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Abstract—Phylogenetic data arising on two possibly different
tree topologies might be mixed through several biological mech-
anisms, including incomplete lineage sorting or horizonthgene
transfer in the case of different topologies, or simply diferent
substitution processes on characters in the case of the sam
topology. Recent work on a 2-state symmetric model of charaer

change showed that for 4 taxa such a mixture model has non-

identifiable parameters, and thus it is theoretically imposible
to determine the two tree topologies from any amount of data
under such circumstances. Here the question of identifiakitly is
investigated for 2-tree mixtures of the 4-state group-basemodels,
which are more relevant to DNA sequence data. Using algebrai
techniques, we show that the tree parameters are identifiablfor
the JC and K2P models. We also prove that generic substitutio
parameters for the JC mixture models are identifiable, and fo
the K2P and K3P models obtain generic identifiability resuls
for mixtures on the same tree. This indicates that the full
phylogenetic signal remains in such mixtures, and that the 2
state symmetric result is thus a misleading guide to the beléor
of other models.

I. INTRODUCTION

on the same tre¢][5], and those with scaledistributed rates
[]. However, even for the GTR3+I model, which is currently
the most commonly used in DNA data analysis, it is yet to be

eproved that trees are identifiable.

Several recent works, includin@125[_134[,-124], arld][23],
considered 2-class mixture models in which the two classes
evolve along possibly different topological trees. Suctdeis
could describe instances of horizontal transfer of geratie
terial between taxa, or incomplete lineage sorting in seqee
composed of several concatenated genes. In particulasekat
and Steel[[24] showed that under the binary symmetric model
of Cavender-Farris-Neyman, a 2-class mixture on a single 4-
taxon tree can exactly ‘mimic’ a single class model on a
different tree. Because of the small size of the state space i
this model, its group-based structure, and the small sizbeof
tree, explicit calculations were possible to fully analythés
situation. However, one should be cautious about extrépgla
from this result to a pessimistic view about identifiabiliy
similar phylogenetic mixtures. The mixture ¢f]24] is an 11-
parameter model producing a probability distribution in-a 7

A basic question concerning any statistical model is wheth@imensional space, so it is certainly overparameterizeuilen

a probability distribution arising from the model uniquelg-

this dimension count does not guarantee non-identifisiolfit

termines the parameters that produced it. If so, the pasEmethe tree, it does explain why it might likely arise.

are said to bédentifiable Indeed, parameter identifiability is

necessary for the consistency of inference.

By either passing to models with larger state spaces, such
as 4-state models appropriate to DNA, or by considering

In phylogenetics, it is especially important that the tregees relating more taxa, the joint distribution of statesha
parameter of a model be identifiable, so that evolutionagaves of the tree will be embedded in a larger dimensional
histories can be consistently inferred. For basic models §hace. Thus we might hope to avoid overparameterization
character evolution along a tree, in which all sites behawgsues through either of these modifications. As the arsbyfsi

independently and identically, identifiability of both thiee

real biological data typically involves both of these chesg

and continuous parameters is long-established. Howeser,tigese are the types of mixture models it is most desirable to
phylogenetic models grow in complexity, it becomes increagnderstand.

ingly difficult to analyze the models thoroughly enough to be

certain this property is retained. Indeed, mixture modéls
all sorts present difficulties, though positive resultsenbeen

obtained for models with a small number of classes evolving
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o Here we consider 2-class mixtures analogous to those in the
works above, but for larger trees and/or state spaces.

We continue to work with group-based models, focusing
primarily on those for DNA, so that we retain the powerful
tool of the Fourier/Hadamard coordinate transformation.

We also make use of computational algebra software to
perform calculations well beyond what could be done ‘by
hand.’ Our results on identifiability are generally quitesiioe,
and although these group-based models are still speciescas
we believe they provide a better guide to the behavior of more

realistic models than those df]24].

This paper is organized as follows. In Sectigh Il we in-
troduce 2-tree mixture models and the identifiability pesbl
in the algebraic setting. Background on group-based models
is covered in Sectiofll, from basic definitions throughithe



presentation in terms of Fourier coordinates. St, % [0,1] and
Section[I¥ deals with identifiability of the tree parameters

for Jukes-Cantor and Kimura 2-parameter mixture models on

two trees. The main result, that tree parameters in such mpe defined by

tures on at least 4 taxa are generically identifiable, is Témo

[0 and its corollary. Even with generic tree identifiability ¥y 15 (81, 82, ) = 71, (s1) + (1 — m)¢br, (s2).

proved for 2-tree mixtures, a natural question is whetherifre 7 is the mixing parameter giving the proportion of

single-class (unmixed) model can be distinguished from a 2-4  sites that evolve along treg .

tree mixture. (This is not answered by the previous resimiées e will only consideralgebraic modelsfor which the maps

while a single-class model is a special case of a 2-class modg,.  and henceyy, 1,, are defined by polynomial formulas.

it is non-generic.) We investigate this problem in Seclidn Vhjs is a small restriction, as many modeksg| standard
Finally, in Section[MI, we turn to identifiability of the continuous-time models) which are not polynomial can be

continuous parameters of these models, assuming the %@ghedded in ones that are.d, the general Markov model).

parameters are known. One feature of a part of our analyaigjebraic models can be studied from the perspective of

is the use of computational algebra software to obtain SOMRjebraic geometry[[12], after extending- and ¢r, 7, to

resultswith very high probability Although technically these complex polynomial maps, with images @". We refer to

remain conjectures, lacking rigorous proof, the conclusioe Sy and Sy, 7, asstochastic parameter spaces distinguish

draw from such calculations are highly reliable for theiwadt hem from fhecomplex parameter space$ these extensions.

reasons. While_ using calculatio_ns this way is familiar t0 \\e denote by the algebraic variety which is the Zariski

applied algebraic geometers, this approach may be new igsyre of the image ofyr in the complex projective space

others, so we begin the section by explaining the reasonipg*—1 (See [0}, [[1¥] for background in algebraic geometry.)

informally. With this qualification, we establish the geiter Then the closure of the image o, 7, is a variety called the
identifiability of continuous parameters for the JC modeéwh join of Vi, andVx,, denoted by ’

eithern > 5, or n = 4 and the trees are distinct. In the case
of identical trees withn > 5 taxa, we give a fully rigorous Vi, * V.

argu_ment fqr the th“?e gr(_)gp-based mod_els: JC, K2P, and K;I)’ﬁe join can be described geometrically as the smallesttyari
An interesting non-identifiable case arises from the ‘JUkeédntaining all lines intersecting both, andVy, . In the case
Cantor mixtures on two identical 4-taxon trees. T, = T, the join is called thesecantvallriety of%/
Command files and instructions for verifying all our com- 1We LQJSEMT and My, « M., to denote tﬁé image of
) 1 21

putations using the software Singular[16] can be found e parameterization maps when applied only to the stochast

Fhel sdupptlje:?]entary rr:att_enals WEbS':.e for this papér [t3]. %rameter spaceSr and St, 1,. Thus these denote the sets
Include both computations supporting our arguments, aggl,), probability distributions arising from the parameted
those producing our examples. models. and

We would, of course, prefer to push the work here beyond

the group-based models, to include those more routinelg use Mz & Ve, Mry x Mz, &V, * V.
in current data analysis. Itis possible, after all, thatdheup-  While M7 and My, * My, are of course the objects of pri-
based models are special enough that identifiability redait mary interest to phylogenetic applications, the larger glem
them do not carry over to more elaborate models. However, airieties Vi and Vi, = V7, are more amenable to algebraic
current computational and theoretical tools are not seffici study.

for us to address questions for more general models. Another parameterization of a dense subsetVaf * V7,

which we will also use, is
Il. PRELIMINARIES

: 1

Consider a phylogenetic model &fstate character change o1y 2 Vi, X Vi X P ==> Vi o+ Vi,
on n-taxon trees (e.g., fok = 4, the Jukes-Cantor model).which when restricted to an affine subset simply maps points
We assume the taxa labelling the leaves are identified with the two varieties to their convex sum using the third
[n] ={1,2,,...,n}. Then for each leaf-labelled tre#, there coordinate as a weight. (The dashed arrows indicates the map
is a parameterization magr giving the joint distribution of is only defined on a dense subset of the stated domain.) If
states at the leaves of the tréeas functions of continuous r € C ¢ P!, then
parameters. Wittyr denoting the continuous parameter space
on T, which we assume is some full-dimensional subset of ~ ¥71.7:(51,82,7) = b1y, 1, (U7 (51), ¥ (s2), ). (1)
R™,

. k"1
le-,Tz . STI-,T2 — A )

N = Associated to any algebraic variétyis the idealZ = Z (V")

Y St ’ of polynomials that defines it; namely, a polynomfak 7 if,

where A*" =1 c [0,1]*" is the probability simplex comprisedand only if, for any pointv € V, f(v) = 0. For a variety

of non-negative real vectors summing to 1. associated to a phylogenetic model, such polynomials give
Given such a model, the associated 2-tree mixture moaeinstraints that entries of a distribution of states at dawés

has the following parameterization maps: For every pait-of of a tree must satisfy if it arises from the given model. First

taxon treesl; andT; on the same taxa, lef, 1, = S, x  introduced in phylogenetics by Cavender and Felsensi¢in [8



and Lake [[2R], these polynomials are knownpsy/logenetic conditional probabilities of various state changes. Weiiags
invariants and have been studied extensively in many papethe reader is familiar with the usual assumptions of Markov

including [13], [32], [33], [29], [20], [31], 6], [4]. processes on trees [27]. Thant distribution of states at the

For algebraic models, it is convenient to slightly Weakeﬁaves of” may be computed (the image 0f), once the root

the notion of identifiability togeneric identifiability The distibution and the collection ¢fl . } are specified. We refer

word ‘generic’ is used to mean ‘except on a proper algebrat% the entries of the root distribution and the Markov matsic

. g : thecontinuous parametersf the model.
subvariety’ of the parameter space. Although it is sometim@> "€cor ) .
possible to be explicit about this subvariety, we usually a*. Defmmqn 4: LetT be a binary tr.ee rqote_d ptletG beg
not, since the key point in interpretation is that the suiear inite abelian group of ordet, and |d(_ent|fy its elements with
is a closed set of Lebesgue measure 0 inside the larger Q:? s;ate szceToI thteh randomélquabﬁéﬁ IThen :’;grourg |
Thus regardless of the precise subvariety involved, ‘ramglo ased modeon £ for the groupt: 1S a phylogenetic mode
chosen points are generic with probability 1. with a uniform ropt o_Ilstrlbunon, and transition probatés
An additional issue for identifiability of 2-tree mixtures”" each edge satisfying
is class swapping: Interchanging the trees, along withr thei M,(g,h) = fo(g—h)
parameters, while replacing the mixing parametdyy 1 — , _
has no effect on the resulting distribution. Thus, a usedtiom for some functionsfe : G — R.
of identifiability must allow for this. Some standard examples of group-based models are the
Definition 1: The tree parameters of the 2-tree mixturginary symmetric model, a.k.a. the Cavender-Farris-Neyma
model aregenerically identifiabléf, for any binary treeqy, 7,  (CFN) model, which is associated to the grodp; and

on the same set of taxa, and generic choices; 0, T, the Jukes-Cantor (JC) model, the Kimura 2-parameter (KZP)
L, model, and the Kimura 3-parameter (K3P) model, which are
by 1 (81,82, 7) = Py 1y (1, 82, 7) associated to the grou, x Z,. With appropriate ordering of
implies {7}, Ty} = {17, T3}. the state spaces, the transition matrices for these modets h

Definition 2: The continuous parameters ofdree mixture the following forms, respectively:
model onT} andT; aregenerically identifiablef for generic

: a g B B
choices ofsy, ss, 7, (a ﬂ) 3 a B B
dJTl-,Tz(SleQvﬂ-) = le-,Tz (8/175/2’71-/) a g g g o)
(0%
implies (s1, s2, ™) = (s, 85, 7'), or, in the case wher@; =

T3, (s1,82,m) = (s3,81,1 — 7). a By v a B v 6
Let K C [n] be a subset of the leaf set. For any tfé®n B a v v B a 0 v
n leaves,T|k will denote the induced subtree @f with leaf vy v oa B’ v d a f
set K. Since marginalization onto leaf subsets is a linear map v oy B o« 0 v B «

that preserves the mixture structure of a phylogenetic mode
we obtain the following useful fact.

Lemma 3:Let T, T», T3, T, ben-taxon trees, not necessar
ily distinct, and letK' C [n]. If Vi, % Vi, o € Vi e # Vi e
then VT] * VT2 g VYT3 * VT4.

Proof: Marginalization to a fixed sek™ gives a linear map
from_(ck" o, Wh.iCh sends’r to ‘_/T\.K for any 7. For 1 onomial parameterization.
any linear transformatiorl and any varietiesy/, W, we have To make this parameterization explicit, henceforthdebe

A(.V *W) = AV * AW’ because the mixture construction 'SZQ or Zs x Zs, andT ann-taxon tree. The Fourier coordinates
a linear operation. Since for any séfs, S;, and any mapf, where g; ¢
..... gn> 2

f(51) £ f(S2) implies that$y € S, the lemma follows. B ¢ Ty | e X(T) be the set of splits induced by the

edges ofI". To each splitA|B € ¥(T'), we associate a set of

1. GROUP-BASED PHYLOGENETIC MODELS AlB , o
) . ) _parametersz, ~ whereg € G. The toric parameterization for
Group-based phylogenetic models will be the main subjegle model is then given by:

of study in this paper, so we collect known results about
these models, including their natural representation inrieo

Group-based models are subject to a remarkable lin-
ear change of coordinates, called the discrete Fourier, or
‘Hadamard, transformi_[18]T1L9][T13][132]C133]. After ap-
plying the Fourier transform the models are seen to be toric
varieties[31]. In particular, the transformed image cauates

are given in terms of transformed domain coordinates by a

A|B . n
coordinates. Qv = { [LaBesr) az‘iw g T 2219i=0
Lyens n .
Throughout we assume that all tréEsare binary. We root 0, otherwise
T by picking an arbitrary edge, and introducing a r@oas )

a distinguished node of degreealong it. Thus, every edge Note that by our choices af', when i, g; = 0 we will

of T may be considered directed away from the root. To eaBRVE_ica 9i = X_;cp 9i for any splitA|B. Thus the formula
nodev in the tree, we associate a discrete random variaifigove does not depend on the ordering of the sets in the. splits
X, with k states, and to each directed edgén the tree,  To ease notation, we describe trees by omitting trivialtspli
we associate a Markov transition matrd{., describing the associated to leaf edgese(, those of the forn{i} | [n] \ {i}).



When describing the toric parametrization of a group-basedordinates i2"~! for the CFN model and™~! for the K3P
model, we abbreviate the parameters associated with thee edwpdel.
leading to leafi by a;. As our method of investigation of mixture models in Section
For elements in the groupy = Zs x Z associated to [Vl depends upon the existence of linear invariants, we thus
the Jukes-Cantor and Kimura models, we (arbitrarily) idgnt focus on the JC and K2P group-based models.
nucleotides with the group elements in the following way: Steel and Fu[[29] computed the dimension Syfan(V7)
A = (0,0), C = (0,1), G = (1,0), and T = (1,1). We for the JC model. Hendy and Penry][20] performed a similar
illustrate these notions with an example oi-gaxon tree. computation for the K2P model.
Example 5:Let T' = {12|345,123|45}. The toric parame-  Theorem 8:[29], [20] Let T' be ann-taxon binary tree.
terization for the K3P model is given by formulas of the formThen, for the JC model of’, the number of distinct Fourier

L 2 3 4 5 120345 123]45 coordinates is the Fibonacci numbéb, -, satisfying the

Q9192939295 = Qg gy UgyAg, Ay 4 gy Agy4gotgs recurrence
5 .
where Zi:lgi = 0, and ¢g, g,959.9, = 0 Otherwise. For Fo=1F=1,F,=F,_i + F;_s.
example,

5 12(345 12345 That is, for the JC modeédpan(V) has dimensiorfs,, .
qccora = alca%ag’ca%a‘é% ac 7. For the K2P model o', the number of distinct Fourier

i i coordinates ig,,, satisfying the recurrence:
For the JC and K2P models, the Fourier coordinates are

described by simply imposing additional relationships be t H,=1,Hy=3, H; =4H, 1 — 2H,_o.
continuous parameters. _ . .

Proposition 6: [13], [L9] In Fourier coordinates, the k3P Thatis, for the K2P modepan(Vr) has dimensiort,,.
model on a treel’ consists of all the Fourier vectors arising Fourier coordinates for group-based models have useful
from representatior12) so that, for each spli, = 1, and Ccombinatorial representatives in terms of labelled or o
a%, ag, a5 € (0,1]. The K2P model is the submodel of theversions of the underlying treg. For this representation, we

K3P model satisfying additionally, that for all splits af, = associate a color to each of the different parameter classes
at.. The JC model is the submodel of the K2P model satisfyig the model. For example, in the JC model, there are two
additionally, that for all splits:, af, = ag, = a5-. parameter classes: tha class (grey), and theC, G, T’}

Significantly for the work later in this article, the Fourierclass (black). With this choice of colors, in the parametric
transform is dinear change of coordinates. Thus the operatio@escription ofg,, .. ,, if a parameter’; ” occurs, then we
of taking tree mixtures commutes with the Fourier transformgolor the edge corresponding to the spli{B’ grey. If a
which allows us to naturally represent the mixture models vparameterag'B ,ag‘B , or a?‘B occurs, we color the edge
consider in Fourier coordinates. Though these mixture tsodeorresponding to the spliB|B’ black. As shown in [[29],
are not toric, we still gain insight from this viewpoint. this establishes a correspondence between distinct Fourie

To close this section, we make several comments regardf§fficients for the JC model and subforestsTofwith the

some combinatorial aspects of Fourier coordinates forgrosame leaf setn]. . o

based models. As linear invariants are crucial to the argusne 1 he color-coding of the underlying tree works similarly for
below, we first discuss enumeration of distinct Fourier eooi® K2P model; here we have three classes of parameters, the
dinates, and computations of the dimension of the space‘5c/ass, th&-class, and th¢(, T'}-class, and hence use three
linear invariants for a model. In closing, we illustrate somC0lors. o .

useful combinatorial mnemonics for working with Fourier Example 9:Continuing Exampled5, the colored diagram
coordinates and identifying invariants. Although theseickes Ccorresponding to the Fourier coordinaeccrc for the JC

are likely familiar to experts in group-based models, weehopnodel is shown in Figurgl 1.

our exposition will be useful to those less familiar with ske

models.

3
The zero set of the linear invariants for any variéfyC | 4
P" is the smallest linear subspace ®f containingV'. This
set is called thespan of V, Span(V'). The span of a finite
2 5

collection of varieties is defined similarly, as the spanhaitt
union. Note that, by the join construction, it is immedidtatt

Span(V * W) - Span(V, W) Fig. 1. JC-coloring fogcccorea . (Key: A-class = dashed greyC, G, T'}-
For group-based models on antaxon tree (that is, an class = black)
unmixedmodel), the number of distinct Fourier coordinates
is precisely the dimension of the span of the model, asFor the K2P model, the same Fourier coordinate is repre-
there are no linear relations between distinct monomidiss T sented by the tri-colored tree of Figure 2.
establishes: These diagrams are useful for determining the invariants
Proposition 7: For the CFN and K3P models, there are nthat a particular group-based model satisfies. For insfamee
non-trivial linear invariants. The number of distinct Faur phylogenetic invariant for the JC model on the tiewith split



identifiability of trees for2-tree mixtures on an arbitrary

3
. ' 4 number of leaves.
2

A. 2-Tree Mixture withT; = T,

“5 In this section, we focus on a mixture of a tree with itself;
that is, we study the secant variety « V. We show that
Fig. 2. K2P-coloring forgcccra. (Key: A-class = dashed gray;-class Vi * Vo can be distinguished from ard¢tree mixture variety
= black, {G, T'}-class = dashed black) Vi, * Vo, providedT; and T, are not bothr".

Proposition 12:Let T1,73,7, be three binary trees, not
necessarily distinct, witlm > 4 leaves, such tha{T;} #
{T5,T,}. Then under both the JC and K2Rtree mixture
qCTGAGACTG = qCGCGYACCA- (3) models,Vy, * Vr, Vi, x Vi, and Vi, * Vi, & Vi + V.

Proof: AssumeTs # Ty. By [29] and [20], for both the
ixed JC and K2P models, there exists a linear invariant
1l € Z(Vr,) \ Z(Vr,). Since the set of linear invariants df,
andVp, «Vp, coincide (the varieties have the same span), there

1 3001 3
exists a linear invariant € Z(Vy, * Vi) \ Z(Vr,). Hence,
X Vr, € Vi, = V. Now sinceVy, C Vg, * Vi, it follows that

2 4 2 4 VT3 * VT4 Z VT1 * VTl-

It remains to showVy, « Vi, € Vi, % V. In fact, it is
enough to show that

1 3001 3
— > < X / dim VT3 * VT4 S dim VT1 * VTl- (4)
) PR 4 Indeed, if this inequality holds strictly, the claim is obus. If,

on the other hand, the dimensions are equal, then since both o

Fig. 3. Pictorial view of invariantd3) for the JC model Gn the joins are irreducible varietieBy, «Vr, C Vp, «Vr, would
imply equality of varieties, contradicting the anti-cantaent
already established.

12|34 is given in Fourier coordinates by

This relationship may be represented in pictorial form by tr‘lmm
diagram in Figurdl3.

IV. I DENTIFIABILITY OF TREE PARAMETERS Now a simple bound on the dimension of a join, coming
The goal of this section is to prove that the tree parametdf@M its natural parameterization, is
are generically identifiable foR-tree JC and K2P mixture dmV «W < dimV +dim W + 1,
models on at least 4 taxa. For the complex varieties assaciat ) o )
to the models this is formalized as follows: where the quantity on the right is called thepected dimen-

Theorem 10:SupposeT’, T», T, Ty are binary trees, not sion when it is no larger than the dimension of the ambient
necessarily distinct, om > 4 taxa, and consider the-tree SPace. In the case of the JC modén(Vr,) = dim(Vr,) =
mixture varieties for the JC and K2P models.{If;, Ty} # 27 — 3, which showsdim(Vz, * Vr,) < 4n — 5. Similarly,
{Ts, T}, thenVi, « Vi, € Vi, * Vi, . dim(Vp, = Vi) < 8n — 11 for the K2P model.

If {Ty,To} # {T3, Ty}, then the noncontainment of the TO complete the proof of the claim of PrOpOS_ItI 12 for
irreducible varieties/r, * Vi, and Vi, * Vi, in one another the JC model l_ay establishing mequall_ﬂ (4), !t sufﬁceg tovsh
shows their intersection is a proper subvariety of stritdlyer the secant variety has the expected dimension, as givereby th
dimension. The preimage of this intersection under the com@llowing: _ .
plex parameterization map is thus a proper subvariety of thekémma 13:If 7" is an n-taxon binary tree thedim V7
parameter space. Since the subset of stochastic pararigetety” = 47 — 5 for the JC model. _ _
Zariski dense in the complex parameter space, those stachas AS the proof of this lemma is more involved, we defer it
parameters mapping to the intersection also lie in a closed Yntil after our current argument. For the K2P model, we prove
of Lebesgue measure 0. Thus we obtain the main result of #RIOW a weaker claim.
section: Lemma 14:If T is a 4-taxon binary tree, thetim V7

Corollary 11: For the2-tree JC and K2P mixture models onVr = 21 for the K2P model. _
at least 4 taxa the tree parameters are generically iddnifia_ ThiS is sufficient to complete the proof of the claim of
for either stochastic or complex parameters. Propositior IR in the K2P case for 4-taxon trees. Largestree

The proof of Theoreni-10 proceeds in three parts. Firgl€ then treated by considering marginalizations to indu4ee
we show that the two tree parameters whBn = T, are taxon trees: Choose a skt of 4 taxa for which the induced
identifiable. Then we focus on the quartet trees, constrgctiduartet trees’y |« 73|, Ti| x are not all the same, and then
a linear invariant that completes the proof of the result fé#Ply LemmdB. u
quartet tree mixtures. Finally, we combine our quartetltesu  To prove Lemm#&3, we make use of a special case of the
the six-to-infinity theorem of Matsen, Mossel, and StE€]|[23tropical secant varieties theory of Draisnial[11] and the fac
and a linear invariant fo6-taxon tree mixtures, to deducethat the varietied/r are toric varieties. To explain Draisma’s



result (Theorenid5 below), we introduce some background one side of the partition will correspond to subforests of

material on toric varieties and convex geometry. T having at most one edge @f missing. The subforests on
Recall that a toric variety is specified as the image of the other side will have at least two edges missing. Call the

polynomial map, each of whose coordinate functions is faist set of vectorsd™ and the second set of vectoss™. In

monomial. As a monomial is of the formt* = " 25> -- - 23?, the matrix aboveA™ consists of the last six columns anid

we associate to each monomial a non-negative integer veatonsists of the first seven columns.

u. To a toric variety, we associate a collection of non-negati The first setA™ contains exacthy>(T)| + 1 vectors, since

integer vectorsA C N¢, one vector for each monomialthe tree itself is a subforest and removing any edge always

appearing in the parameterization. We also identifywith produces a subforest. This set thus forms the vertices of a

a matrix whose columns are the given set. The toric variesimplex of dimension equal to the number of edges,ASo

is often denoted’,. Algebraic and geometrical properties ohas ranken — 2.

toric varieties are reflected in corresponding propertfethe The second setA—, contains the empty graph and all

vector configuratiod [I4], [30]. paths between pairs of vertices. If we restrict attention to
By a hyperplane iiR?, we mean a linear hypersurfaée= only those vectors corresponding to the paths between gfirs

{x € R?: Tz = e}. The complemenR?\ H consists of two vertices, this gives us the exponent vectors of the torietias

connected components, which we denotefby and H~. corresponding to toric degenerations of the GrassmanB&in |
Theorem 15 [[11]):Let V4 be a projective toric variety, which has rankkn — 3. Adding the vector corresponding to

with corresponding set of exponent vecters— N¢. Suppose the empty subforest increases the rank by one. ]

that A has rankr,. S0 that.dimVA = r — 1. Let H be Proof of Lemmd_l4: To apply Theoren A5, we must
a hyperplane not intersecting. Let A" = AN H" and jnyestigate the vector configuratioAsassociated with the K2P
A7 = ANH". Thendim Vi «Vy > rank A" +-rank A" —1. model and find a hyperplane with the desired properties. For
In particular, if there exists arf/ such thatrank A" = |, _ 4 there areH, — 34 distinct Fourier coordinates. We

rank A™ = rank 4, thenV, has the expected dimension.  focys on the tree with the unigque nontrivial spliz|34. Each
~ Proof of Lemmd13: To apply Theorenid5, we mustyonomial in the Fourier parameterization has the form
investigate the vector configurationt associated with the 1o

1.2 3 4

Jukes-Cantor model and find a hyperplane with the desired gy Qg Qg G AT
properties. For the Jukes-Cantor model on a binary tredy each e _ 4¢ for all splits . This imolies that th i
distinct Fourier coordinate corresponds to a subfofesf the Wher€ag = a7 Tor afl spiits e. 1his Implies that the matrix

: : : 15
tree, and the corresponding monomial has the form Ais a15 x 34 matrix. The coordinates oR™* arez., y, ze,
where for a given edge,

H%H“A- (1,0,0) if go=A
el i (Ie, Ye, Ze) = (Oa 1, 0) if Ge = C
(Here we consider the%, as variables, rather than setting them (0,0,1) if go =G, T.

to be 1. This simply homogenizes our parameterization.) The _ _ )
vector corresponding td is in N*—6; specifically, u” — Since the model has dimensian, we see that the matrix
(Tes Ye)eex(r) Such thatr, = 1 andy, = 0 if e € F, and has rankl1. .

z. =0 andy, = 1if e ¢ F. For example, in the case tha&:NOW consider the hyperpland = {(zc, ye, 2.) € R :
n = 4, andT is the tree with nontrivial split2|34, then, after 2-eex(r) Ye +ze = 7/2}. A direct calculation shows that this
removing repeated columns, consists of the columns of thePartitionsA into AT andA~ each with rank 1, and completes

10 x 13 matrix: the proof. n
6r 110001110 11 B. Linear Invariants for Quartet Mixtures
06100110110 111
0010101101111 We next foc.us on quartet trees. The th_r(_ee fully-resolved
000101 10 1 11 11 quartet trees will be indicated by their non-trivial splifs34,
001 1110111101 T13)24, andTy4)23. The main result of this section is that linear
i 8 (1) (1) (1) (1) i 8 8 (1) (1) 8 8 invariants can generically identify 2-quartet mixtures.
1101010010000 Lemmg 16:For both the JC and K2P models, the linear
1110100100000 polynomial
110 00O 1 OO0 O0OO0O 1T O0

, ) [ =4cccec + qcrer — 4eeTT — 9GTTG
The first 2 rows here correspond to the for edges in one

cherry on the tree, the next 2o for edges in the other cherry, satisfiesf € Z(Vr,, ., =V, ,,) \ Z(Vryy)0,)-

and the 5th tar, for the central edge; the last 5 corresponblote the lemma further implies

to they,., with edges in the same order. Thus, the first column

corresyponds to tﬁe empty forest, the second to the firstyherr J € T(Vryy 50 * VInas) \ZT(VEgon * Vs )-

and so on. Combining this with Propositioi 12, we deduce a first case of
Consider the hyperplanél = {(z.,y.) € R**~6 : TheorenlID:

Yees(r) Te = |E(T)] — 3/2. This means that the vectors Corollary 17: The case: = 4 of TheorenID holds.



Proof of Lemmdl6: Denote the parameters for tree{Ty,T>} # {73, T4} is equivalent, up t@s symmetry, to the
Ti2)34 by a and the parameters fdF 453 by b. We must pairs defined by
show thatf = 0 whenever we substitute for the¢'s the
parameterization for the mixture model. One checks that: Ty = {12[3456, 123[456, 1234[56},
T> = {13]2456, 123|456, 1235|46}, (5)
3 12[34 11273 74 114[23
qecca = Tagagagaga,  + (1 — m)bgbebibgby Ts = {13]2456, 123|456, 1234/56},

T, = {12|3456, 123|456, 1235(46 }.
qorar = magadakatag > + (1 — mbEbIbEbEbG Y, 1=1{12| | |46}

Proof: Fix two binary treesly, T, with n leaves. If the

2 3 12[34 112 1314 114[23 i i H
qeeTT = ”‘IG“G“T@T@A 34 (1 — m)bgbgbihbTbe | , trees are identical, the result is clear, so we assume thouig
Ty # T,
2 3 12|34 172713 74 714/23 . .
qarre = Tagararagas 4 (1 — m)bgbrbibeb, Consider firstn = 5.

If leavesj, k form a cherry inT;, then they will also form
a cherry in all 3 quartet trees includingk induced fromT;.
On the other hand, if they do not form a cherryi, then
they will form a cherry in either 0 or 1 of these 3 induced
quartet trees. Thus by counting the elements of the multiset

Since for the K2P and JC model$, = a., b = 0% for all

e, these formulae shoy = 0, as can be checked using color;

codes trees such as in Secligh lll. Thus Z(Vr,,,, *Vr,,,,)-
On the other hand, for the tré 3, we have:

5 3 13]24 Q(Ty,T,) with each possible cherry, k, we can determine
16GGG = CGCECECECA which cherries occur in both trees (count 6), which occur in

o 3 4 1324 exactly one tree (count 3 or 4), and which occur in no trees
4GTGT = CGCTCGCTCA (count 0, 1, or 2).

If a cherry occurs in both trees, suppose ifis2}. Then

2 3 13|24 . .

qGGTT = CGCGCTCTCC from considering the quartets di2,3,4,5} both 7}y and T
are determined.

gorre = chhdhckel If the two trees have no cherry in common, then we know

the 4 distinct cherries that occur in the 2 trees. If only 4atax
Even though in the JC modef, = c;; = ¢ andcy = 1 occur in these 4 cherries, then we may uniquely pair them
for all e, f is not identically zero when evaluated at thesgccording to their compatibility, and the two 5-taxon tr@gs
expressions. Thug ¢ Z(Vr,,,,) for the JC model, and henceand T, are determined. If all 5 taxa occur in these cherries,
also for the K2P model. B since the cherries are distinct we may assume they Bre}
and {3,4} (from one tree), and1,5} and {2,3} (from the
other), though we initially do not know which come from
which tree. However, we again see that these can be uniquely
Identifiability of quartet mixtures can be used to showaired for compatibility, and thu$; and7; are determined.
identifiability for larger trees by marginalization of treedels Now considern = 6.
and their mixtures. However, it is not, in general, possible By the n = 5 case, we may determine the multisEt=
to identify two trees from the union of their sets of induceg:(Tl,TQ) of all 5-taxon induced trees frofy, and 7%, so we
quartet trees. Thus this approach requires some care. Thapark with it instead ofQ = Q(T, Ty).
difficulties arise from trees of at most 6 taxa is the contdnt o By counting cherries itF, we may determine those possible
the following combinatorial theorem of Matsen, Mossel, angherries that occur in both trees (count 8), exactly one tree
Steel. (count 4 or 5), or no trees (count 0,1, or 2). If a cherry occurs
Theorem 18 (Six-to-Infinity Theorem[23] Suppose that in both trees, suppose it i, 2}. Then from considering the
the tree parametefs, 7» are identifiable for a 2-tree phyloge-5-taxon trees 0d2, 3,4, 5,6} both T} andT, are determined.
netic mixture model for binary trees with six leaves. Th&®etr  For the reminder of the proof, we assume the trees have no
parameters are identifiable for binary trees wit6 leaves.  cherry in common. Thus either 4, 5, or 6 distinct cherriesiocc
Combining the results of Corollafy 117 and Lemfda 3, win 7, and75. In the case of 6 distinct cherries, compatibility
have thatVy, = Vi, € Vi, = Vg, if there is a four element of cherries determine®; and7%.
subsetQ C [n] such that{T'|q, Tx|q} # {T3]q, Tulq}- In the case of 5 distinct cherries, one of the trees must
It remains to show thavp, = Vi, € Vp, = Vp, for pairs be symmetric, and the other a caterpillar. Either comgiibi
of trees such tha{Ti|g, T2} = {I3|g,Tu|o} for all four of cherries determines the symmetric tree (in which case
element subset§) C [n]. Let Q(T;,T};) denote the multiset both trees are determined by removing the quartets from this
of all quartet treed;|q, Tj|¢ induced byT; andT;. We say tree from Q and using the remaining ones to construct the
two pairs of treesl, T, and 73,7y are quartet-matchedf second tree), or we may assume the 5 cherries have the form
QT, Tz) = Q(T3, Ty). {1,2}, {3,4}, {5,6} (from one tree) and1,3}, {2,4} (from
Proposition 19: Forn = 5 leaves, any two quartet-matchedhe other), though of course we do not know which come
pairs of treesTy,T» and 75,7, has {T1,T>} = {T3,74}. from which tree. Since the cherfp, 6} is identified by this,
For n = 6 leaves, every guartet-matched pair of trees wittonsider the two elements ¢f on {1,2,4,5,6}. As {5,6}

C. From Quartets to Sextets and Beyond



is a cherry in only one of these trees, and that one also hagcraare = Tabazababalalar 70 a 2214504 234156

{1,2} as its other cherry, this identifiedl, 2}. Thus {3,4} 4 (1= m)bL BB 1312456 123|456 ; 1235]46
is also known, and thus one, and hence both, of the trees are GITTGEGTTEGTA T A ’
determined.

In the case of 4 distinct cherries, both and T are  guarraa = mabaZabatalalall®0 a)?314%0 41234156

caterpillars. We first investigate whether we can determine 17213 1415 16 113]2456, 123|456, 1235|146
which pairs of cherries occur on the same tf&e Since at + (1 = mbgbbrbrbgbabe by be :
least 2 of the 4 cherries must be incompatible, let these Recall that for the JC and K2P models, we hage= a5 and
{1,2} and{1, 3}. Either compatibility determines which otherbé = b, for all e. Therefore,f € Z(Vy, * V).

cherries these are paired with, or the remaining cherries ha On the other hand, if we denote the parameters for the tree
the form {4, j} with i, j € {4,5,6}, and we may assume ther, py ¢'s, we have that:
cherries arg[4,6} and {5,6}.

. . 1 2 3 4 5 6 13]|2456 123|456 1234(56

If compatibility determined the cherries @i as{1,2} and JGGGGGG = chGchGchGcA‘ Ca | Ch | 5
{i,7}, and those orl; as {1,3} and {k,l}, then we may L 2 3 4 5 6 1302456 123]456 1234]56
assumej # 3. Then the two elements of on all taxa butj 4eTTTTG = CGCTCTCTCTCGCO Ca cc ;
can be matched with tHE depending on whether they display L 2Bk o5 6, 1312456 123456 1234156
the cherry{1, 2} or {1, 3}. This determined?, and hencéy 1GTGGTG = CGeTCGCGeT G A T c oo
as well. 1 92 3 4 5 6 13]2456 123|456 1234|56
qQGGTTGG = CGCGCTCTCGCGCC CT CA .

This leaves only the case where the 4 cherries{are},
{1,3}, {4,6} and {5,6}, which may be paired two ways.Although for the JC modet{, = ¢, = 5 andc5 = 1 for all
Considering the two elements of on {1,2,3,4,5}, ex- ¢, the linear polynomialf evaluated at the expressions above
actly one must contain the cherfyt, 2}. If the other cherry does not give the zero polynomial. Therefgiet Z(Vr,) for
in this 5-taxon tree is{3,5}, then this determined’} as the JC, and hence for the K2P, model. [ ]
{12[3456, 124|356, 1234|56}, and hencel} is determined as  ginany we pull together all of the results in this section i
well. Similarly, if the second cherry in the 5-taxon regne hroof of the main Theorem on tree identifiability:
is {3,4}, then T and.Tg are again uniquely determmed. Proof of Theoren_J0: If the trees relate only 4 taxa,

If the second cherry ig4,5}, however, 1 may be either o, qary[TT provides the claim. By Theorddl 18, it is now
{12]3456, 123456, 1234/56} or {12|3456, 123456, 123546} onoiiah to consider cases with— 5. 6.

C(_)n5|der|ng the elemenfc QF on {1’_2’3’4’5} that con- ¢ {T1,T>} and{T5, T4} are not quartet-matched, then there
tains cherry {1,3}, we likewise obtain two unique treesisaquarteQ of taxa such thafTi|q. Tolo} # (T3]0, Tilo -
except in the case where the second cherry{4s5}, in 1, q by CorollanfTl7 and Lemnﬁ’s the claim follows.
which caseT, could be either{13|2456, 123|456, 1234|56} If {T1,T5} and {Ts,T,} are qua’lrtet-matched then by
or {13]2456, 123|456, 1235|46}. Finally, since only one of} Propositi70|ﬂ9, up to ’symmetry, we need only éonsider the

andTy can have cherry5, 6}, the only remaining ambiguous ; ; P
case is that described in the statement of the Propositmn. case described by equatiofis (5). But then Lerfimia 20 implies

Lemma 20:Consider the tree}, 75, T3, and Ty in equa- I(Vry * V) \ Z(V, * V)

tions [@) from Propositio19. Define the linear polynomial ) ) _ )
contains a linear invariant, so

f = {GGGGGG T 4GTTTTG — 4GTGGTG — 4GGTTGG- Vi * Vo, ,@ V. * Vo
1 2 3 1°

Then, for the JC and K2P modelg,satisfies -

fEI(VTl*VTz)\I(VTi)7 26{374}
V. COMPARING 2-TREE MIXTURES WITH UNMIXED

In particular,Vy, € Vi, * Vi, @ € {3,4}. MODELS
Proof: By symmetry of the relationship between trées |, this section, we report on preliminary investigations on
andT} to that of 7} andTy, it suffices to prove the statement ingistinguishing unmixed models from 2-tree mixtures. More
the case th?’t: 3. Ifwst, we will show thatf € Z(Vr, «Vr,).  precisely, we study the following question: For which teigl
Denote_byas andb’s the parameters of the tre@$ and 75, of treesTy, Ty, Ts is Vi, & Vi, * Vir,? We have already used
respectively. One checks that instances of this in establishing generic identifiabilifytrees
in the 2-tree mixture model, but our earlier work does not

1 2 3 4 5 6 12[3456 123|456 1234[56 .
4GGGGGG = TAGAGaAGaAGagaAGad s ag ay yield a general answer.
+(1- w)bgbéb%b‘*gbgbgb}43|2456b23‘456b}4235l46, That we can distinguish a single-class, unmixed mddel

from a 2-tree mixture modélr, «Vr,, as long ag3; is not too
closely related td} andT5 is easily shown, however. Indeed,
4GTTTTG = mga%ai}a‘;a‘}a%a?‘3456ag3‘456a10234l56 LemmalI__B_ and a variant pf Lemrhh 3 imply:
Proposition 21: If there is a four-element s&€) C [n] such
+ (1 o )bl b2 b3 b4 b5 bﬁ b13|2456b123\456b1235|46
T)oGOTOTOTOTYG0¢ G C ) thatT3|Q ¢ {T1|Q,T2|Q} thenVy, Z Vi, * V.



The smallest instance of a tr&g all of whose quartet trees variety, which in our trials was always of dimension 2. A
arise from7} and7: occurs withn = 5 leaves for the triple: primary decomposition of the ideal showed there were three
components of the solution set, two of dimension 2 and one

Th = {12[345, 12345}, of dimension 1.
Ty = {13245, 134|25}, (6)  One of the 2-dimensional components was defined in part
Ty = {12345, 13|245}. by setting one internal edge length @i to infinity and one
) ) ] ) internal edge length ofi; to 0. The mixing parameter, all
In fact, this example is unique up to the action®f on leaf split parameters iy, and all but 4 split parameters iy

labels. were uniquely determined. Two quadratic relationships in 2

We performed a computation using the computer algebygriaples each held for the remaining parameters. The other
program Singular[[16], which rigorously verified the follow »_gimensional component is similar, with the rolesgfand

Ing: ) T reversed. The 1-dimensional component requires that an
Theorem 22:For the three 5-taxon tree, 73,75 in @),  internal edge on each tree have length 0, but allows the gixin
under the JC model, parameter to vary along with two edges on each tree. (See [3]

Vi, C Vi, % V. for the precise results.)

It is worth highlighting that the only 2-tree mixtures match
Proof: We explain the approach behind our computatiomg the 1-tree distribution were of this extreme nature hwit
All of the JC varietiesV for an n-leaf tree are invariant some internal edges of length O or infinity. If one allows
under an action of the torug*)". This action arises from these values, then there are instances of all mixture paeasne
rescaling the pendant edge parameters. That ig, & V;  being in a stochastically meaningful range. Of course fdsma
and A € (C*)", then for any subforest’ of T' the Fourier establishing any conjectures these calculations suggasidw
coordinategr is transformed ag\ - ¢)p = ¢r [[.cr () Ae,  require a detailed semi-algebraic analysis of these models
whereL(F) is the set of pendant edges appearing’irSince A second question Theorem]22 might lead one to ask is
A-q € Vp, it suffices to prove the claimed containment in thé# T3 is a tree all of whose quartets comes from eitfgr
theorem in the case where all pendant edge parameters ondh&y, then isVy, C Vp, x V5, ? However, we have already
treeT; are set tol. seen an instance where this failed in Lemma 20. It would
Let V and W be two varieties. Note thaty C W, is be interesting to characterize precisely when these types o
equivalent taZ (W) C Z(V'). This containment of ideals holdscontainments arise.
if, and only if, Z(W)+Z(V) = Z(V'), which we use to speed Finally, it is not at all clear if the containment in Theorem
up computations. Hence, it suffices to show that is a special phenomenon for the JC model, or if it can
occur more generally for other group-based or more general
I(Vp * V) + I(V) = Z(V) @) phylogenetic models. Answering such questions will reguir
whereV is the subvariety of/;;, where all the pendant edgean understanding of this phenomenon beyond the computa-
parameters are set to tional perspective.
Finally, though in principle it is possible to compéV, *
Vr,) directly, it is beyond current capabilities. However, an VI. | DENTIFIABILITY OF CONTINUOUS PARAMETERS
alternative approach to join ideals uses eliminatiori,iff C

. U i Assuming tree topologies are already known, we next ex-
C[q] are two ideals, their join ideal is g po'od y

plore the generic identifiability of the continuous paraengin
I«J=I()+J(g—q))NClg group-based mixture models. We use both rigorous arguments
and computational approaches to address this issue. While
where I(¢') is the ideall with variablesg; substituted for standard laptop computers were sufficient for most of thikwo
variablesg;, andJ (g — ¢') is ideal J with ¢; — g; substituted (see [[8]), the more intensive computations were performed
for ¢;. Hence, we can tesfl(7) by testing if on a more powerful machine provided by Erich Kaltofen of
(V) = (Z(Ve)(¢) + (V) (g — ) + T(V)(@)) nClg).  NSY- o |
_ _ - o Proving a model has identifiable continuous parameters
This statement is verified by the code we provide in thequires showing that the parameterization map is one-to-
supplementary materials[3]. B one. Without any special assumptions on the map, it may
Theoren 2P raises as many guestions as it answers. Fibg, one-to-one on some region of parameter space, but not
note that it is a statement about complex varieties, ancekeawn another. Well-known to algebraic geometers, however, is
open the possibility thamM, £ Mz, « Mr,. We investigated that parameterization maps defined by polynomial formulas,
this computationally as follows, using code available[ij [3such as those for the models we study, have the nice feature
Choosing random JC parameters D5 we repeatedly pro- that they exhibit ayenericbehavior. More specifically, there is
duced a point inVy, C Vp, * Vp,, thus obtaining a samplesomek € {1,2,3,...,00} such that for all parameter values
with high probability of exhibiting generic behavior. Foaah except those in some exceptional gt the map will bek-
such point, we then produced a system of algebraic equatidnsone €f., Prop. 7.16 of[[17]). Crucially, the séf where the
whose solutions would give mixture parameters Bnand generic behavior may fail is closed and of Lebesgue measure
T, to produce this point. The solution set forms an algebrafcwithin the full parameter space (since it is a proper algiebr
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subvariety). In the case of complex univariate polynomihis identifiability of numerical parameters for the general kar
fact is more widely familiar: given an-th degree polynomial model shows that identifiability of numerical parameterl/on
p(z), for almost alla € C the equation(z) = o hasn distinct holds up to permutation of states at internal nodes of the
roots. However, for a finite number of exceptional valuescof tree. Permuting the states at an internal node corresponds t
there may be fewer distinct roots. Thpslefines a generically permuting rows of transition matrices on edges leading out
n-to-one map froniC to C. of the node, and columns of matrices on edges leading into
One can computationally determine the generic behavibre node. As any permutation of the rows or columns of a
with high probability as follows: For a specific choice of JC matrix that is also a JC matrix is identical to the original
parameters, calculate the cardinality of the set of all otheatrix, this implies the JC parameterization is genenyoatie-
choices of parameters with the same image. If, for mamy-one. For a generic K2P matrix, there are two orderings of
such random choices, one finds this fiber is of sizghere the rows that have K2P form, and hence the parametrization
can be little doubt that the map is genericalito-1. These map is generically2"~2-to-one. For a generic K3P matrix,
computations can be performed exactly by computationtalere are four orderings of the rows that have K3P form, and
algebra software such as MacaulayZ1[15] or Singulai [16}ence the parametrization map is genericdlty 2-to-one. To
and carefully performed repeated trials can give one higlvoid complications in statements due to these understood
confidence. Of course, such an approach does not rigorousljures of identifiability in its strictest sense, it is neor
establish results. However, the use of random data to tglialsonvenient to focus on the-to-oneness of the mapsr, 7,
study behavior of specific polynomial equations is not novalsing equation[{1) to relate results¢g, 7.

For instance, Section 6 df[P1] gives a different applicati The first step toward Theoreni¥23 is performing computa-

th(::‘l'ri:?se ?n r%g)gr?%ir;g:itisn.atel does not give an uantifiabtlig ns to establish the following.
PP y g y4a Proposition* 24: Let Ty # Ty be binary trees with four

meaning to the term *high probability, as we lack any exil)licleaves Then for the JC model. the ma
information on the setty where non-generic behavior may ' ' P

arise. If a non-zero multivariate polynomial vanishing Bn b1y Vi, X Vi, x P ——s Vi % Vi
were known, we would only need to compute that the map prrs o ? ! :
wask-to-one for a single point not satisfying that polynomialis generically one-to-one.

and obtain a rigorous result. If we knew only the degree cgiculation: From randomly chosen rational parame-
of such a polynomial, by the Schwartz-Zippel Theoreeh, ( teors in the domain ofyr, 7,, we computed a poinp €

for instance, [[26]), we could produce points with arbitari Vi, * Vi,. Solving the System of polynomial equations
smal_l probability of lying inF, and use th_ese to quantify OUry,. 1. (1, 50, 7) = p determines the (complex) preimageyof
terminology. However, we have no such information, and thigis preimage can be calculated using Grobner bases, aid wa
our confidence in having determined the generic behaviorfl§nq o consist of a single point for the many such random
based partly on experience. In choosing points for calmrial  ¢hpices we made. We can be therefore be highly confident that
a useful heuristic is to pick coordinates to be random ratfio .7, is one-to-one, by the existence of a generic behaviour of
numbers (perhaps also requiring that they be expressilyig Usanyr polynomial map. Thabr, 7, is one-to-one then follows

disjoint sets of primes), in hopes that the unknown polyr@migyy, the fact thatyy, and o7, are generically one-to-one
equations describing’ are less likely to be satisfied. Indeedyarameterizations diy, and Vi,
1 2"

if 25 poipt; chosen in this way a!l produce _the same value OfCode is provided in the supplementary materials [3].m
k, while it is possible they all lie i, the evidence is strong o i
that they do not. Although we attempted to perform similar calculations to

We label statements with “Theorem*” or “Proposition*” if €xtend Propositionf24 to the K2P and K3P models, these
we are only highly confident of them through such computfgiled to terminate in 3 weeks time.

tion. Unstarred statements are rigorously proved. Thudewhi |n the case of a mixture on two trees with the same topology,
we are careful to distinguish between results with rigoroyge possibility of interchanging the mixture componentsveh
proof and those depending on such calculations, we areyhigfle map cannot be one-to-one. Generic identifiability thus
confident of both. corresponds to generic two-to-oneness in this case. Fer thi
One of the results we found computationally was a patype of mixture, we are able to perform computations for both
ticularly surprising non-identifiability result for comtious the JC and Kimura models.
parameters of 4-taxon tree mixtures under the JC modelProposition* 25: Let T be a binary tree with four leaves.
Nonetheless, passing to 5-taxon trees restores ideriitifabi Then for the K2P and K3P models, the map
The first main result in this section is:
Theorem* 23:For the JC model, the continuous parameters ¢rr: Vo x Vo x Pt ——s Vi * Vp
in the 2-tree mixture with parameterizatiop, , are gener-
ically identifiable for binary trees witn > 4 leaves, except i generically two-to-one. For the JC model, the mapr is
in the case that = 4 and T} = Tb. generically twelve-to-one.
An issue that will arise in our proof of Theorenf¥]23 Calculation: The calculations which indicate this holds
and related results, concerns the maps parametrizinglz ~ with high probability is similar to that for Propositiofi=R4
for the JC, K2P, and K3P models. The proof [fi [9] of the Code is provided in the supplementary materials [3].1
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Note that the twelve-to-oneness in the case of the JC modeWith id the identity map orP!, it is enough to show the
is not merely a mathematical anomaly relevant to complex pgarameterization maprr o (¢ x ¥ x id) of Vp « Vp is
rameter choices only. This type of non-identifiability fecant generically two-to-one.
parameters can and does occur for stochastically meatingfuThe mappr o (¢ x 1) xid) can be made explicit as follows:
parameters. Root the tree ap, and assign stochastic matrices to the edges
Example 26:Searches of parameter space give instancesaifthe tree giving conditional probabilities of state chasg
2, 4 or 8 stochastic parameter choices producing the sarakng those edges. I is the mixing parameter, and =
image in the 4-taxon 2-class JC mixture on a single trée&/4,1/4,1/4,1/4), then an8-element vector
topology. For instance, it = a& = af = af denotes the JC
parameters for one class @n andb® = bg = b = b5 those
for the other class, and the proportion of the first class, thengives the state distribution at the root. On the pendant edge
=01 leading to leafi, a81>< 4 matrié M; composed of two stacked
. ) 5 ' A 1234 Markov matricesMi( ) andMi( ) of the appropriate form gives
a® =0.05, a® =0.10, a® = 0.12, a” = 0.04, a = 0.01,  conditional probabilities, while on the internal edgesréhare
b =0.04, b* = 0.14, b° = 0.10, b* = 0.11, b'?** = 0.46, 8 x 8 block-diagonal matriced /5345 and Mia3/45 With two

(1) (2) (1) (2)
and 7 other choices of parameters have the same ima@é 4 blocks M12|345’ M12\345 and M123\45' M123I45 of an

Up to interchanging classes, there are 4 essentially difter @PPropriate form. Thus the superscripy or (2) refers to the
choices. Code verifying this example, and examples showif§SS in the mixture. ow
2 or 4 biologically relevant preimages, are included in the NOW the 8 x 16 matrix My = Migjzes(My ©77 Ms),

supplementary materialg][3]. We do not know if exactiyi0, where @"°% denotes tensor products of corresponding rows,
or 12 biologically relevant preimages can occur. gives probabilities of observing pairs of states at leavasd
We rigorously establish the following: 2 conditioned on the state at A similar 8 x 16 matrix product

Proposition 27:Let T’ be a binary tree with five leaves. M34 gives probabilities of observing pairs of states at leaves

m = (mu, (1 — m)u),

Then for the JC, K2P, and K3P models the map 4 and 5 conditioned on the St"g?mt @ _
) For any choice ofr and theM. "/, M:™’, the imageX under
¢ Ve X Vp X P7 == Vp s Vp ér.1 o (¢ x 1 x id) has the same entries as the 3-way array

is generically two-to-one. [7r; M12, M3, Mys]. But for generic choices of parameters, one

The proof of Propositioni27 depends on a result &@n check thai/,, and My; have Kruskal rank 8, and/;
J. Kruskal concerning uniqueness of rank 1 tensor decompS Kruskal rank> 2. Indeed, one need only check that this

sitions for3-way arrays. As this has been exploited elsewhef®!dS for a single choice of the parameters, since then the
2], [7] to study identifiability of models, we give only condition, which is defined by polynomial inequalities, can

essentials here. [i1,, M, M; are three matrices withrows, @il only on a propegl)subvar(ile)ty of the parameter space. For
and is anr-element vector, Ietn;'- denote rowi of matrix Instance, choosing/; * = M, ’ to be a JC matrix with off-

M. Let diagonal entry0.1, M* = M$? = I,, and Myg5.5 = Is, @
” calculation shows\/;, has rank 8, and hence Kruskal rank 8.

[70: My, My, Ms] = Zﬂ'imi ® m) ® m. Applying Theoren 28, we get that, M5, M3, and Mys
Py are all uniquely determined up to simultaneous permutaifon

[OWS.
The form of Kruskal's theorem most useful for our purpose .
: . PUTP However, because of the special form of the Markov ma-
's the following, from [2]. trices for the models we consider, for generic JC parameters
Theorem 28:(Kruskal) Let w be anr-element vector of . ’ ) P .
there are exactly two orderings to the rows df so that it

non-zero numbers, and{, Ms, M3 three matrices withr . .
rows, all of whose row sums are 1. L&t the Kruskal rank is two stacked blocks of the correct form, and these differ by
' simply interchanging the blocks. Thus we may rec

of M;, be the largest integer such that every sef;afows of @) - ]
and M;~’, up to order. Fixing the ordering of the rows bf;

M; is independent, and suppose &
so M3’ is on top fixes an ordering of the rows of M 3345,

I+ Iy + Iy > 2r + 2. and M,3)45 as well. Letting a superscript of 1 denote the top
Then if [m; My, My, Ms] = ['; M, M}, M}, there is a 4 rows, and a superscript of 2 the bottom 4 rows of an 8-row
permutationP such that matrix, the mixture distribution can be written as
7w =Px', My=PM,, M,=PM), Ms=PM, ™ [u; MS),M?E”,ME)} +(1—=m) [u;MS)aM?EQ)aMﬁ)} -

Proof of Propositior.207: To fix notation, letl” have non- But this weighted sum is simply the weighted sum of the two
trivial splits {12]345,123|45} and letp denote the internal points in the image ofs corresponding to the two classes. As
node on the pendant edge leading to leaf 3. Denote/by is known to be generically one-to-one, the parameterimatio
the natural parameterization &%, in terms of the entries of of Vr x Vr is two-to-one in the JC case.

4 x 4 Markov matrices. As there is no advantage to working As discussed following the statement of Theordml 23, for
in Fourier coordinates here, we use standard one¥foand the K2P and K3P models there are additional orderings of the
Vo x Vr. rows of M3 so that is is two stacked blocks of the correct
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form. Regardless of which ordering we choose, however, loy induced parameters, we thus identify all parameters en th

arguing as in the preceding paragraph we are led to the saiuétrees. |

two points in the image of 7. Thus for these models also we | ¢losing, note that the arguments in the proof of Theo-

see the parameterization bf » V- by ¢r.7 is two-to-one. W yem* 23 in combination with the results of PropositiEd 27,
Note that the use of Kruskal’s theorem in this proof extendigorously prove the following result, in the case of ideati

to a 2-class CFN mixture model on a 5-taxon tree, as then fiieée topologies.

Kruskal ranks of the matrice/;, andM,s are generically 4,  Theorem 31:For the JC, K2P, and K3P models, the con-

while M, has Kruskal rank> 2 . Although we do not focus tinuous parameters in thg-tree mixture on the same tree

on that model here, we record the result, as it is helps plaegology are generically identifiable for binary trees with

the examples of[24] for 4-taxon trees into context. n > 5 leaves.
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