCEÞþPsðBCEÞÞ ¼ 0, ð8Þ

ðPsðADEÞþPsðABDEÞÞ�ðPsðCDEÞþPsðBCDEÞÞ ¼ 0: ð9Þ

Note that for the balanced species tree, Eq. (8) follows from Eq.

(7) by cherry swapping D and E. However, for the caterpillar

species tree, Eqs. (7) and (8) are not related by a cherry swap.

For A0 ¼ fagwe obtain Eqs. (7)–(9) again, up to cherry-swapping

lineages A and B.

For A0 ¼ fcg we obtain invariants such as

ðPsðADÞþPsðACDÞÞ�ðPsðBDÞþPsðBCDÞÞ ¼ 0, ð10Þ

but Eq. (10) is simply the sum of two cherry-swapping invariants

for the cherry fa,bg, with C¼ fdg and fc,dg. In general, if the taxa in

AnA0 span a smaller clade than A, the invariant produced will be a

sum of invariants for the smaller clade. Indeed, this phenomenon

occurred above, for the 4-taxon caterpillar.

Example. For the 5-taxon caterpillar topology c¼ ðððða,bÞ,cÞ,dÞ,eÞ,
taking A¼ fa,b,c,dg and using A0 ¼ fb,cg and A0 ¼ fa,bg, we obtain
two invariants:

ðPsðAEÞþPsðABEÞþPsðACEÞþPsðABCEÞÞ

�ðPsðDEÞþPsðBDEÞþPsðCDEÞþPsðBCDEÞÞ ¼ 0

and

ðPsðCEÞþPsðACEÞþPsðBCEÞþPsðABCEÞÞ

�ðPsðDEÞþPsðADEÞþPsðBDEÞþPsðABDEÞÞ ¼ 0:

Other choices of A0 give only invariants in the space spanned by
those previously discussed.

Example. For the 5-taxon pseudo-caterpillar tree topology
c¼ ððða,bÞ,ðd,eÞÞ,cÞ, taking A¼ fa,b,d,eg we obtain

ðPsðACÞþPsðABCÞþPsðACEÞþPsðABCEÞÞ

�ðPsðCDÞþPsðBCDÞþPsðCDEÞþPsðBCDEÞÞ ¼ 0, ð11Þ
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and three other invariants that can also be obtained by cherry
swapping from Eq. (11). Since PsðACEÞ ¼PsðBCDÞ by cherry
swapping, two of the eight terms can be cancelled.

Remark. All the linear invariants above for 3-, 4-, and 5-taxon
trees are, of course, among those that can be found computation-
ally. Gröbner basis calculations do not necessarily produce exactly
these, but by cherry-swapping and taking suitable linear combi-
nations of computed linear invariants, all of these appear. How-
ever, at least for trees on four and five taxa, there are additional
linear invariants beyond the ones of Theorem 6. We give these in
Appendix B, as it would be interesting to have non-computational
means of obtaining them, as well as the higher degree invariants.

6. Identifying clades

Suppose we are given the clade probabilities fPsðCgÞg arising
from the multispecies coalescent on an unknown species tree s,
and we wish to know if s displays a particular clade. By the
results of Section 4, high probability may identify some clades on
s. However, it remains to be seen how one might identify clades
on s that have lower probability of occurring on gene trees as a
result of high levels of incomplete lineage sorting.

From Section 5 we know that if A is a clade on s then for every
non-empty subset CDX \A, and every a,bAA, the linear invariant
associated to A, C, a, and b vanishes. For these invariants to be
useful for identifying clades, however, we must also know that if
s does not display the clade A, then one of these invariants does
not vanish.

Lemma 8. Suppose A is a non-trivial clade on a species tree s, and

aAA and bAX\A. Let B denote the set obtained by replacing a with

b in A, that is, B¼ ðA\fagÞ [ fbg. Then PsðAgÞ4PsðBgÞ.

Proof. Let v¼MRCAðA [ fbgÞ on s. Let A0 ¼A\fag, so A¼ fag [A0
and B¼ fbg [A0.

Then, using the phrase ‘X coalesces with Y above v’ to mean the

lineage of X first coalesces with any gene lineage in a set Y in a

population in the species tree above the node v,

PsðAgÞ ð12Þ

¼PsðfAg [A0gÞ ð13Þ

¼PsðfAg [A0g and A coalesces with A0g below vÞ ð14Þ

þPsðfAg [A0g and A coalesces with A0g above vÞ

4PsðfAg [A0g and A coalesces with A0g above vÞ ð15Þ

ZPsðfAg [A0g , A coalesces with A0g above v, ð16Þ

and B coalesces with Xg \fBg above vÞ

¼PsðfBg [A0g , A coalesces with A0g above v, ð17Þ

and B coalesces with Xg \fBg above vÞ

¼PsðfBg [A0gÞ ð18Þ

¼PsðBgÞ: ð19Þ

Lines (16) and (17) are equal due to exchangeability of lineages;

given any sequence of coalescences in the event of line (16), there

is an equally probable sequence of coalescences in the event of

line (17) in which B coalesces in A’s place to form fBg [A0g instead

of fAg [A0g . Lines (17) and (18) are equal because the event that

fBg [A0g is a clade can only occur when A and B each coalesce as

described in (17), and thus these extra statements are redundant.

Thus, PsðAgÞ4PsðBgÞ. &

Remark. One might wish to extend the above result to sets
obtained by replacing k elements in a clade with k elements
outside it. However, simple examples show that this is impos-
sible. For instance, if s¼ ððða,bÞ : x,cÞ : y,ðd,eÞ : zÞ where z is large
and both x and y are small, then one can have PsðABCÞoPsðCDEÞ.
For example, if ðx,y,zÞ ¼ ð0:05,0:05,2:0Þ, then the highest prob-
ability clades are DE, AB, AC, BC, CDE, and ABC with probabilities
0.889, 0.269, 0.220, 0.220, 0.194, and 0.188, respectively (com-
puted by COAL, Degnan and Salter, 2005). Thus for these branch
lengths, we have PsðABCÞoPsðCDEÞ, and the greedy strategy of
accepting the most probable clades one-at-a-time returns the
non-matching tree ðða,bÞ,ðc,ðd,eÞÞÞ.

The same example shows that for a set C�X there can exist

yAC such that for all xAX \ C, PsðCgÞ4PsððC\fygÞ [ fxgÞ and yet C
is not a clade. In this example, fc,d,eg is not a clade on the species

tree, yet CDE is more probable than ADE or BDE on gene trees.

Lemma 8 allows us to show that if all cherry-swapping
invariants are satisfied for a particular candidate 2-clade, it is in
fact a 2-clade on the species tree.

Proposition 9 (Clade probabilities determine species 2-clades). For

s¼ ðc,lÞ an n-taxon binary species tree on a set of taxa X , the

2-clades of c are identifiable from clade probabilities. In particular,
for any a,bAX , fa,bg is a clade on c if, and only if, for every

DDX \fa,bg, PsðfAg [DgÞ ¼PsðfBg [DgÞ.

Proof. If fa,bg is a clade on s, then by Corollary 7, PðfAg [

DgÞ ¼PðfBg [DgÞ for any taxon set D not containing a or b.

Suppose now that fa,bg is not a clade on c. Then, because s is

binary, at least one of a or b (let us say a) is in a non-trivial clade C
on c that excludes the other. Let D¼ C\fag.

By Lemma 8, PsðfAg [DgÞaPsðfBg [DgÞ. &

For clades of more than two taxa on a species trees, we obtain
a slightly weaker result: As long as the edge length vector l does
not lie in a set of measure zero, then the clades on the species tree
can be identified. The first step toward this result is the following.

Lemma 10. Let c be a species tree topology on X , and X ¼A tD a

disjoint union of non-empty subsets with 9A9Z2. Then if A is not a

clade on c and MRCAðAÞ is a binary node, then there exists some CDD,
a,bAA, and some choice of edge lengths l such that the corresponding

clade invariant of Theorem 6 does not vanish on the clade probabilities

arising under the multispecies coalescent on s¼ ðc,lÞ.

Proof. Suppose A is not a clade on c. Let v¼MRCAðAÞ on c, so
E ¼ descX ðvÞ\A is non-empty. One or both children nodes w1,w2 of
v have an element of E as a descendant, so we may assume C¼
descX ðw1Þ \ E is non-empty. Let aAA \ descX ðw1Þ, bAA \ descX
ðw2Þ. Consider the clade invariant of Theorem 6 associated toA,C,a,b.

We next give edge lengths l for which this invariant will not

vanish at the clade probabilities arising from the multispecies

coalescent on s¼ ðc,lÞ. Let all internal edges of c below v have

length (near) 0 except the edge ðv,w1Þ which is assigned length

(near)1. Lengths of edges above v can be fixed at any finite non-

zero values.

With these assignments, the only partition of descX ðvÞ accord-

ing to lineages at v that appears with non-negligible probability is

that with descX ðw1Þ forming one partition set, while all elements

of descX ðw2Þ are in singleton sets. But since C� descX ðw1Þ,

aAdescX ðw1Þ and b is in a singleton set, the only clades that can
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result with non-negligible probability that contain both B and

elements of Cg must also contain A. Thus all the clades appearing

in the second term of Eq. (3) have probability arbitrarily close to

0. However, the clade ðdescX ðw1ÞÞg appears in the first term and

has non-negligible probability. Thus Eq. (3) is violated. &

Theorem 11. Let c be a rooted binary species tree topology on X ,
where X ¼A tD is a disjoint union of non-empty subsets. If A is not

a clade on c then for all choices of edge lengths l except those in

some set of measure zero there exists some CDD, a,bAA, such that

the corresponding clade invariant does not vanish on the clade

probabilities arising under the multispecies coalescent on s¼ ðc,lÞ.

Proof. The clade probabilities arising from s can be expressed as
polynomials in the exponentials of the negatives of the interior
edge lengths. By Lemma 10, there is an invariant which, when
composed with this polynomial map, does not vanish at some point
in the space ð0;1�n�2 of these exponentials. But since this composi-
tion is a polynomial, its non-vanishing at some point implies the set
where it vanishes has measure zero in ð0;1�n�2. Mapping this set to
interior edge lengths by �logðxÞ shows the set of edge lengths for
which the invariant vanishes has measure zero. &

Since, except for a negligible set of edge length parameters,
whether a species tree has a particular clade can be tested by
examining clade probabilities, one can similarly determine the
full species tree topology.

Though intriguing, we have not investigated whether the set of
measure zero in Theorem 11 is non-empty, and thus whether
there exist (rare) instances in which the vanishing of clade
invariants might erroneously lead one into suspecting a clade
occurs on the species tree.

Corollary 12. Let c be a rooted binary species tree topology on X .
For generic choices of edge lengths l, c can be identified from the

probabilities of clades under the multispecies coalescent on s¼ ðc,lÞ.

Proof. For any subset of taxa A�X , if we find any invariant given
by Theorem 6 that fails to vanish on the clade probabilities for
s¼ ðc,lÞ, then A is not a clade on c. If all such invariants vanish,
then by Theorem 11, either A is a clade on c, or l lies in a set of
measure zero (which is dependent on A,C,a, and b used in
defining the invariant).

Thus, considering all proper subsets A of X , we can determine

all clades, unless the edge lengths l lie in a set of measure zero

(the finite union of sets of measure zero for each invariant).

Finally, the clades of c determine c. &

Remark. If one considers a non-binary species tree to be specified
by the topology of an arbitrarily chosen binary resolution of it,
along with the assignment of edge length 0 to any introduced
edges, then both Theorem 11 and Corollary 12 still apply. Indeed,
the special choices of some 0 edge lengths form a set of Lebesgue
measure zero in the full set of possible edge lengths, so regardless of
whether such trees can be identified, the statements remain valid.

A particular feature of non-binary species trees that is identifi-
able is a k-cherry, a set of kZ2 leaves fx1 . . . ,xkgAX that all share
a common parent node and form a clade. This will prove useful for
identifying the extended species trees defined in Section 2, which
describes the sampling of multiple individuals per taxon.

Proposition 13 (Clade probabilities determine extended species tree k-

cherries). Let sn ¼ ðcn,l,dÞ be an extended species tree on X for which

the pruned species tree c is binary. Then the k-cherries of cn are

identifiable from gene clade probabilities from the multispecies coales-

cent on sn for all choices of edge lengths l outside a set of measure

zero.

In particular, fxi1j1
, . . . ,xikjk

gDXn is a k-cherry on cn if, and only if,

it is a maximal subset of Xn such that for every 1r lomrk and

every yAXn
\fxiljl ,ximjm g,

PsðfXiljl
,YgÞ ¼PsðfXimjm

,YgÞ:

Proof. Let K¼ fxi1 j1
, . . . ,xikjk

g be a k-cherry on cn, with MRCA the
node v. Then for any yAXn

\fxiljl ,ximjm g, PsðfXiljl
,YgÞ ¼PsðfXimjm

,YgÞ
by the exchangeability of Xiljl and Ximjm

.

To see that K is maximal with respect to this property, suppose

zAXn
\K. (If no such z exists, maximality is clear.) We show K

cannot be augmented by z by showing that PsðfXi1j1
,Xi2j2
gÞa

PsðfZ,Xi2j2
gÞ for some choice of l. This then implies the same

statement for generic values of l, since these probabilities are

polynomials in the exponentials of negative branch lengths.

Choose all internal branch lengths of the species tree to be

(near) 0 except for the branch e above v, which we choose to have

length (near) 1. Consider the event E that the Xi1j1
and Xi2j2

lineages coalesce on e and are the first of the K lineages to do so.

Then one sees that

PsðfXi1ji
,Xi2j2
gÞ4PsðEÞ �

k

2

� ��1

,

where the approximation becomes increasingly accurate as more

extreme branch lengths are chosen. However such choices of

branch lengths make PsðfZ,Xi2j2
gÞ as close to 0 as desired, since

the probability of the clade K goes to 1, and this is incompatible

with clade fZ,Xi2j2
g. Thus PsðfXi1 j1 ,Xi2j2

gÞaPsðfZ,Xi2 j2 gÞ.

To establish the converse, suppose now that K is maximal with

respect to the stated property, but is not a k-cherry. By the above

argument, maximality implies K is not a subset of any l-cherry for

l4k.

To achieve a contradiction, it is sufficient to show that there exist

xi1j1
,xi2j2

AK, yAXn such that PsðfXi1j1
,YgÞaPsðfXi2 j2

,YgÞ unless

branch lengths lie on a set of measure 0. Let v¼MRCAðKÞ. Since K
is not contained in an l-cherry, there exists a non-leaf node w which is

a child of v. Moreover, v is binary, since c is.

Choose xi1 j1
AK\descX ðwÞ, which is non-empty because

v¼MRCAðKÞ. The node w has at least two distinct leaf descen-

dants, and since v is binary at least one leaf descendant of w must

be in K. Choose xi2 j2
AK \ descX ðwÞ, and yAdescX ðwÞ\fxi2j2

g.

Let m¼ 9descX ðwÞ9. By choosing the length of the edge con-

necting w and v to be near 1, and the length of all edges

descended from w to be near 0, the probability of clade fXi1j1
,Yg

will be arbitrarily close to 0, and the probability of the clade

fXi2 j2
,Yg will be bounded below by a number arbitrarily close to

ðm2 Þ
�1, as in the argument above. Thus, there exist branch lengths

with PsðfXi1 j1
,YgÞaPsðfXi2j2

,YgÞ. Because these probabilities are

polynomials (in transformed branch lengths), the set of branch

lengths where PsðfXi1 j1
,YgÞ ¼PsðfXi2 j2 ,YgÞ has measure 0. &

Finally, we apply Proposition 13 to show generic identifiability
of species trees from clade probabilities when there are diZ1
lineages sampled for taxon xi. (See Fig. 2.)

Corollary 14. Let sn ¼ ðcn,l,dÞ be an extended species tree, for

which the pruned species tree c is binary. For generic choices of edge

lengths l, the topology of cn can be identified from the probabilities

of clades under the multispecies coalescent.

Proof. All k-cherries of cn can be identified by Proposition 13
(although this is unnecessary if one assumes species assignments
are given). By assumption there are no other polytomies on cn;
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for any other clade A on the extended species tree, v¼MRCAðAÞ
is a binary node. Thus Theorem 6 and Lemma 10 apply. These
imply that for generic l all clades on the extended species tree
can be identified, and hence cn can be identified. &

Since this corollary does not assume that the assignment of
individuals to taxa is known in advance, it implies that under some
circumstances species assignment can be deduced from clade prob-
abilities. In particular, any taxon for which three or more individuals
are sampled will be identifiable from cn. However taxa in which two
individuals have been sampled will be indistinguishable from two
taxa forming a 2-clade with one individual sampled from each.

7. Discussion

We have shown that for generic branch lengths on a binary
species tree, it is possible to identify clades of the species tree, and
therefore the species tree topology, from probabilities of clades on
gene trees. More generally, we showed identifiability of clades
consisting of taxa descended from binary nodes even if the
species tree is not itself binary. In addition, we investigated how
probable a clade on a gene tree must be to infer it is also a clade
on the species tree.

We have not shown the identifiability of branch lengths from
clade probabilities. However, for any given species tree topology
it is possible to write systems of equations of clade probabilities
as functions of the branch lengths. (As examples, consider the
systems of equations for clade probabilities for some 4-taxon
species trees shown in Table A1.) These systems are non-linear
but polynomial in the transformed branch lengths. Since the
number of branch length parameters is n�2 for an n-taxon tree
and there are 2n

�n�2 non-trivial clade probabilities, it is reason-
able to expect such systems to be solvable, in principle, for any
sized tree. Although for particular small trees these can be solved,
we have not found a general method applicable to arbitrary trees.
It thus remains conjectural that species tree branch lengths are
identifiable from clade probabilities. If multiple individuals are
sampled from some species, then the species tree has additional
branch length parameters (for branches leading to such species),
but will have an even larger number of clades’ probabilities that
could conjecturally be used to estimate branch lengths.

While the invariants of Theorem 6 are useful in proving
identifiability of a species tree topology, they do not immediately
indicate a practical way to infer the species tree from clade
probabilities. In particular, each term in the invariant of Theorem
6 is the probability that a random gene tree has a clade that is not a
clade on the species tree. The clade probabilities needed for the
invariant of Theorem 6 may therefore be quite small. For species
trees with moderately long branches, many of these probabilities
could be difficult to estimate from finite data sets. However, in such
a situation the results of Section 4 might offer an alternative way of
inferring species tree clades as those which occur with high
frequency on gene trees. This suggests the possibility of a hybrid
approach in which one accepts highly probable clades as being
clades on the species tree, as in a greedy algorithm, yet exploits the
symmetries of clade probabilities expressed by invariants to deter-
mine other species clades. Thus our identifiability results should
motivate further research on species tree inference methods that are
statistically consistent and that can outperform greedy consensus on
typical data sets with imperfectly estimated clade probabilities.
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Appendix A. Clade probabilities for subtrees as linear
combinations

An essential difficulty in dealing with clade probabilities in
mathematical arguments is that it is not easy to see relationships
between probabilities of clades on gene trees arising from a
species tree on a set of taxa and the clade probabilities on the
induced gene trees obtained by restricting the set of taxa to a
smaller set. This frustrates the common approach used to prove
results for large trees, by inductive arguments on the number
of taxa.

Consider a set of taxa X , a proper subset Y �X , and a species
tree s¼ ðc,lÞ on X . We show here that, in general, probabilities of
gene tree clades for the induced species tree on Y, s9Y, cannot be
written as the same linear combination of gene tree clade
probabilities for s for all choices of c. Thus there is no linear
formula for the clade probabilities for the smaller taxon set that
does not depend on the species tree topology.

This is in contrast to, for example, gene tree probabilities for
s9Y, which can be written as linear combinations of gene tree
probabilities for s, where the weight assigned to each gene tree
probability in the combination has no dependency on s.

To show that the same linear combination cannot be used to
marginalize clade probabilities independently of the species tree,
we consider three species tree topologies on four taxa, as given in
Table A1: ððða,bÞ,cÞ,dÞ, ðða,dÞ,ðb,cÞÞ, and ðða,bÞ,ðc,dÞÞ. Clade probabil-
ities can be obtained from Degnan et al. (2009, Table D1). There
are 10 non-trivial clades, so any linear combination of clade
probabilities c1, . . . ,c10 has the form

X10

i ¼ 1

aici ðA:1Þ

for some a1, . . . ,a10.
We consider obtaining the probability of clade CD when the

taxon set is restricted to fa,c,dg (i.e., marginalizing over taxon b).
Assuming first that the species tree is ðða,dÞ : x,ðb,cÞ : yÞ, the
restricted species tree is ðða,dÞ : x,cÞ, and the probability of clade
CD is 1

3 X. If a linear combination of the clade probabilities on the

Table A1
Probabilities of clades under three 4-taxon species trees. X¼exp(�x), Y¼exp(�y).

Clade Probability under species tree

ððða,bÞ : x,cÞ : y,dÞ ðða,dÞ : x,ðb,cÞ : yÞ ðða,bÞ : x,ðc,dÞ : yÞ

c1 ¼PsðABÞ 1� 2
3 X� 1

9 XY3 2
9 XY 1� 2

3 X� 1
9 XY

c2 ¼PsðACÞ 1
3 X� 1

9 XY3 2
9 XY 2

9 XY

c3 ¼PsðADÞ 1
6 XYþ 1

18 XY3 1� 2
3 X� 1

9 XY 2
9 XY

c4 ¼PsðBCÞ 1
3 X� 1

9 XY3 1� 2
3 Y� 1

9 XY 2
9 XY

c5 ¼PsðBDÞ 1
6 XYþ 1

18 XY3 2
9 XY 2

9 XY

c6 ¼PsðCDÞ 1
3 Y� 1

6 XYþ 1
18 XY3 2

9 XY 1� 2
3 Y� 1

9 XY

c7 ¼PsðABCÞ 1� 2
3 Y� 1

3 XYþ 1
6 XY3 1

3 X� 1
6 XY 1

3 Y� 1
6 XY

c8 ¼PsðABDÞ 1
3 Y� 1

6 XY 1
3 Y� 1

6 XY 1
3 Y� 1

6 XY

c9 ¼PsðACDÞ 1
6 XY 1

3 Y� 1
6 XY 1

3 X� 1
6 XY

c10 ¼PsðBCDÞ 1
6 XY 1

3 X� 1
6 XY 1

3 X� 1
6 XY
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larger tree is to yield this probability, then by inserting the
formulas for the ci from Table A1 into Eq. (A.1) and equating
coefficients, we obtain the following equations:

a3þa4 ¼ 0,

�2a3þa7þa10 ¼ 1,

�2a4þa8þa9 ¼ 0,

4a1þ4a2�2a3�2a4þ4a5þ4a6�3a7�3a8�3a9�3a10 ¼ 0,

where the rows correspond to the coefficients of 1, X, Y, and XY.
The system is underdetermined since there are 10 unknowns and
only four equations.

Similar systems can be obtained by considering other species
trees. For the other species trees in Table A1, ððða,bÞ : x,cÞ : y,dÞ and
ðða,bÞ : x,ðc,dÞ : yÞ, respectively, restricting to taxa fa,c,dg leads to
trees ðða,cÞ : y,dÞ and ða,ðc,dÞ : yÞ, and probabilities of clade CD that
are 1

3 Y and 1� 2
3 Y . Equating coefficients on all three species trees

in Table A1, we have the equations encoded by the following
13�11 augmented matrix:

1 0 0 0 0 0 1 0 0 0 0

�2 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 �2 1 0 0 1

0 0 1 0 1 �1 �2 �1 1 1 0

�2 �2 1 �2 1 1 3 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0

0 0 �2 0 0 0 1 0 0 1 1

0 0 0 �2 0 0 0 1 1 0 0

4 4 �2 �2 4 4 �3 �3 �3 �3 0

1 0 0 0 0 1 0 0 0 0 1

�2 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 �2 1 1 0 0 �2

�2 4 4 4 4 �2 �3 �3 �3 �3 0

2
666666666666666666666666664

3
777777777777777777777777775

:

Here rows 1–5 represent the system of equations implied by the
species tree ððða,bÞ,cÞ,dÞ, rows 6–9 represent the system of equa-
tions corresponding to the species tree ðða,dÞ,ðb,cÞÞ, and rows
10–13 represent the system of equations corresponding to the
species tree ðða,bÞ,ðc,dÞÞ. Gaussian elimination shows this system
of 13 equations is inconsistent.

Appendix B. Additional clade invariants for small trees

For trees on five or fewer taxa, computations of a Gröbner
basis for invariants in clade probabilities show that the construc-
tion of Theorem 6 fails to produce all invariants, or even all linear
ones. In this appendix, we indicate the results of such computa-
tions that we performed using the software Singular (Greuel
et al., 2009). We emphasize that by linear invariant we mean
linear homogeneous invariant, so that the trivial invariant, which
is inhomogeneous, is not counted when we give dimensions of
spaces.

For the 3-taxon tree there is only a single invariant, the linear
one arising from cherry-swapping, produced by Theorem 6.

For the 4-taxon balanced tree topology ðða,bÞ,ðc,dÞÞ, there is a
six-dimensional space of linear invariants, yet the ones con-
structed in Theorem 6 span only a five-dimensional subspace.
The additional generator needed to obtain all linear invariants can
be taken to be

PsðABÞ�PsðCDÞ�2PsðABCÞþ2PsðACDÞ:

The ideal of all invariants has just one additional generator, which
is quadratic.

For the 4-taxon caterpillar tree topology ððða,bÞ,cÞ,dÞ, there is a
five-dimensional space of linear invariants. However the con-
struction of Theorem 6 produces only a four-dimensional space of
linear invariants. For the full space of linear invariants, the
polynomial

PsðABÞþ2PsðACÞþ9PsðCDÞ�PsðABCÞ

�11PsðABDÞ�4PsðACDÞ

can be taken as the missing generator.
In addition, there were one quadratic and three cubic poly-

nomials in a full Gröbner basis.
For the 5-taxon balanced tree topology ððða,bÞ,cÞ,ðd,eÞÞ, the

construction of Theorem 6 produces a 14-dimensional subspace
within a 16-dimensional space of linear invariants. Additional
generators can be taken to be

22PsðCDÞþ5PsðDEÞ�5PsðABCÞ�22PsðABDÞ

þ15PsðCDEÞþ10PsðABCDÞ�25PsðABDEÞ�20PsðACDEÞ

and

11PsðABÞþ22PsðACÞ�25PsðDEÞþ14PsðABCÞ

�22PsðABDÞ�44PsðACDÞþ24PsðCDEÞ�50PsðABCDÞ

þ4PsðABDEÞþ56PsðACDEÞ:

In addition to the linear invariants, there are eight quadratic
invariants and 13 cubic invariants in a Gröbner basis for the ideal.

For the 5-taxon pseudo-caterpillar tree topology ððða,bÞ,
ðd,eÞÞ,cÞ, the construction of Theorem 6 produces a 13-dimensional
subspace within a 14-dimensional space of linear invariants. An
additional generator can be taken to be

PsðABÞ�PsðDEÞ�6PsðABCÞ�2PsðABDÞþ2PsðADEÞþ6PsðCDEÞ:

The algorithm for computing the full ideal of invariants for this
topology did not terminate in a reasonable amount of time, so the
full ideal remains unknown. Partial computations in which the
degree of generators is bounded show that there are generators in
degrees 2, 3, 4, 5, and 6, in addition to linear invariants.

For the 5-taxon caterpillar tree ðððða,bÞ,cÞ,dÞ,eÞ, the construction
above produces a 11-dimensional subspace within a 12-dimen-
sional space of linear invariants. One choice for the additional
generator is

5PsðABÞþ10PsðACÞþ24PsðCDÞþ62PsðDEÞ

þ2PsðABCÞ�20PsðABDÞ�29PsðABEÞþ8PsðACDÞ

�58PsðACEÞþ45PsðCDEÞ�7PsðABCDÞ

�76PsðABCEÞ�44PsðABDEÞþ2PsðACDEÞ:

Our attempt to compute a Gröbner basis for the caterpillar
topology did not terminate in a reasonable amount of time. We
did, however, find quadratic generators in addition to the linear
ones, but found no higher degree generators. It is reasonable to
speculate that the full ideal is generated in degree one and two for
this topology.

It would be quite interesting to find general constructions that
lead to the additional linear invariants not explained by Theorem 6.
Similarly, understanding the structure of higher degree invariants by
non-computational means is an open challenge.
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