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and the amount of scattering determines only 

the spatial extent of the modes (and thereby the 

cavity volume). For 3D structures, like powders 

or porous networks, light can also be localized, 

but the amount of scattering has to exceed a 

certain critical value. Although Sapienza et al. 

did not reach the strong coupling regime, they 

did see a large effect on the emission of the 

dots, in the form of a strong emission enhance-

ment. This so-called Purcell effect is a precur-

sor to strong coupling and shows that the strat-

egy is very promising.

The benefi ts of using disordered materials 

can be realized both in fabrication and device 

operation. Disordered structures are much 

easier and cheaper to make than extremely 

precise nanoscale cavities. It sounds almost 

trivial, but disordered structures are robust 

against disorder. We cannot predict in advance 

which source will couple to which mode, but 

the end result will be a broad set of sources in 

a range of frequencies that are all coupled to 

cavity modes. For example, it may be possi-

ble to build a single-photon source that is also 

broadband, meaning that it emits not at just 

one frequency but over a range of frequen-

cies. The emitters could then be controlled by 

secondary light beams at frequencies outside 

the localization band.

The approach of Sapienza et al. also raises 

interesting possibilities in quantum informa-

tion processing. When Anderson-localized 

modes occur at the same or nearby frequen-

cies, they can couple to each other to form so-

called necklace states. A series of localized 

modes can exchange photons and thereby 

share the quantum information of the atoms 

or dots located in each mode. It might be 

much simpler to construct a large-size quan-

tum memory or information processor this 

way than with perfect, periodic coupled nano-

cavities (see the second fi gure). The informa-

tion contained in such a random structure can 

be written, read, and erased by external light 

beams that are also multiply scattered, but not 

localized, and carry within their speckle pat-

tern the information stored in the quantum 

network. This is but one of many possibilities 

that may arise from the use of disordered pho-

tonic structures.  
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Trees, Fast and Accurate

EVOLUTION

        I
nferring evolutionary 

relationships from DNA 

or protein sequence data 

is now routine in biologi-

cal investigations. Although 

techniques have improved 

for using such information to 

generate phylogenetic trees 

that represent these histo-

ries ( 1), challenges remain. 

In particular, the computa-

tional demands of preferred 

statistical approaches make 

them infeasible for fi nding large phylogenies. 

However, on page 1376 of this issue ( 2), Roch 

theorizes that a less comprehensive analysis 

might be surprisingly reliable.

For a moderate number of taxa, the now-

dominant methods adopt a probabilistic 

model of sequence evolution and then, using 

either maximum likelihood (ML) or Bayes-

ian frameworks, determine the trees that best 

fi t the sequence data. Such analyses are well 

grounded in statistical tradition and, if the 

model approximates reality, can be expected 

to perform well. However, they are computa-

tionally intensive: ML leads to a complex opti-

mization problem not only over many numer-

ical parameters, but also over all trees that 

might relate the taxa. Bayesian approaches 

involve a random walk over these trees. For 

n taxa there are 1⋅3⋅5⋅…⋅(2n – 5) trees to be 

considered, so that when n is large, the size 

of tree space is a fundamental impediment. 

This explosion in the number of trees results 

in unacceptably long run times of computer 

analyses, so searches for optimal trees may 

be incomplete.

An alternative faster approach is to algo-

rithmically construct a single tree by suc-

cessively grouping closely related taxa. The 

sequences for each pair of taxa a, b are com-

pared, and a single number d(a, b) is com-

puted to express their distance (relationship) 

along the unknown tree. The sequences are 

then discarded, as all decisions on joining 

taxa are based solely on these distances. Two 

well-known examples of such agglomera-

tive algorithms are the unweighted pair group 

method with arithmetic mean and the more 

reliable neighbor-joining (NJ) method. 

The apparent drawback of distance-based 

techniques lies in only comparing sequences 

pairwise—the full information that could 

be extracted from n-way comparisons is not 

used. Thus, distance methods do not per-

form as well as more complete statistical 
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Distance estimates. Shown is an example of a 
”true” phylogenetic tree representing the evolu-
tionary history of seven taxa (a, b, c, d, e, f, and g). 
Pairwise distances between taxa are computed from 
orthologous gene sequences. Distances are random 
variables refl ecting path lengths in the tree. (Left) 
The paths between a and c (red) and between e and f 
(purple) do not share a common history, so the ran-
dom variables [distances d(a, c) and d(e, f)] are inde-
pendent of each other. (Right) The paths between a 
and e and between c and f share a common history 
(green), so independence is lost; d(a, e) (yellow and 
green) and d(c, f) (blue and green) are correlated.

A scalable and fast method for building

very large evolutionary trees achieves 

greater accuracy than previously thought.
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approaches. However, for large trees, only 

distance methods are practical.

Roch shows, through a theoretical exam-

ination, that agglomerative construction of 

trees from distances can perform better than 

one might expect. The basic insight is to take 

advantage of correlations among the dis-

tances that result from a shared evolution-

ary history (see the fi gure). Agglomeration 

joins groups of taxa iteratively, so that at any 

stage, partial knowledge of the tree allows 

an algorithm to make use of such correla-

tions. Using additional ideas—in particular, 

a “blindfolded cherry-picking” algorithm 

that allows mistaken groupings to be dis-

solved ( 3)—Roch provides an agglomera-

tive algorithm that effectively exploits this 

extra information in the distances.

This new method is surprisingly effi cient, as 

measured by the length of sequences required 

to return the correct tree with high probability. 

Roch determined that the required sequence 

length had the same dependence on key tree 

features—the number of taxa, the depth of the 

tree, and the shortest edge length—as that con-

jectured for ML, up to an undetermined con-

stant factor. Although the sequence length 

requirement for a different, nonagglomera-

tive distance method ( 4) matches Roch’s if 

some tree branches are long, it is notable that 

agglomeration need not weaken performance.

Another surprise of the analysis by Roch 

is that when all tree branches are short, the 

sequence length requirement is indepen-

dent of the depth of the tree. It has long been 

known that deep divergences in trees can be 

diffi cult to infer, as more recent mutations 

obscure the signal of older ones. However, 

short branches imply that more bifurcations 

occur in the tree, giving additional sources of 

information. A “phase transition” occurs at a 

critical value of branch length, below which 

depth is irrelevant to the required sequence 

length. This sort of behavior holds for a more 

elaborate statistical method of phylogenetic 

reconstruction ( 3), but now we learn that even 

distance methods can achieve it.

Unfortunately, theoretical results on 

sequence length requirements for ML are 

lacking, as are precise values of the con-

stants in Roch’s result, preventing a full 

comparison of the methods. Moreover, 

although ML simultaneously fi ts numerical 

model parameters and trees, Roch’s method 

assumes that the mutation rate parameters 

are known, so in practice they would have to 

be inferred by some other procedure. Addi-

tionally, the models Roch considers lack 

mutation rate variation among sites along 

the sequence. Still, all models are likely 

to be defi cient under some circumstances, 

and the potential shown for both speed and 

accuracy, even under restrictive assump-

tions, is tantalizing.

Most current practical agglomerative algo-

rithms, including NJ, were not designed to 

account for distance correlations. A notable 

exception is the BIONJ algorithm ( 5), which 

does consider distance covariances to some 

extent, and through simulation appears to offer 

improved performance. Roch’s algorithm, 

while ingenious, is complex and designed for 

the theoretical analysis of what is possible. The 

next challenge is to translate the understand-

ing that Roch provides into fast, practical algo-

rithms that more fully exploit the distance cor-

relations. New software must strike a balance 

between extracting more information from 

distances and possible speed reductions over 

simpler agglomerative methods. Although 

Roch provides a roadmap for one approach, 

practical trade-offs remain to be seen. 

References and Notes

 1. J. Felsenstein, Inferring Phylogenies (Sinauer, 

Sunderland, MA, 2004).

 2. S. Roch, Science 327, 1376 (2010).

 3. C. Daskalakis, E. Mossel, S. Roch, Probab. Theory 

Relat. Fields 10.1007/s00440-009-0246-2 (2009).
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M
echanical forces provide important 

regulatory information that directs 

development. Even throughout 

adulthood, tissue homeostasis remains tightly 

linked to tensional homeostasis, the pertur-

bation of which often leads to chronic condi-

tions such as cardiovascular disease, arthritis, 

and cancer ( 1,  2). Environmental cues affect 

cell behavior by triggering signal transduc-

tion networks, but how cells actually inte-

grate mechanical cues with these biochemi-

cal networks remains largely unresolved. On 

page 1380 in this issue, Salaita et al. describe 

how mechanical force, spatial organization 

of large clusters of cell surface receptors, 

and receptor-mediated signal transduction 

are coupled ( 3). Disruption of this mechan-

ical-coupling mechanism in tumor cells may 

explain the invasive characteristics of aggres-

sive, metastatic cancers.

Most models of cellular “mechanotrans-

duction” incorporate the idea that proteins 

subjected to force undergo conformational 

changes that alter their function. One exam-

ple is illustrated by the force-dependent 

assembly of integrin adhesion structures 

called focal adhesions. An integrin is a cell 

surface transmembrane receptor that inter-

acts with the extracellular matrix outside the 

cell and with cytoskeletal and signaling mol-

ecules through its intracellular domain. In a 

“protein-centric” model of mechanotrans-

duction, cytoskeletal tension on integrins and 

associated focal adhesion proteins drives the 

unfolding of key adaptor proteins that are 

linked to the “tensed” integrin. These con-

formational changes reveal binding sites that 

permit association with a network of proteins 

essential for signal transduction ( 4).

In contrast to this classic protein-based 

mechanotransduction model, Salaita et al. 

postulate that mechanical cues can impose 

spatial patterning on cell surface receptors 

that alter their signaling function. Many 

transmembrane receptors at the cell surface 

assemble into dimers, trimers, or higher-order 

oligomers to initiate intracellular signaling. 

In a “membrane-centric” mechanotransduc-

tion mechanism ( 5), Salaita et al. propose 

that either applied force or cellular tension 

can affect lateral receptor movement within 

the membrane to change the size (degree 

of oligomerization) of receptor clusters, or 

alter their spatial organization throughout the 
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