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Abstract Using topological summaries of gene trees as a basis for species tree infer-
ence is a promising approach to obtain acceptable speed on genomic-scale datasets,
and to avoid some undesirable modeling assumptions. Here we study the probabil-
ities of splits on gene trees under the multispecies coalescent model, and how their
features might inform species tree inference. After investigating the behavior of split
consensus methods, we investigate split invariants—that is, polynomial relationships
between split probabilities. These invariants are then used to show that, even though
a split is an unrooted notion, split probabilities retain enough information to identify
the rooted species tree topology for trees of 5 or more taxa, with one possible 6-taxon
exception.
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1 Introduction

As advances in technology have allowed for the collection of genomic-scale data
across a collection of organisms, it has been frequently observed that phylogenetic trees
inferred from single genes for a fixed taxon set often differ fromone another. Improving
inference of species relationships requires addressing such gene tree discordance in
a principled way. While there are several biological processes that might cause this
discord, including hybridization or other forms of horizontal gene transfer, incomplete
lineage sorting is an especially common source of gene tree incongruence when times
between speciation events are short and/or population sizes are large. Incomplete
lineage sorting is modeled by the multispecies coalescent model, an extension of the
standard coalescent model describing gene tree formation within a single population.

Many methods of species tree inference based on the multspecies coalescent have
been proposed. The Bayesian approaches of the software *BEAST (Heled and Drum-
mond 2010) and Mr. Bayes/BEST (Liu and Pearl 2007; Ronquist et al. 2012) perform
simultaneous gene tree and species tree inference under a combined coalescent and
sequence evolution model, from data composed of the site pattern frequencies for
individual genes. The SVD quartets method (Chifman and Kubatko 2015; Long and
Kubatko 2017) also utilizes a combined model, but bases inference on site pattern
frequencies across the full genome, with no assignment of sites to genes. Nonetheless,
it still gives a statistically consistent estimate of the species tree under the plausible
assumption of independence of gene length and gene tree.

Alternatively, gene trees inferred by traditional phylogenetic methods can be used
as input for a subsequent inference of a species tree, in methods such as Rooted
triple Consensus (Ewing et al. 2008), STEM (Kubatko et al. 2009), STAR (Liu et al.
2009), NJst/U-STAR/ASTRID (Liu and Yu 2011; Allman et al. 2016; Vachaspati
and Warnow 2015), MP-EST (Liu et al. 2010), BUCKy (Larget et al. 2010) and
ASTRAL-II (Mirarab andWarnow2015).While theoretical justification for these two-
stage approaches generally ignores gene tree inference error, they can be applied to
much larger data sets (more taxa and more genes) than the computationally intensive
Bayesian algorithms, and have exhibited strong performance in simulations. Such
scalability makes them highly attractive and motivates further exploration of their
underpinnings.

A fundamental issue for any inference of a species tree is how to relate the timescale
used in the multispecies coalescent model on a species tree to those in sequence
evolution models used on gene trees. The coalescent timescale can be measured
in number of generations divided by population size, while the sequence evolu-
tion model is generally in number of substitutions per site. Assumptions such as a
constant mutation rate over the gene tree (implying all gene trees are ultrametric)
and a constant population size over the species tree are sometimes made, despite
their implausibility. While these assumptions can be relaxed somewhat through more
elaborate modeling, it is difficult to test the robustness of inference when they are
violated.

An alternative way of addressing this difficult time scale issue is to simply discard
all metric information inferred about gene trees, and only use their topological features
to infer a species tree. Although discarding such information is undesirable if one can
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validly relate time scales, one can view it as a conservative approach to avoid reliance
on unjustified assumptions.

Some methods go further, and only consider summaries of the inferred topolog-
ical gene trees, such as displayed quartets (unrooted 4-taxon trees), rooted triples
(rooted 3-taxon trees), clades (all taxa descended from an internal node of the rooted
tree) or splits (bipartitions of taxa induced by an edge in the tree). Among current
methods, Rooted triple consensus,MP-EST,BUCKy, STAR,ASTRAL-II, andNJst/U-
STAR/ASTRID are all of this type [while for Rooted triple Consensus, MP-EST,
BUCKy and ASTRAL-II this is obvious from their formulations, for STAR and NJst
the connection to clades and splits was established in Allman et al. (2013) and All-
man et al. (2016)]. These methods all use topological summaries of a sample of gene
trees, rather than the full trees, in ways allowing for statistically consistent species tree
inference when the gene trees are sampled from the multispecies coalescent model
without error.

In this work, we undertake a theoretical study of the probabilities of splits on gene
trees arising from themultispecies coalescent,with the aimof better understandinghow
species tree inferencemaybeperformed fromgene tree split information.This parallels
several previous works, in which we have shown that rooted species tree topologies
are identifiable from unrooted gene tree topologies or from clades displayed on gene
trees, and unrooted species tree topologies are identifiable from gene tree quartets.

A pleasant outcome of our study is that gene tree split probabilities generally retain
enough information on the species tree that they determine both its topology and its
root, despite the fact that splits themselves are an unrooted notion. Specifically, for all
species trees on 5 or more taxa, with one 6-taxon exception, for generic edge lengths,
the rooted species tree topology is identifiable. Translating to an empirical setting, this
means that one should be able to develop a statistically consistent method of inference
of the rooted species tree from the frequencies of splits on a collection of unrooted
gene trees. This would be an extension of the NJst/U-STAR/ASTRID method, which
only infers an unrooted species tree topology from the same information. Such a
method would avoid any issues with erroneous rooting of gene trees by inclusion of
an outgroup, which has long been known as a source of additional error (see Philippe
et al. 2011 for a recent discussion), and allow rooting even when no appropriate
outgroup is available. A recent work (Alanzi and Degnan 2017) pursued this through
approximate Bayesian computation, with split distributions used as one measure to
estimate a posterior distribution of rooted species trees. Since the method by which we
show the species tree root is identifiable depends only on linear relationships between
split probabilities, other approaches taking advantage of this simple form may also be
possible.

After setting notation in Sect. 2, we begin our study of split probabilities under
the multispecies coalescent in Sect. 3 with some basic observations. These include an
analysis of the behavior of greedy split consensus from gene tree splits, concluding
that it is not a statistically consistent method of species tree inference even on trees
with as few as 5 taxa. Mathematical arguments for this appear in Appendix A section.

Since split probabilities are complicated expressions that are difficult to compute
for trees with more than 6 taxa, in Sect. 4 we turn our attention to relationships
between such split probabilities—that is, rather than focus on explicit formulas for
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them, we look for implicit formulas they must satisfy. Our methods thus are math-
ematically the same as those used for studying pattern probabilities under sequence
evolution models through phylogenetic invariants, so we adopt the same terminol-
ogy of referring to equalities as invariants. Our previous work (Allman et al. 2016)
on relationships between the split probabilities and the NJst/U-STAR/ASTRID infer-
ence method quickly leads to a number of linear invariants and inequalities the split
probabilities must satisfy, tied to the quartets displayed on the species tree. These
depend only on the unrooted species tree, and thus give no information on its root.
However, building on results in Allman et al. (2011a), we then find additional split
invariants that depend on the clades displayed on the species tree, which thus give
some information about the root location. While our theoretical work gives only lin-
ear invariants, independent invariants of higher degree also exist. Unfortunately a
computational determination of them was successful only for 5-taxon trees, and their
structure remains unclear.

In Sect. 5 we build on the results on linear invariants from Sect. 4, to prove a main
result: the collection of split probabilities under the multispecies coalescent model
determines the species tree topology, including the root location (with one exception).
This identifiability result, Theorem 3, holds generically, i.e., for all edge lengths on the
species tree not in a set of measure zero. For most trees testing whether the invariants
found in the previous section vanish is sufficient for locating the root; however, for
certain trees these tests leave several possibilities for the branching pattern near the
root of the tree. Motivated by known invariants, we formulate some linear inequalities
that resolve these ambiguities in all cases, except for a particular unrooted 6-taxon
tree shape. Establishing that these inequalities hold is accomplished by a laborious
technical argument, which is relegated to Appendix B section.

2 Notation

Let X be a finite set of taxa, whose elements are denoted by lower case letters
a, b, c, . . ., etc. For any specific gene, we denote a single sample from each taxon
by the corresponding upper case letter A, B,C, . . ., etc. IfA ⊆ X is a subset of taxa,
the corresponding subset of genes is Ag ⊆ Xg .

By a species tree σ = (ψ, λ) on X we mean a rooted topological phylogenetic
tree ψ , with leaves bijectively labeled by X , together with an assignment of edge
weights λ to its internal edges. These edge weights are specified in coalescent units,
so that the multispecies coalescent model on σ leads to a probability distribution on
rooted gene trees with leaves labeled by Xg (for more on the multispecies coalescent
model as we use it, see Allman et al. 2011b). Since we limit ourselves to the situation
where one individual is sampled per taxon, no coalescent events can occur in pendant
edges of a species tree, so the lengths of those edges are inconsequential and omitted
from our notation (if more than one individual is sampled per taxon, one can create an
“extended species tree” as in Allman et al. (2011a) by grafting several pendant edges
of unspecified length to the leaf labeled by that taxon, and assigning a length to the
formerly pendant edge, to again be in the framework set here).
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The gene trees sampled from the coalescent are rooted metric binary phylogenetic
trees on Xg , though marginalization over edge lengths and root locations induces a
distribution on unrooted topological binary gene trees. Unrooted topological gene
trees will be denoted by T , and the probability of an unrooted topological gene tree
under the multispecies coalescent on σ is denoted by Pσ (T ), or simply P(T ) when σ

is clear from context.
A split of a set of taxa X is a bipartition A � B into nonempty subsets, denoted

A|B = B|A = Sp(A) = Sp(B). If σ is a species tree on X then by a split on σ we
mean a split of X formed by deleting a single edge of ψ and grouping taxa according
to the connected components of the resulting graph. We similarly refer to splits of
Xg , and splits of Xg on specific gene trees T . For small sets of taxa, it will often be
convenient to use juxtaposition of elements to represent sets, rather than standard set
notation. Thus ac = {a, c} and Sp(ac) = Sp({a, c}).

In a trivial split, one of the partition blocks is a singleton set. Trivial splits for
taxa X appear on every phylogenetic tree on X . For A ⊂ X we will denote the
complementary set of A by A = X�A, so that A|A is a split when ∅ �= A � X .

For a species tree σ on X , by the probability of a split A|B of X under the multi-
species coalescent we mean

Pσ (A|B) =
∑

T

Pσ (T )δA|B(T ) (1)

where δA|B(T ) is 1 if Ag|Bg is a split on T , and 0 otherwise, and the sum runs over
all binary unrooted topological phylogenetic trees on Xg . Thus the probability of a
split is the probability that an observation of a gene tree displays the corresponding
split. Note that trivial splits have probability 1 for every species tree, since they are on
every binary gene tree.

We will also need to refer to clades and quartets of taxa. A clade is simply a subset
A ⊆ X . A cladeA is on the species tree σ if it equals the set of all leaf descendants of
some node in the tree. A quartet is a 4-element subset of X partitioned into 2-element
sets, denoted as ab|cd, with a, b, c, d ∈ X . A quartet ab|cd is on σ if the unrooted
tree with leaves labeled a, b, c, d induced from σ has an edge separating a, b from
c, d.

Finally, given a rooted topological tree on X , and a subset Y ⊆ X , we use
MRCA(Y) to denote the most recent common ancestor of Y , i.e., the least ances-
tral node in the tree which is ancestral to all elements of Y . For a node v in the tree,
we use descX (v) to denote the set of taxa descended from v. Thus a clade Y ⊆ X is
on the tree if and only if Y = descX (MRCA(Y)).

3 Basic Observations

While in principle it is straightforward to compute the probabilities of gene tree splits
for a fixed species tree, in practice the work required can be formidable. For an n-
taxon species tree, using the definition in Eq. (1), one first must compute probabilities
of each of the (2n − 3)!! = 1 · 3 . . . (2n − 3) unrooted topological gene trees. This
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can be accomplished by work of Degnan and Salter (2005) or Wu (2012) in finding
probabilities of all rooted topological gene trees, and then marginalizing over the root
locations. For a given split one must still sum over all unrooted gene trees displaying
that split. If the split has blocks of size k andn−k, then there are (2k−3)!! (2n−2k−3)!!
such unrooted trees.

Using this approach, we computed split probabilities for all species trees on 6 or
fewer taxa for use in computations discussed in later sections, but went no further.
Indeed, this approach does not seem to be tractable except for small species trees. On
the other hand, since the U-STAR inference methods implemented in ASTRID are
based on split frequencies (Vachaspati and Warnow 2015; Allman et al. 2016) and
perform well on large data sets, theoretical study of these probabilities is still strongly
warranted.

As a first step, analogous to Proposition 1 of Allman et al. (2011a) for clade prob-
abilities, we have the following.

Lemma 1 If |X | = n, then the sum of the non-trivial split probabilities is n − 3.

Proof First considering all splits of X , including trivial ones,

∑

A|B
Pσ (A|B) =

∑

A|B

∑

T

Pσ (T )δA|B(T ) =
∑

T

Pσ (T )
∑

A|B
δA|B(T )

=
∑

T

Pσ (T )(2n − 3) = 2n − 3.

Since the n trivial splits of X all have probability 1, removing them from the sum
gives the claim. ��

Another analog of a result for clade probabilities, Theorem 3 of Allman et al.
(2011a), is the content of the next Proposition. T. Warnow first asked if this might
hold, and C. Ané independently provided a proof (Ané 2016).

Proposition 1 Let ε ≥ 0 be fixed, and let σ be a binary species tree onX with internal
edge lengths λi > ε. Consider any split A|B of X .

Then under the multispecies coalescent model if

Pσ (A|B) ≥ (1/3) exp(−ε)

then A|B is displayed on σ .
Furthermore, if (1/3) exp(−ε) is replaced with any smaller number, this statement

is no longer true: For any α < (1/3) exp(−ε), there exists a species tree σ with branch
lengths λi > ε and a split A|B of X not displayed on σ with Pσ (A|B) > α.

Proof The first statement holds for trivial splits, since they have probability 1 and are
displayed on every binary σ .

Now consider a non-trivial splitA|B not displayed on σ . Then there exist a1, a2 ∈
A, b1, b2 ∈ B so the quartet a1a2|b1b2 is not displayed on σ . Thus, by (Allman
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et al. 2011b, Sect. 4.1) the probability that an unrooted gene tree displays the quartet
A1A2|B1B2 is

Pσ (A1A2|B1B2) = (1/3) exp(−�) < (1/3) exp(−ε)

where � > ε is the sum of the lengths of all branches in σ that form the central edge
in the induced quartet tree on a1, a2, b1, b2. But since displaying the split Ag|Bg is
a subevent of displaying A1A2|B1B2, this implies that if A|B is not displayed on σ

then

Pσ (A|B) < (1/3) exp(−ε),

establishing the first claim.
For the second claim, we construct an example. For any non-trivial splitA|B, pick

a ∈ A, b ∈ B, and let A′ = A�{a}, B′ = B�{b}. Pick any binary rooted tree σ1 on
A′, and any binary rooted tree σ2 on B′, with internal branch lengths greater than ε,
and consider the tree

σ = (((a, b) : λ1, σ1 : λ2) : λ3, σ2 : λ4).

Note A|B is not a split on this tree. However, if λ2, λ4 are sufficiently large, then
the lineages for each of the groups A′

g and B′
g are almost certain to have coalesced

within the branches of those lengths. But then using results on the probabilities of
unrooted topological gene trees for 4-taxon species trees from Allman et al. (2011b),
we deduce that the probability of a gene tree displaying the split Ag|Bg can be made
arbitrarily close to (1/3) exp(−λ1). If α < (1/3) exp(−ε), there is a choice of λ1 > ε

so that α < (1/3) exp(−λ1). Thus we can ensure Pσ (A|B) > α. ��
Setting ε = 0 in the previous proposition yields the following.

Corollary 1 Suppose σ is a binary species tree on X , with positive edge lengths, and
A|B a split of X . Then under the multispecies coalescent model if

Pσ (A|B) ≥ 1/3

then A|B is a split on σ .

This proposition has implications for a greedy split consensus approach to inferring
splits in a species tree. Recall that in this method, one first orders splits observed
in a gene tree sample by decreasing frequency, arbitrarily (or randomly) breaking
ties if necessary. Proceeding in order down the list, splits are accepted if they are
compatible with all previously accepted ones. For a large sample of gene trees from
the multispecies coalescent, a fully resolved unrooted tree is likely to be returned,
since all splits have positive probability. The above corollary implies that if one only
allows the acceptance of splits of frequency greater than 1/3, then this method will not
be misleading; as the size of the gene tree sample grows, the probability of accepting
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only splits on the species tree goes to 1. While a tree displaying the accepted splits
may not be fully resolved, one can have confidence in the splits that are displayed.

To show that accepting splits below a frequency 1/3 cutoff in greedy split consensus
would not lead to consistent species tree inference,we investigate 5-taxon trees inmore
detail. Up to permutation of taxon labels, there are three species trees to consider:

balanced tree σbal = (((a, b):x, c):y, (d, e):z)
pseudocaterpillar tree σps = (((a, b):x, (d, e):y):z, c)
caterpillar tree σcat = ((((a, b):x, c):y, d):z, e)

Although we use the same variables x, y, z to denote the three internal edge lengths
in each tree, note that these have no relationship across the species trees. All split
probabilities can be expressed as polynomials in the transformed edge lengths

X = exp(−x), Y = exp(−y), Z = exp(−z).

Note that with this transformation, values of X close to 1 correspond to small branch
lengths x , and values of X close to 0 correspond to large branch lengths x .

The following two propositions are proved in Appendix A section.

Proposition 2 For the 5-taxon balanced and pseudocaterpillar species trees, σ =
σbal, σps, with positive branch lengths,

Pσ (Sp(ab)), Pσ (Sp(de)) > Pσ (S)

for each of the eight other non-trivial splits S, so the splits displayed on the species
tree have the highest probability of appearing on gene trees.

When restricted to these species trees, as the sample size goes to infinity greedy split
consensus infers the correct unrooted species tree topology with probability approach-
ing 1.

Proposition 3 For the 5-taxon caterpillar species tree σ = σcat with positive
branch lengths, Pσ (Sp(ab)) > Pσ (S) for all non-trivial splits S �= Sp(de), and
Pσ (Sp(de)) > Pσ (Sp(ce)).

If Pσ (Sp(de)) > Pσ (Sp(cd)) for such a species tree, as the sample size goes to
infinity greedy split consensus infers the correct unrooted species tree topology with
probability approaching 1.

However, if Pσ (Sp(de)) < Pσ (Sp(cd)), it infers the incorrect unrooted species
tree topology ((a, b), e, (c, d)) with probability approaching 1. The parameter region
in which this occurs is

18 + XY 3Z6 + 2XY 3 − 3XY − 18Y < 0. (2)

Figure 1 shows the surface dividing the regions of parameter space on which greedy
split consensus is misleading from that on which it is not.We refer to the region behind
the surface, in which greedy consensus on splits is expected to return the incorrect
species tree, as the too-greedy zone.
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Fig. 1 The boundary of the too-greedy zone for the 5-taxon caterpillar tree σcat . Greedy consensus for
split probabilities is inconsistent for all choices of parameters behind the surface, and consistent in front
of the surface. For example, if (X, Y, Z) ≈ (.9, .96, .5), so species tree branch lengths are (x, y, z) ≈
(0.1054, 0.0408, 0.6931), then greedy consensus with a large number of gene trees is expected to return
the incorrect tree ((a, b), e, (c, d))

The analogous expression for the boundary of the five-taxon unrooted anomaly
zone (the branch lengths for which the most likely unrooted gene tree does not match
the unrooted caterpillar species tree) is Degnan (2013, Eq. (4))

18 + XY 3Z6 + 2XY 3 + 9XY − 12X − 18Y < 0. (3)

We note that if inequality (2) holds, then inequality (3) holds as well. This means
that for the five-taxon caterpillar, the too-greedy zone is a subset of the unrooted
anomaly zone. This relationship is also true for the rooted 4-taxon caterpillar case:
the rooted too-greedy zone is a subset of the rooted anomaly zone. In both the rooted
and unrooted cases for four and five taxa, respectively, when greedy consensus is
misleading, it returns the anomalous gene tree.We leave it as an open questionwhether
the too-greedy zones for larger trees are also subsets of the corresponding anomaly
zones.

One can show that the minimum value of Y on the boundary surface in Fig. 1 occurs
when X = 1, Y ≈ 0.93498735, and Z = 0, so x = 0, y ≈ 0.06722228, z = ∞.
For values of y larger than this, regardless of the values of x and z, branch length
parameters are outside the too-greedy zone, and greedy split consensus is expected to
return the correct species tree.

Moreover, if Z = 0 so that z is an infinite branch length in σcat, the too-greedy
zone for splits coincides exactly with the too-greedy zone for clade consensus on the
4-taxon tree (((a, b), c), d) (Degnan et al. 2009). This is as expected, since placing
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Fig. 2 For z = 0.01, .05, .1, .5, 1, curves giving, from bottom to top, the boundary of the too-greedy
zone in the xy-plane for the 5-taxon caterpillar tree. Note x, y, z are edge lengths in coalescent units. The
too-greedy zone for a value of z is the region below the curve, illustrating that the region grows with z. For
z > 1 the curve is visually indistinguishable from that for z = 1

the root of the 5-taxon caterpillar species tree “at infinity” makes non-trivial splits for
it correspond exactly to clades in the 4-taxon caterpillar, by viewing e as an outgroup
and noting that the lineage from e must coalesce last.

As was pointed out to us (Ané 2016), the shape of the surface in Fig. 1 has an
interesting consequence. As Z increases from 0 to 1, the too-greedy zone in the XY -
plane becomes smaller. Equivalently, in terms of branch lengths, as z increases from
0 to ∞, the too-greedy zone in the xy plane becomes larger, as shown in Fig. 2. Thus
smaller values of z result in greedy split consensus performing well for more choices
of branch lengths x and y.

If one views the taxon e as an outgroup on σcat, this means that an outgroup that is
closely related to all other taxa results in better performance of greedy split consensus
than one that is more distantly related. While an extremely distantly related outgroup
(z = ∞) enables determination of the root of each gene tree, so that knowing the splits
on 5-taxon gene trees is equivalent to knowing the clades on 4-taxon trees omitting
the outgroup, this actually reduces the ability of greedy split consensus to determine
the correct unrooted topology of the species tree. Indeed, the too-greedy zone for
clade consensus on a 4-taxon caterpillar as shown in Figure 3 of Degnan et al. (2009)
matches precisely that for z = ∞ in Fig. 2.

These comments have analogs for the unrooted anomaly zones for five taxa. In
particular, the left side of inequality (3) is decreasing in z, so that increasing that
branch length results in more values of x and y with (x, y, z) in the anomaly zone.
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4 Linear Invariants and Inequalities for Split Probabilities

A useful concept for understanding probabilistic models in phylogenetics has been
that of a phylogenetic invariant. An invariant of this sort is a multivariate polynomial
that when evaluated at probabilities arising from the model gives 0, regardless of the
particular parameter values associated with the model instance. Equivalently, it is a
polynomial relationship between the probabilities that holds for all parameter values,
and thus gives information about the probabilities implicitly.

A split invariant for a species tree topology is a polynomial in the probabilities
of splits under the multispecies coalescent model that vanishes for all edge length
assignments to the species tree. More completely, a split invariant associated with an
n-taxon species tree topologyψ is amultivariate polynomial in 2n−1−1 indeterminates
(one for every split) which evaluates to zero at any vector of split probabilitiesPσ (A|B)

arising from σ = (ψ, λ), regardless of the values of λ. Since probabilities of trivial
splits are always 1 under the coalescent, we can and will consider only invariants in
variables for the 2n−1 − n − 1 non-trivial splits.

The trivial split invariant, which is valid for all ψ , is

n − 3 −
∑

non-trivial
splitsA|B

Pσ (A|B). (4)

That this evaluates to 0 when the split probabilities arise from the multispecies coa-
lescent on some species tree is established by Lemma 1.

4.1 Linear Invariants and Inequalities for Unrooted Species Trees

In this sectionwe explore linear relationships, both invariants and inequalities, between
split probabilities that are tied to the U-STAR algorithm (Allman et al. 2016).
Since U-STAR allows a distance method to be used to infer a species tree, these
have a rather direct correspondence to equalities and inequalities defining tree met-
rics.

From equation (7) of Allman et al. (2016), we know the expected U-STAR distance
on a species tree σ under the multispecies coalescent can be expressed as

D(a, b) =
∑

splitsA|B
separating a, b

Pσ (A|B),

where a split is said to separate two taxa if they lie in different sets of the bipartition.
Moreover, the expectedU-STARdistance is a treemetric onσ . Using this in the 4-point
condition for tree metrics implies a collection of linear equalities and inequalities in
split probabilities that must hold for unrooted species trees. That is, these equalities
and inequalities hold regardless of the location of the root on the species tree.
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To state the result, wewill say that a splitA|B ofX separates two nonempty disjoint
subsets Y0,Y1 ⊂ X provided Yi ⊆ A and Y1−i ⊆ B for one of i = 0, 1.

Theorem 1 Suppose σ is an n-taxon species tree on X , and a, b, c, d ∈ X are any
four taxa for which σ induces the quartet tree ab|cd. Then

∑

splitsA|B
separating ac, bd

Pσ (A|B) =
∑

splitsA|B
separating ad, bc

Pσ (A|B)

≤
∑

splits A|B
separating ab, cd

Pσ (A|B).

Proof If a, b, c, d are 4 taxa on a metric tree displaying the quartet ab|cd, then for
the associated tree metric d the 4-point condition (Semple and Steel 2003) states that

d(a, c) + d(b, d) = d(a, d) + d(b, c) ≥ d(a, b) + d(c, d).

The equality of this condition applied to the U-STAR expected distance gives

∑

splitsA|B
separating a, c

Pσ (A|B) +
∑

splitsA|B
separating b, d

Pσ (A|B)

=
∑

splitsA|B
separating a, d

Pσ (A|B) +
∑

splitsA|B
separating b, c

Pσ (A|B).

Any split for which all four of a, b, c, d appear in the same split set does not appear in
this equation. If one of a, b, c, d is separated from the other three in a split, then that
split probability occurs exactly once on each side of the equation and can be canceled.
If two of a, b, c, d are separated from the others, several cases must be considered.
First, if ab is separated from cd by a split, that split probability occurs in all four
sums, and so can be canceled. Second, if ac is separated from bd by a split, that
split probability occurs in both sums on the right, and not on the left. Third, if ad
is separated from bc by a split, that split probability occurs in both sums on the left,
and not on the right. Thus after all canceling and division by 2, we obtain the claimed
equality.

Similar reasoning shows the 4-point inequality yields the inequality of the theorem.
��

Since the invariants of Theorem 1 depend only on displayed quartets, they hold for
all rooted versions of a fixed unrooted species topology.
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Example 1 We apply the theorem to a species tree with unrooted topology ((a, b),
c, (d, e)). Using abbreviated notation such as sab = P(Sp(ab)) = P(ab|cde) for the
10 non-trivial split probabilities, by Theorem 1 for each quartet on the species tree,
we obtain an equality and inequality:

ab|cd : sad + sbc = sac + sbd ≤ sab + scd ,

ab|ce : sae + sbc = sac + sbe ≤ sab + sce,

ab|de : sad + sbe = sae + sbd ≤ sab + sde,

ac|de : sad + sce = sae + scd ≤ sac + sde,

bc|de : sbd + sce = sbe + scd ≤ sbc + sde.

The first three equalities here span a space of dimension 2, as do the last three. The
middle three are a basis for the span of them all.

One can compute all split probability invariants for the unrooted 5-taxon tree in
Singular (Decker et al. 2016), by computing and intersecting the ideals of invariants
for the 7 rooted versions of the tree. Doing so shows that the linear invariants given
here together with the trivial invariant span the full space of linear invariants for the
unrooted tree. There is also a quadratic invariant in a Gröbner basis for the ideal
intersection,

(sac − sbc)(sad − sae) = 0,

which reflects the fact that for each of the rooted trees either sac = sbc or sad = sae.
As will be explained in the next section, these equalities arise as cherry-swapping
invariants, since each of the 7 trees either has ab or de as a 2-clade. In addition, there
are 14 higher-degree invariants (not shown) in the basis for the ideal, of total degree
ranging from 3 to 8.

Singular code for these and all other computations in this work is provided in
the Online Resource.

Example 2 For each of the 2 unrooted shapes of binary 6-taxon trees one can similarly
compute all linear split invariants. For the unrooted tree shape with 2 cherries, exem-
plified by (((a, b), c), d, (e, f )), there is one additional linear split invariant, outside
the span of those of Theorem 1:

sace|bd f − sac f |bde + sade|bc f − sad f |bce = 0.

This also can be explained by the cherry-swapping invariants of the next section, since
any rooted version of this tree will have at least one of ab or e f as a 2-clade.

For the unrooted shape with 3 cherries, exemplified by ((a, b), (c, d), (e, f )), in
addition to the linear invariants of the above theorem one finds

sace|bd f = sac f |bde = sade|bc f = sad f |bce.
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All equalities can be explained by the fact that any rooted version of the tree has at
least 2 of the 2-clades ab, cd, and e f , and determining the cherry-swapping invariants
these clades imply.

4.2 Linear Invariants for Rooted Species Trees

Next we investigate linear split invariants that depend on the rooted species tree. More
specifically, we construct a family of such invariants associated with each non-trivial
clade on the species tree. The existence of these clade-induced split invariants, as
given in Theorem 2 below, will form the basis of arguments in Sect. 5 that the root of
the species tree can be identified from split probabilities.

Theorem 2 Let A ⊂ X be a subset of taxa with |A|, |A| ≥ 2. Choose ∅ �= C � A,
and distinct a, b ∈ A. Let A′ = A�{a, b}.

Then if A is a clade on σ ,

∑

S⊆A′
Pσ (Sp(S ∪ {a} ∪ C)) −

∑

S⊆A′
Pσ (Sp(S ∪ {b} ∪ C)) = 0. (5)

We note that this theorem applies to any species tree, even if non-binary. Moreover,
since a non-binary species tree σ can be thought of as any of its binary resolutions
with length 0 assigned to any introduced edges, the clade probabilities arising from
such a σ will satisfy the polynomials of the theorem for every binary resolution. Thus
in the statement of the theorem the phrase “ifA is a clade on σ” can be replaced with
“if A is a clade on a binary resolution of σ .”

Proof of Theorem 2 We derive this result in part using ideas developed for the con-
struction of invariants for clade probabilities in Allman et al. (2011a).

Let Cl(A) represent the event that Ag is a clade on an observed gene tree. Then
note that

Pσ (Sp(A)) = Pσ (Cl(A)) + Pσ (Cl(Ā)) − Pσ (Cl(A),Cl(Ā)),

where Pσ (Cl(A),Cl(Ā)) denotes the probability of the two clades simultaneously
being displayed on a gene tree. Thus Eq. (5) will follow from establishing the three
equalities:

∑

S⊆A′
Pσ (Cl (S ∪ {a} ∪ C)) −

∑

S⊆A′
Pσ (Cl (S ∪ {b} ∪ C)) = 0, (6)

∑

S⊆A′
Pσ

(
Cl

(S ∪ {a} ∪ C)) −
∑

S⊆A′
Pσ

(
Cl

(S ∪ {b} ∪ C)) = 0, (7)

∑

S⊆A′
Pσ

(
Cl (S ∪ {a} ∪ C) ,Cl

(S ∪ {a} ∪ C))

−
∑

S⊆A′
Pσ (Cl (S ∪ {b} ∪ C)) ,Cl

(S ∪ {b} ∪ C) = 0, (8)
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That Eq. (6) holds is Theorem 6 of Allman et al. (2011a). To establish Eq. (7), for
any S ⊆ A′, let S̃ = A′

�S, and C̃ = (A)�C. With this notation

S ∪ {a} ∪ C = S̃ ∪ {b} ∪ C̃,

where S̃ ⊆ A′ and ∅ �= C̃ � X�A. We thus see Eq. (7) is another instance of the Eq.
(6) (it is essential here that C be a proper subset of A, so that C̃ is nonempty; this is
why A must exclude at least 2 taxa).

Establishing Eq. (8) requires more argument. Using the above notation, it can be
restated as

∑

S⊆A′
Pσ

(
Cl (S ∪ {a} ∪ C) ,Cl

(
S̃ ∪ {b} ∪ C̃

))

−
∑

S⊆A′
Pσ

(
Cl (S ∪ {b} ∪ C) ,Cl

(
S̃ ∪ {a} ∪ C̃

))
= 0. (9)

We establish Eq. (9) by showing a version of it conditioned on the partition of A
corresponding to lineages present at the MRCA(A) in the species tree. Now consider
any realization of the remainder of the coalescent process (i.e., on σ with edges below
MRCA(A) removed) which displays the clades Sg ∪ {A} ∪ Cg and S̃g ∪ {B} ∪ C̃g .
First note that A and B are in different partition sets at MRCA(A), or these clades
could not be formed. But then this realization has the same probability as one where
the lineages for B and A are exchanged. This exchange leads to a gene tree displaying

clades Ŝg ∪ {B} ∪ Cg and ˜̂Sg ∪ {A} ∪ C̃g . Here Ŝ is still a subset of A′, but generally
differs from S because some elements of S are in the partition sets with A and B at
MRCA(A). Conditioned on the partition, this establishes a bijective correspondence
between equiprobable realizations of the coalescent contributing to the two sums in the
equality, and thus the conditioned equality holds. Summing over all possible partitions
of A, weighted by their probabilities, gives the unconditioned Eq. (9). ��
Example 3 Here we explicitly give the clade-induced split invariants of Theorem 2
for 5-taxon species trees, and compare them to the full set of invariants for such trees.

Caterpillar tree ((((a, b), c), d), e): Consider the 2-clade A = {a, b}, so A′ = ∅.
With C = {c}, {d}, and {e}, using the notation introduced in Example 1, Eq. (5) yields

sac − sbc = 0, sad − sbd = 0, sae − sbe = 0.

We refer to these as cherry-swapping split invariants, since they hold because a, b
form a 2-clade, and their lineages are thus exchangeable under the coalescent model.
Two-element choices of C give the same equalities, up to sign, as the ones already
listed.

For the clade {a, b, c} using a and b as the two singleton taxa, we find

sad + sacd − sbd − sbcd = 0, sae + sace − sbe − sbce = 0,
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both of which were already implied by the cherry-swapping invariants. But using a
and c as the singleton taxa, we get

sad + sabd − scd − sbcd = 0, sae + sabe − sce − sbce = 0. (10)

However, equations (10) differ only by sign. An additional invariant, with a and b
interchanged from equations (10), is obtained by choosing b, c as the singletons. Alter-
nately, it follows from equations (10) using the “cherry-swapping” exchangeability of
lineages for a and b.

A computation with Singular shows these together with the trivial invariant
span the space of all linear split invariants for this rooted tree. Note that the tree
((((a, b), c), e), d) would produce exactly the same set of invariants, so by evaluating
linear invariants one would not be able to identify the root of such a caterpillar tree.
This is an instance of Corollary 4 (a) below.

Balanced tree (((a, b), c), (d, e)): This tree has all the clades excluding at least 2
taxa that the caterpillar does, but in addition displays {d, e}. Thus all the invariants
listed for the caterpillar hold, as well as additional ones from this cherry. For instance,

sad − sae = 0.

These span the space of linear split invariants for this tree, as computed bySingular.
Pseudocaterpillar (((a, b), (d, e)), c): This tree has only two clades that exclude

at least two taxa, namely {a, b} and {d, e}, yielding the invariants

sac − sbc = 0, sad − sbd = 0, sae − sbe = 0,

sad − sae = 0, sbd − sbe = 0, scd − sce = 0.

Note that of these six invariants, the middle four are linearly dependent, with a 3-
dimensional span. The span of all six invariants is 5-dimensional. All can be explained
by cherry-swapping.

For the 5-taxon pseudocaterpilar, a computation with Singular produces a 7-
dimensional space of linear invariants (including the trivial linear invariant), with

sab + 2sbc − 2sce − sde = 0. (11)

as the additional generator. Note that neither of Theorems 1 and 2 give equalities
involving Pσ (Sp(ab)) or Pσ (Sp(de)) for this tree, so they cannot provide an expla-
nation for this invariant. One will be given in Proposition 5 below.

For the 5-taxon trees, our Singular computations found a Gröbner basis for
all invariants in split probabilities. For the pseudocaterpillar, there were only linear
polynomials, indicating that those given above imply all higher-degree invariants. For
the caterpillar and balanced trees this is not the case, though we have no theoretical
understanding of the form of the higher-degree invariants. In particular, the balanced
tree has an additional quadratic invariant under our choice of Gröbner basis, and the
pseudocaterpillar has one quadratic and three cubic invariants.
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Table 1 Dimensions of the
vector spaces of non-trivial
linear invariants for 6-taxon
species trees

Species tree Dim

(((((a, b), c), d), e), f ) 11

((((a, b), (c, d)), e), f ) 13

((((a, b), c), (d, e)), f ) 14

((((a, b), c), d), (e, f )) 14

(((a, b), (c, d)), (e, f )) 15

(((a, b), c), (d, (e, f ))) 15

These are defined on a space of(
25 − 6 − 1

)
= 25 non-trivial

split probabilities

Example 4 For each of the six shapes for 6-taxon species trees, we computed invari-
ants for the split probabilities using Singular. In order to make the computations
terminate, we limited the degree to 8. For all shapes we found that the clade-induced
split invariants given by Theorem 2 spanned the space of linear invariants; that is, there
were no “extra” linear invariants such as that found for the 5-taxon pseudocaterpillar
species trees. Table 1 shows the dimension of the space of non-trivial linear invariants,
which depends upon the rooted topology.

For the 6-taxon trees,we foundnononlinear invariants of degree less thanour bound.
However, a dimension argument indicates higher-degree invariants must exist: There
are 25 non-trivial split probabilities. After accounting for the trivial split invariant of
Eq. (4), the space the linear invariants cut out is of dimension 24 minus that shown in
Table 1. Since the variety of split probabilities has dimension at most 4 (the number
of internal edges on the species tree), higher-degree invariants must exist to further
restrict the space cut out by the linear ones.

5 Identifiability of the Rooted Species Tree from Split Probabilities

We first show that the clade-induced split invariants of the last section, which vanish
if a species tree has a particular clade, do not vanish for generic parameter choices if
the species tree lacks that clade (with some exceptions). This is the main ingredient
in obtaining Theorem 4, that the rooted topological species tree is recoverable from
split probabilities in most circumstances.

The following lemma is key to our argument.

Lemma 2 Let ψ be a binary rooted topological species tree on X , and X = A � D
a disjoint union of subsets with |A|, |D| ≥ 2. Suppose

1. A is not a clade on ψ ,
2. D is not a 2-clade on ψ .

Then there exists some ∅ �= C � D, a, b ∈ A, and some choice of edge lengths λ on
ψ such that the clade-induced split invariant of Theorem 2, Eq. (5) does not vanish on
the split probabilities arising under the multispecies coalescent model on σ = (ψ, λ).

Proof We consider two cases, according to whether or not D is a clade displayed on
ψ .
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First suppose D is not a clade on ψ . Pick a minimal clade displayed on ψ that
contains at least one element of A and at least one element of D, and let v be its
MRCA. Let w1 and w2 be the children of v. Note that the minimality of the clade
implies one of the wi , say w1, has as its leaf descendants only elements of A, and
the other, say w2, has as its leaf descendants only elements of D. Also observe that
A� descX (v) is nonempty, since otherwise the leaf descendants of w1 would have to
be all of A, contradicting that A is not a clade on the tree. Similarly, D� descX (v) is
nonempty. These statements furthermore imply v is not the root of the tree, so it has
a parent u.

Choose a ∈ descX (w1) � A, b ∈ A� descX (v), and ∅ �= C = descX (w2) � D.
Let all edge lengths on ψ below v have positive length x ≈ 0, edge (u, v) have length
y � 0, and the remaining edges have anyfinite positive length. Then a gene tree arising
from the coalescent model will have probability ≈ 0 of displaying Sp(S ∪ {b} ∪ C)

for S ⊆ A′, since any displayed split of non-negligible probability with {B} ∪ Cg in a
partition set will with probability ≈ 1 contain all of descX (v), and hence A. Thus all
negative terms in Eq. (5) are negligible. On the other hand, there is a positive term in
that equation for P(Sp(descX (v))), which has value ≈ 1. Thus Eq. (5) does not hold.

Next we consider the case whenD is a clade displayed on ψ , but, by condition (2),
D has at least 3 elements.

We first consider a particular form for ψ , and will then reduce the general tree to
this form. To this end, suppose D = {d1, d2, d3} and ψ is the rooted caterpillar tree

(((. . . ((((d1, d2), d3), a), c1) . . .), cn), b)

with at least 5 taxa, A = {a, b, c1, . . . , cn} with n ≥ 0, a, b chosen as shown. Let
w = MRCA(D), and v its parent, so v is also the parent of a ∈ A. Let C = {d3}.
Choose all internal edge lengths of ψ to be x � 0, except for those below v which
we choose to be y ≈ 0. Then all rooted gene trees realizable with non-negligible
probability will be formed by Dg ∪ {A} coalescing into some rooted gene tree in the
branch above v, with this subtree then joining to the remaining taxa inA in a tree that
otherwise exactlymatches the caterpillar structure ofψ . Thus the event Sp(S∪{a}∪C)

is non-negligibly realizable only for S = ∅, by gene trees with the rooted subtree on
Dg ∪ {A} having {D3, A} as a clade. But the probability of this 2-clade forming is
≈ 4/18 = 2/9, since of the 18 ranked rooted trees on 4 taxa, four have any given
2-clade. On the other hand, the event Sp(S ∪ {b} ∪ C) is non-negligibly realizable
only for S = {c1, . . . cn}, by gene trees where the 4-taxon rooted subtree onDg ∪ {A}
has D3 as an outgroup. Such gene trees occur with probability 3/18 = 1/6. Thus the
invariant of Eq. (5) evaluates to ≈ 2/9 − 1/6, and is thus not zero.

Now for the general case, in whichD is a clade with 3 or more elements, by picking
some internal edges of ψ within the subtree on D to have lengths � 0 and ≈ 0 we
can ensure that with probability ≈ 1 that D coalesces into exactly 3 lineages by
MRCA(D). Similarly by picking edge lengths � 0 for those edges leading off of the
path between MRCA(D) and the root of ψ to groups of elements inA, we can ensure
with probability ≈ 1 that these groups have coalesced before reaching that path. Then
the argument above for the caterpillar tree applies with lineages for groups of taxa
replacing the individual ones. ��
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That condition (2) of the above lemma is necessary is shown by the following.

Proposition 4 Let ψ be a species tree topology on X , and X = A � D a disjoint
union of subsets with |D| = 2. Then if D is a clade on ψ , the polynomials defined for
A by Eq. (5) in Theorem 2 all vanish, regardless of whether A is a clade on ψ .

Proof Since D = {d1, d2}, the clade-induced split invariants for A in Eq. (5) require
that C be a singelton set, which we may assume is C = {d1}. Since D is a 2-clade, by
exchangeability of lineages under the coalescent implies

Pσ (Sp(S ∪ {a} ∪ {d1})) = Pσ (Sp(S ∪ {a} ∪ {d2}))
= Pσ (Sp(S̃ ∪ {b} ∪ {d1})),

where the last equality is obtained by taking the complementary split set. Thus Eq. (5)
holds, since terms cancel in pairs. ��

From Theorem 2, we obtain the following.

Corollary 2 Let ψ be a rooted binary species tree topology on at least 5 taxa X ,
where X = A �D is a disjoint union of subsets with |A|, |D| ≥ 2. IfA is not a clade
on ψ and D is not a 2-clade, then for generic choices of internal edge lengths λ (i.e.,
all except those in some set of measure zero) there exists some ∅ �= C � D, a, b ∈ A,
such that the corresponding clade-induced split invariant of Eq. (5) does not vanish
on the split probabilities arising under the multispecies coalescent on σ = (ψ, λ).

Proof The non-trivial split probabilities arising from the coalescent on σ can be
expressed as polynomials in the exp(−λi ). We can thus view the set of all vectors
of split probabilities as the image of (0, 1)n−2 under a polynomial map, which is
therefore a semi-algebraic set. By Lemma 2, there is an invariant which does not van-
ish at some point in this set, so the composition of the invariant with the polynomial
map is not identically zero on (0, 1)n−2. Since this composition is a polynomial, its
non-vanishing at a single point implies the set where it vanishes has measure zero in
(0, 1)n−2. Mapping this set to interior edge lengths by x = − log(X) shows the set of
edge lengths for which the invariant vanishes has measure zero. ��
Corollary 3 Let ψ be a rooted binary species tree topology on a set X of at least 5
taxa. For generic edge lengths λ, all clades on ψ excluding at least three taxa can
be identified by evaluating clade-induced split invariants on the probabilities of splits
under the multispecies coalescent on σ = (ψ, λ).

Clades on ψ excluding exactly two taxa can similarly be identified if their comple-
ment is not a 2-clade.

Proof For any subset of A � X excluding at least three taxa, if we find any invariant
given by Theorem 2 that fails to vanish on the split probabilities for σ = (ψ, λ), then
A is not a clade on ψ . If all such invariants vanish, then by Corollary 2, either A is a
clade on ψ , or λ lies in a set of measure zero (which is dependent on A, C, a, and b
used in defining the invariant).
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Fig. 3 For generic species tree edge lengths, split invariants can be used to determine rooted species tree
topologies, up to the 5 ambiguous cases shown here, as proved in Corollary 4

Thus, considering all such A, we can determine all clades excluding at least three
taxa, unless the edge lengths λ lie in a set of measure zero (the finite union of sets of
measure zero for each clade, each of which is a finite intersection of sets of measure
zero for each invariant for that clade).

Finally, suppose A excludes only two taxa, with complement D. Then for generic
edge lengths the non-vanishing of an appropriate invariant can detect whether D is a
2-clade. If it is not, then using this knowledge, the vanishing of all clade split invariants
associated with A will identify it as a clade. ��

We now are able to use split invariants to fully identify rooted species trees in some
cases, and find only 2 or 3 possible rootings in others. Although this result will be
strengthened in Theorem 3 below by also using some inequalities, equalities alone
lead to the following result.

Corollary 4 A binary rooted species tree topology can be identified from split proba-
bilities via the clade-induced split invariants of Eq. (5) for generic edge lengths on all
species trees on 5 or more taxa, except in the following cases of indeterminacy. Here
T denotes a rooted subtree on 3 or more taxa, which is identifiable, and lower case
letters denote other taxa.

1. ((T, a), b), ((T, b), a)

2. ((T, a), (b1, b2)), ((T, (b1, b2)), a)

3. ((T, (a1, a2)), (b1, b2)), ((T, (b1, b2)), (a1, a2)),
4. (((a, b), c), (d, e)), ((a, b), (c, (d, e))), ((a, b), (d, e)), c)
5. (((a, b), (c, d)), (e, f )), (((a, b), (e, f )), (c, d)), (((c, d), (e, f )), (a, b))

The various cases enumerated in the corollary are depicted in Fig. 3.

Proof Given all split probabilities computed from a species trees with generic edge
lengths, we may test every subset of X omitting 3 or more taxa to see if it is a clade
on ψ , using Corollary 3. We then form a list of all such clades (including trivial ones)
on ψ .

If two clades on this list form a bipartition ofX , then we have determined all clades
on ψ , hence its rooted topology.
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If no pair of clades on this list partition X , but we find three clades on the list that
do, denote them by A, B, and C with |A| ≥ |B| ≥ |C|. Since there are at least 5 taxa,
we cannot have |A| = 1. If |A| = 2 then |B| = 2, |C| = 1 or 2, yielding cases 4 and 5.
If |A| ≥ 3, then we know B∪C is not a clade, since otherwise it would have appeared
on the list, leading to a bipartition of X . Thus either A ∪ B or A ∪ C is a clade. Note
that |B| �= 1, else A would not omit at least 3 taxa. If |B| = 2, then we obtain cases
2, and c. If |B| ≥ 3, then A ∪ B is a clade, since A ∪ C and B ∪ C were not found
on the list. Since all subclades of A, B, and C appear in the list, all clades on ψ are
determined.

If there is no partition X into two or three clades on the list, then there must be one
with four, since if five or more were needed then the union of each pair would omit at
least 3 taxa and at least one such union is a detectable clade. Denote the four clades by
A, B, C, andD, with |A| ≥ |B| ≥ |C| ≥ |D|. We also must have |C| = |D| = 1, since
otherwise the union of each pair of sets would omit at least 3 taxa, and hence would
already have been tested for being a clade. It is now enough to determine the clade
structure formed by the union of these sets, since all subclades of them are already
known.

If |B| = 1, then |A| ≥ 2, and none of B ∪ C, B ∪ D, and C ∪ D are clades since
they omit at least 3 taxa and did not appear on the list of known clades. Thus the four
clades must form a rooted unbalanced 4-leaf tree with A in the cherry. We can then
use invariants to check which ofA∪B,A∪ C,A∪D is a clade, since we know their
complement is not a 2-clade. This results in case 1.

If |B| ≥ 2, then every pairwise union of the four clades except A ∪ B would have
been tested, soA∪B must be a clade. As C ∪D is not a clade, this also falls into case
1. ��

The identifiability results of Corollary 4 are based solely on the use of clade-induced
linear invariants, that is on certain linear equalities. Using other linear invariants and
inequalities, we can strengthen these results. For example, those trees in case 4 of
Corollary 4 can be distinguished by considering the sign (+/-) or vanishing (= 0) of
the linear invariant given below. Indeed, this linear expression in split invariants is
equivalent to that of the computationally determined expression (11), and the follow-
ing proposition gives a theoretical justification for its existence. However, this linear
invariant appears to be a special one for a single 5-taxon tree, with no analogs for other
trees.

Proposition 5 The expression

Pσ (Sp(ab)) + Pσ (Sp(ac)) + Pσ (Sp(bc))

−Pσ (Sp(de)) − Pσ (Sp(cd)) − Pσ (Sp(ce)) (12)

evaluates to 0 for the species tree (((a, b), (d, e)), c). Assuming all species tree
edge lengths are finite and positive, expression (12) is positive for the species tree
(((a, b), c), (d, e)) and negative for the species tree ((a, b), (c, (d, e))).

Proof For the species tree (((a, b), (d, e)), c), let e1 be the edge immediately above
MRCA(a, b), and e2 the edge above MRCA(d, e) in the species tree. To show expres-
sion (12) evaluates to 0, it is enough to show this conditioned on disjoint and exhaustive
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events. To this end, we compute (12) conditioned on whether coalescent events occur
on edges e1 and e2.

Given that no coalescence occurs on either e1 or e2, the probabilities of Sp(ab)
and Sp(de) are equal by exchangeability. Similarly, the other 4 split probabilities
appearing in formula (12) are all equal. Thus all terms cancel.

Given that coalescences occurs on both e1 and e2, then the probabilities of Sp(ab)
and Sp(de) are both 1. The other 4 probabilities are all 0, so again all terms cancel.

Assuming that a coalescent event occurred on exactly one of e1 and e2, without loss
of generality we may assume it is on e1. Then Sp(ab) has probability 1, while Sp(ac)
and Sp(bc) have probability 0. The next coalescent event produces the only other
non-trivial split of the gene tree, which must be one of Sp(CD), Sp(CE), Sp(DE).
Thus P(Sp(cd)) + P(Sp(ce)) + P(Sp(de)) = 1, and again we find the expression
gives 0.

For the species tree (((a, b), c), (d, e)), let e1 be the edge above MRCA(a, b), e2
that above MRCA(a, b, c), and e3 that above MRCA(d, e). We will again consider
disjoint exhaustive events, and show that conditioned on the number of coalescent
events on these edges expression (12) is always nonnegative, and sometimes positive.
Thus, the unconditioned expression is positive.

If there are exactly 2 coalescences on the edges e1, e2, then in the formation of a
gene tree a compound lineage ABC enters the population above the root, and exactly
one of Sp(AB), Sp(AC), Sp(BC) form. Moreover, Sp(DE) will be present on any
unrooted version of such a gene tree, and Sp(CD), Sp(CE) absent. Thus, in the
conditional probability, the first three terms of expression (12) sum to 1, and the last
three terms to −1, for a total of 0.

If there is exactly 1 coalescence on the edges e1, e2, then again exactly one
of Sp(AB), Sp(AC), Sp(BC) must form on a gene tree, and the sum of the
first three probabilities in (12) is 1. If Sp(AB) formed, then exactly one of
Sp(DE), Sp(CD), Sp(CE) forms, and the expression in (12) is zero. If Sp(AB) does
not form, say instead Sp(AC) does, then neither Sp(CD) nor Sp(CE) can appear on
any such gene tree, while Sp(DE) forms with probability less than 1 since e3 has
finite length. In this case, expression (12) is positive. Similarly, if Sp(BC) forms, then
the expression is positive.

If there are no coalescences on e1, e2, or e3, then all 5 lineages of the taxa arrive at
the root of the species tree distinct. Then by exchangeability one sees the probability
of every split Sp(xy) is the same, so the expression evaluates to 0.

If there are no coalescences on e1, e2, but there is one on e3, then Sp(DE) forms,
but not Sp(CD) nor Sp(CE). Thus the last three terms yield−1. As the lineages at the
root of the species tree will be A, B, C , and a combined DE , exactly one of Sp(AB),
Sp(AC), Sp(BC) forms, so the first three terms add to 1, and all terms cancel.

The claim for the species tree ((a, b), (c, (d, e))) follows by interchanging taxon
names from (((a, b), c), (d, e)). ��

The following proposition identifies species tree roots in case 1 of Corollary 4.

Proposition 6 Let X be a set of at least 5 taxa, a, b ∈ X , and T any rooted species
tree topology on X ′ = X�{a, b}. Let c ∈ X ′. Suppose ψ is one of the species
trees ((T, a), b), ((T, b), a), or (T, (a, b)), and σ = (ψ, λ) has positive length edges
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incident to the root. Then

P(Sp(ac)) − P(Sp(bc))

⎧
⎪⎨

⎪⎩

> 0 if and only if ψ = ((T, a), b),

= 0 if and only if ψ = (T, (a, b)),

< 0 if and only if ψ = ((T, b), a).

The intuition behind this proposition is rather simple. The polynomial P(Sp(ac))−
P(Sp(bc)) is a clade-induced split invariant for the tree (T, (a, b)), identifying by its
vanishing that ab is a clade. One might reasonably hope that the hyperplane defined
by this invariant’s vanishing separates collections of split probabilities for the two
alternative trees ((T, a), b)) and ((T, b), a)). That this is true is established by a
rather technical proof which appears in Appendix B section.

For case 2, we follow a similar tack, focusing on a split invariant for the clade ab1b2
on the tree (T, (a, (b1, b2)). The proof of the following is also in Appendix B section.

Proposition 7 LetX be a set of at least 6 taxa, a, b1, b2 ∈ X , and T any rooted species
tree topology on X ′ = X�{a, b1, b2}. Let c ∈ X ′. Suppose ψ is one of the species
trees ((T, a), (b1, b2)), ((T, (b1, b2)), a), or (T, (a, (b1, b2))), and σ = (ψ, λ) has
positive length edges incident to the root. Then

P(Sp(ac)) + P(Sp(ab2c)) − P(Sp(b1c)) − P(Sp(b1b2c))⎧
⎪⎨

⎪⎩

> 0 if and only if ψ = ((T, a), (b1, b2))

= 0 if and only if ψ = (T, (a, (b1, b2)))

< 0 if and only if ψ = ((T, (b1, b2)), a)

For case 3, we similarly have the following, also proved in the appendix section.

Proposition 8 Let X be a set of at least 7 taxa, a1, a2, b1, b2 ∈ X ,and T any
rooted species tree topology on X ′ = X�{a1, a2, b1, b2}. Let c ∈ χ ′. Suppose
ψ is one of the species trees ((T, (a1, a2)), (b1, b2)), ((T, (b1, b2)), (a1, a2)), or
(T, ((a1, a2), (b1, b2))), and σ = (ψ, λ) has positive length edges incident to the
root. Then,

P(Sp(a1c)) + P(Sp(a1a2c)) + P(Sp(a1b2c)) + P(Sp(a1a2b2c))

−P(Sp(b1c)) − P(Sp(b1a2c)) − P(Sp(b1b2c)) − P(Sp(b1a2b2c))⎧
⎪⎨

⎪⎩

> 0 if and only if ψ = (
(T, (a1, a2)), (b1, b2)

)

= 0 if and only if ψ = (
T, ((a1, a2), (b1, b2))

)

< 0 if and only if ψ = (
(T, (b1, b2)), (a1, a2)

)

We summarize these results with the following.

Theorem 3 For any species tree on 5 or more taxa with generic edge lengths, the
rooted species tree topology is identifiable from split probabilities by testing linear
equalities and inequalities, with the possible exception of case 5 of Corollary 4, the
6-taxon rooted trees with three 2-clades.
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Note thatwe do not claim that there do not exist linear inequalities that could be used
to identify the root in case 5, only that we have not found any among the candidates
we considered for this purpose. Moreover, nonlinear split invariants for those trees
might be useful for root identification, but they are of higher degree than we were able
to compute and remain unknown. While the practical import of this special case is
small, understanding it better is desirable nonetheless.
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A Greedy Split Consensus on 5-Taxon Trees: Proofs

Here we prove Propositions 2 and 3 from Sect. 3.
With X = {a, b, c, d, e}, there are 10 non-trivial splits, each with blocks of size

2 and 3. We use notation for split probabilities given in Example 1. Computations,
assisted by the software COAL (Degnan and Salter 2005), produce the formulas in
Table 2 for these split probabilities on the 3 species tree shapes, σbal, σpc, and σcat.

Proof of Proposition 2 Given the equalities of split probabilities in Table 2, we need
only show that sab, sde ≥ sac, sad , scd for each of the trees σbal and σps, for a total of
12 inequalities. Note that positive branch lengths imply 0 < X,Y, Z < 1.

Table 2 Split probabilities for gene trees arising on the 5-taxon species trees under the multispecies
coalescent model

σbal σpc

sab 1 − 2
15 XY

3Z − 2
3 X 1 − 1

45 XY Z6 − 1
9 XY − 2

3 X

sac, sbc − 2
15 XY

3Z + 1
3 X

1
30 XY Z6 − 1

6 XY + 1
3 X

sad , sae, sbd , sbe
1
30 XY

3Z + 1
6 XY Z − 1

45 XY Z6 + 2
9 XY

scd , sce
1
30 XY

3Z − 1
6 XY Z + 1

3Y Z 1
30 XY Z6 − 1

6 XY + 1
3Y

sde 1 + 1
5 XY

3Z − 1
3 XY Z − 2

3Y Z 1 − 1
45 XY Z6 − 1

9 XY − 2
3Y

σcat

sab 1 − 1
45 XY

3Z6 − 1
9 XY

3 − 2
3 X

sac, sbc − 1
45 XY

3Z6 − 1
9 XY

3 + 1
3 X

sad , sbd − 1
45 XY

3Z6 + 1
18 XY

3 + 1
6 XY

sae, sbe
1
30 XY

3Z6 + 1
6 XY

scd − 1
45 XY

3Z6 + 1
18 XY

3 − 1
6 XY + 1

3Y

sce
1
30 XY

3Z6 − 1
6 XY + 1

3Y

sde 1 + 1
30 XY

3Z6 + 1
6 XY

3 − 1
3 XY − 2

3Y
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While each of the inequalities can be checked without machine assistance, as an
example we use the software Maple to verify one of them: sde > scd for σbal. Note

sde − scd = 1 + 1

6
XY 3Z − 1

6
XY Z − Y Z .

The Maple command

solve({1+(1/6)*X*Yˆ3*Z-(1/6)*X*Y*Z-Y*Z>0,
0<X, 0<Y, 0<Z, X<1, Y<1, Z<1})

produces as output

{0<X, 0<Y, 0<Z, X<1, Y<1, Z<1}

verifying the claim. ��
Proof of Proposition 3 That sab > sxy for xy �= de can be verified as in the preceding
proof.

Suppose now that sde ≥ sab. Then since sab is larger than all the remaining split
probabilities by the above calculations, the true non-trivial splits on the species tree
have the highest probability, and greedy consensus for gene tree splits is consistent.

Now assume instead that sab > sde, so sab is the strict maximum of the split prob-
abilities. Under the greedy consensus algorithm, splits incompatible with Sp(ab) are
discarded and only the splits scd , sce, and sde remain as candidate splits for acceptance
by the algorithm.

It can be verified that sde > sce for all 0 < X,Y, Z < 1. However,

sde − scd = 1 + 1

18
XY 3Z6 + 1

9
XY 3 − 1

6
XY − Y = F(X,Y, Z)

can have either sign. If F(X,Y, Z) > 0, then greedy consensus will return the correct
species tree. If F(X,Y, Z) < 0, it will return the tree ((a, b), e, (c, d)). ��

B Identifiability of Trees: Additional Proofs

The proofs we give of Propositions 6, 7, and 8 depend on a careful analysis of prob-
abilities under the coalescent. That of Proposition 6 is the simplest, and serves as a
model for the others.

B.1 Proof of Proposition 6

The proof of Proposition 6 depends on several lemmas.
We begin with a definition. Consider a non-binary rooted species tree ((x1, x2, . . .

xk):L , y) formed by attaching a single outgroup taxon y to a claw tree with k taxa
xi , with edge length L > 0. Under the multispecies coalescent model we will be
interested in the case where the gene lineages, one for each xi , have coalesced � times,
from k to k − � lineages, by the time they reach the root of the tree, and then further
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coalescences occur with the y lineage in the root population, until a single tree is
formed. For A ⊂ X = {x1, x2, . . . xk, y}. We denote the probability that a resulting
gene tree displays a split Sp(Ag) as

p(A | k, �).

Note that this probability does not depend on branch lengths in the species tree,
since L > 0 and we have conditioned on �. Furthermore, since the xi lineages are
exchangeable under the coalescent model on this tree, p(A | k, �) actually depends
onA only through the number of xi ∈ A and whether y ∈ A, but not on the particular
xi ∈ A.

By an m-split, we mean a split of taxa where one block of the partition has size m.
We now give recursions and base cases for the probability of various 2-splits for the
above species tree.

Lemma 3 1. p(x1x2 | k, 0) = p(x1y | k, 0) for k ≥ 2,
2. p(x1x2 | 3, �) = p(x1y | 3, �) = 1

3 for � = 0, 1, 2,

3. p(x1y | k, 0) = 1
(k+1

2 )
+ (k−1

2 )

(k+1
2 )

p(x1y | k − 1, 0) for k ≥ 3,

4. p(x1x2 | k, �) = 1
(k2)

+ (k−2
2 )

(k2)
p(x1x2 | k − 1, � − 1), for k ≥ 4, k > � ≥ 1,

5. p(x1y | k, �) = (k−1
2 )

(k2)
p(x1y | k − 1, � − 1) for k ≥ 3, k > � ≥ 1.

Proof These all follow directly from properties of the coalescent model. We give
reasoning for several, leaving the rest to the reader.

For claim (1), observe no coalescent events occur below the root of the tree, so
exchangeability of lineages at the root implies the statement.

For claim (4), note that for the split Sp(X1X2) to form, the first coalescent event
must either be between the x1 and x2 lineages, which occurs with probability 1/

(k
2

)
, or

be between xi lineages with i �= 1, 2, which occurs with probability
(k−2

2

)
/
(k
2

)
, with

the split forming subsequently. ��
We next establish some probability bounds.

Lemma 4 For k ≥ 4, k > � ≥ 0, p(x1y | k, �) < 1
k .

Proof Lemma 3 (3) and (2) imply p(x1y | 4, 0) = 1
5 < 1

4 . For k > 4, � = 0, Lemma 3
(3) and an inductive hypothesis then show

p(x1y | k, 0) <
1

(k+1
2

) +
(k−1

2

)
(k+1

2

)
1

k − 1
= 1

k + 1
<

1

k
.

For � ≥ 1, first consider the case that k − � = 1, 2, or 3. The using Lemma 3 (5)
repeatedly and Lemma 3 (2) shows

p(x1y | k, �) =
(k−1

2

)
(k
2

)
(k−2

2

)
(k−1

2

) . . .

(3
2

)
(4
2

) p(x1y | 3, � − k + 3)
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= 6

k(k − 1)
· 1
3

= 2

k(k − 1)
<

1

k
.

If instead k − � ≥ 4, Lemma 3 (5) and what has already been established imply

p(x1y | k, �) =
(k−1

2

)
(k
2

)
(k−2

2

)
(k−1

2

) . . .

(k−�
2

)
(k−�+1

2

) p(x1y | k − �, 0)

≤ (k − �)(k − � − 1)

k(k − 1)

1

k − �
<

1

k
.

��
Next, we obtain a key inequality.

Lemma 5 For k = 3, � = 0, 1, 2 and for k > 3, � = 0,

p(x1x2 | k, �) − p(x1y | k, �) = 0.

For k ≥ 4 and k > � ≥ 1,

p(x1x2 | k, �) − p(x1y | k, �) > 0.

Proof For k = 3, � = 0, 1, 2 and for k > 3, � = 0, the claimed equalities follow from
Lemma 3 (2) and (1), respectively.

For the inequality when k ≥ 4, k > � ≥ 1, by Lemma 3 (4) and (5),

p(x1x2 | k, �) − p(x1y | k, �)
= 1

(k
2

)
(
1 +

(
k − 2

2

)
p(x1x2 | k − 1, � − 1) −

(
k − 1

2

)
p(x1y | k − 1, � − 1)

)

= 1
(k
2

)
(
1 +

(
k − 2

2

)(
p(x1x2 | k − 1, � − 1) − p(x1y | k − 1, � − 1)

)

− (k − 2)p(x1y | k − 1, � − 1)

)
. (13)

Using Lemma 3 (2) in Eq. (13) shows

p(x1x2 | 4, �) − p(x1y | 4, �) = 1

18
> 0

for � = 1, 2, 3, establishing the k = 4 case of the inequality.
For k > 4, by Lemma 3 (1) and Lemma 4 Eq. (13) yields

p(x1x2 | k, 1) − p(x1y | k, 1) >
1

(k
2

)
(
1 +

(
k − 2

2

)
0 − (k − 2)

1

k − 1

)
> 0.
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This shows the inequality holds for � = 1, and provides base cases for an inductive
proof for � ≥ 1.

Finally, Eq. (13), an inductive hypothesis, and Lemma 4 show that for � ≥ 2

p(x1x2 | k, �) − p(x1y | k, �) >
1

(k
2

)
(
1 +

(
k − 2

2

)
0 − (k − 2)

1

k − 1

)
> 0.

��
Proof of Proposition 6 That the equality holds for species tree (T, (a, b)) is an
instance of Theorem 2. It is enough to establish the inequality for ((T, a), b), since
that for ((T, b), a) will follow by interchanging taxon names.

On the species tree ((T, a), b), let v denote the MRCA of T and a. Observe that for
the splits Sp(AC) or Sp(BC) to form, it is necessary that the c lineage not coalesce
with any other below v. In any such realization of the coalescent process below v,
lineages from taxa on T will have coalesced to k − 1 lineages by v, where k ≥ 3.
There the lineage from a enters, and � coalescent events, k > � ≥ 0 occur on the edge
immediately ancestral to v.

To establish the inequality, we consider it conditioned on a number of disjoint and
exhaustive events: For each possible k, �, let C = C(k, �) denote the event that k − 1
agglomerated lineages from T reach v, one of which is the lineage from c alone, and
that � coalescent events occur in the population immediately ancestral to v. Fixing
C = C(k, �), with y = b, x1 = c, x2 = a we have

P(Sp(ac) | C) = p(x1x2 | k, �),
P(Sp(bc) | C) = p(x1y | k, �).

Lemma 5 thus shows P(Sp(ac | C) − P(Sp(bc | C)) is positive for k ≥ 4, k > � ≥ 1,
and zero for other relevant cases. Multiplying by the probabilities of each C = C(k, �)
and summing,weobtain the desired unconditioned expressionP(Sp(ac))−P(Sp(bc)).
Because T has at least three taxa, there are some positive summands from k ≥ 4, � ≥ 1,
so the desired inequality holds. ��

B.2 Proof of Proposition 7

While the proof of Proposition 7 follows the same line of reasoning as that of Proposi-
tion 6, there are further technical details. We first extend some of the results from the
previous section to splits of size 3. These will be applied in arguments for the species
tree ((T, (b1, b2)), a).

Lemma 6 1. p(A | k, 0) = p(B | k, 0) for |A| = |B|,
2. p(x1x2x3 | k, 0) = 3

(k+1
2 )

p(x1x2 | k−1, 0)+ (k−2
2 )

(k+1
2 )

p(x1x2x3 | k−1, 0) for k ≥ 4,

3. p(x1x2x3 | 3, �) = p(x1x2y | 3, �) = 1, for � = 0, 1, 2,
4. p(x1x2x3 | 4, �) = 1

2 p(x1x2 | 3, � − 1) for � = 1, 2, 3,
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5. p(x1x2x3 | k, �) = 3
(k2)

p(x1x2 | k − 1, � − 1) + (k−3
2 )

(k2)
p(x1x2x3 | k − 1, � − 1) for

k ≥ 5, k > � ≥ 1,

6. p(x1x2y | k, �) = 1
(k2)

p(x1y | k − 1, � − 1) + (k−2
2 )

(k2)
p(x1x2y | k − 1, � − 1) for

k ≥ 4, k > � ≥ 1.

Proof For claim (1), it suffices to note that k + 1 lineages enter the population above
the root, with no coalescent events having occurred below, so the probabilities of any
two m-splits are the same by exchangeability of lineages under the coalescent model.

For claim (2), again k + 1 lineages enter the root population, with no previous
coalescence. For Sp(X1X2X3) to form, the first coalescent event above the root must
be between a pair of lineages chosen from x1, x2, x3, or disjoint from them. It is
between a pair chosen from them with probability 3

(k+1
2 )

. Then, for Sp(X1X2X3) to

form, this pair’s lineage must join with the remaining xi lineage. By claim (1), this
has probability p(x1x2 | k − 1, 0). Multiplying these probabilities, we obtain the first
summand. The first coalescent event not involving any of the x1, x2, x3 lineages, and
then the desired split forming with 1 less lineage present gives the second summand.

The remaining verifications are left to the reader. ��
Lemma 7 For k ≥ 4, k > � ≥ 0,

p(x1y | k, �) + p(x1x2y | k, �) <
1

k − 2
.

Proof We first show the inequality for � = 0, by induction on k. From Lemmas 3
and 6, p(x1y | 4, 0) + p(x1x2y | 4, 0) = 2

5 , establishing the base case of k = 4.
If k ≥ 5, an inductive hypothesis, Lemma 3 (3), Lemma 6 (1) and (2), and Lemma 4

yield

p(x1y|k, 0) + p(x1x2y|k, 0)
= 1

(k+1
2

)
(
1 + (k + 1)p(x1y|k − 1, 0)

+
(
k − 2

2

)
(p(x1y|k − 1, 0) + p(x1x2y|k − 1, 0))

)

<
1

(k+1
2

)
(
1 + k + 1

k − 1
+

(
k − 2

2

)
1

k − 3

)
= k2 + k + 2

(k + 1)k(k − 1)
<

1

k − 2
.

Next observe that for � = 1, 2, 3, Lemmas 3 and 6 imply

p(x1y | 4, �) + p(x1x2y | 4, �) = 7

18
<

1

4 − 2
.

With the k = 4, � = 1, 2, 3 cases and the k ≥ 4, � = 0 cases already established, we
now proceed by induction on �. For k ≥ 5, k > � ≥ 1 by Lemma 3 (5), Lemma 6 (6),
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Lemma 4, and an inductive hypothesis,

p(x1y | k, �) + p(x1x2y | k, �)

=
(k−1

2

) + 1
(k
2

) p(x1y | k − 1, � − 1) +
(k−2

2

)
(k
2

) p(x1x2y | k − 1, � − 1)

= k − 1
(k
2

) p(x1y | k − 1, � − 1) +
(k−2

2

)
(k
2

) (p(x1y | k − 1, � − 1)

+p(x1x2y | k − 1, � − 1))

<
k − 1
(k
2

)
1

k − 1
+

(k−2
2

)
(k
2

)
1

k − 3
= 1

k − 1
<

1

k − 2
.

��
Lemma 8 Let

P(k, �) = p(x1x2 | k, �) + p(x1x2x3 | k, �) − p(x1y | k, �) − p(x1x2y | k, �).
Then for k = 4, � = 0, 1, 2, 3, and for k ≥ 5, � = 0, P(k, �) = 0. For k ≥ 5,
k > � ≥ 1, P(k, �) > 0.

Proof Note that for k = 4, the event Sp(x1x2) is the same as Sp(x3x4y), and
Sp(x1x2x3) is the same as Sp(x4y), so using exchangeability of the xi lineages we
have

p(x1x2 | 4, �) = p(x1x2y | 4, �),
p(x1x2x3 | k, �) = p(x1y | k, �).

Thus P(4, �) = 0 for � = 0, 1, 2, 3. For k ≥ 5, Lemma 6 (1) implies P(k, 0) = 0.
For k ≥ 5, � ≥ 1, by Lemmas 3 (4), (5) and 6 (5), (6), we find

P(k, �) = 1
(k
2

)
[
1 + (k − 2) (p(x1x2 | k − 1, � − 1) − p(x1y | k − 1, � − 1))

− (k − 2) (p(x1y | k − 1, � − 1) + p(x1x2y | k − 1, � − 1))

+ 2p(x1x2 | k − 1, � − 1) + p(x1x2y | k − 1, � − 1)

+
(
k − 3

2

)
P(k − 1, � − 1)

]
.

Using Lemmas 5 and 7, the nonnegativity of probabilities, and an inductive hypothesis
that P(k − 1, � − 1) ≥ 0, it follows that

P(k, �) >
1

(k
2

)
(
1 + (k − 2) · 0 − (k − 2)

1

k − 2
+ 2 · 0 + 0 +

(
k − 3

2

)
0

)
= 0.

��
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Lemma 9 Consider a species tree with topology ((T, (b1, b2)), a), where T is a sub-
tree on at least three taxa, one of which is c. Suppose the edge above (T, (b1, b2)) has
positive length. Then under the multispecies coalescent model,

P(Sp(ac)) + P(Sp(ab2c)) − P(Sp(b1c)) − P(Sp(b1b2c)) < 0.

Proof Let v denote the MRCA on the species tree of the taxa on T and the bi .
To establish the claimed inequality, it is enough to show it holds when conditioned

on whether b1 and b2 lineages have coalesced before reaching v or not. If they have
coalesced before v to form a single lineage, then the events Sp(ab2c) and Sp(b1c)
have probability zero. Thus using b for b1b2, we wish to show

P(Sp(ac)) − P(Sp(bc)) < 0.

This follows immediately from Proposition 6.
We henceforth condition on the two bi lineages being distinct at v. Noticing that

all four probabilities in the expression of interest are 0 if the c lineage coalesces with
any lineage below v, we further condition on the c lineage being distinct at v, where
there are thus k ≥ 4 lineages entering the population above v, and � coalescent events
occurring between v and the root.

Then, with C = C(k, �) denoting the events we condition on,

P(Sp(ac) | C) = p(x1y | k, �),
P(Sp(ab2c) | C) = p(x1x2y | k, �),
P(Sp(b1c) | C) = p(x1x2 | k, �),

P(Sp(b1b2c) | C) = p(x1x2x3 | k, �).

From Lemma 8 we find conditioned on C that the expression is strictly negative for
k ≥ 5, k > � ≥ 1, and zero for k ≥ 5, � = 0 and k = 4, � = 0, 1, 2, 3. Thus weighting
the conditioned expressions by the probabilities of the events C and summing, we see
the full expression is negative, as long as k ≥ 5 and � ≥ 1 is possible. Since T has at
least 3 taxa, this only requires that the edge above v has positive length. ��

To handle the species tree ((T, a), (b1, b2))we proceed analogously, but consider a
rooted species tree ((x1, x2, . . . xk):L , y1, y2) formed by attaching a trifurcating root
to two outgroups y1, y2 and a claw tree with k taxa, with a positive edge length L . We
will be interested in the case where the gene lineages, one for each xi , have coalesced
� times, from k to k − � lineages, by the time they reach the root of the tree, and then
further coalescence occurs in the root population until a single tree is formed. With
X = {x1, . . . xk, y1, y2} and A ⊂ X , let

r(A | k, �) = P(Sp(A) | k, �)

for this species tree.By exchangeability of lineages in the coalescentmodel, r(A | k, �)
depends on A only up to the number of xi and the number of yi it contains.
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The reader who has followed previous arguments should be able to verify the
following.

Lemma 10 1. r(A | k, 0) = r(B | k, 0) for |A| = |B|,
2. r(x1x2 | 3, 0) = 1

5 , r(x1x2 | 3, �) = 1
3 for � = 1, 2,

3. r(x1x2 | k, 0) = 1
(k+2

2 )
+ (k2)

(k+2
2 )

r(x1x2 | k − 1, 0) for k ≥ 3,

4. r(x1x2 | k, �) = 1
(k2)

+ (k−2
2 )

(k2)
r(x1x2 | k − 1, � − 1), for k ≥ 4, k > � ≥ 1,

5. r(x1y1 | 2, 0) = 1
3 , r(x1y1 | 2, 1) = 0,

6. r(x1y1 | k, �) = (k−1
2 )

(k2)
r(x1y1 | k − 1, � − 1) for k ≥ 3, k > � ≥ 1.

7. r(x1x2x3 | 4, �) = 1
2r(x1x2 | 3, � − 1) for � = 1, 2, 3,

8. r(x1x2x3 | k, �) = 3
(k2)

r(x1x2 | k − 1, � − 1) + (k−3
2 )

(k2)
r(x1x2x3 | k − 1, � − 1) for

k ≥ 5, k > � ≥ 1,
9. r(x1x2y1 | 2, 0) = r(x1x2y1 | 2, 1) = 1, r(x1x2y1 | 3, 1) = 1

9 , r(x1x2y1 |
3, 2) = 0,

10. r(x1x2y1 | k, 0) = 3
(k+2

2 )
r(x1x2 | k−1, 0)+ (k−1

2 )

(k+2
2 )

r(x1x2y1 | k−1, 0) for k ≥ 3,

11. r(x1x2y1 | k, �) = 1
(k2)

r(x1y1 | k − 1, � − 1) + (k−2
2 )

(k2)
r(x1x2y1 | k − 1, � − 1) for

k ≥ 4, k > � ≥ 1,
12. r(x1y1y2 | 2, 0) = r(x1y1y2 | 2, 1) = 1,

13. r(x1y1y2 | k, �) = (k−1
2 )

(k2)
r(x1y1y2 | k − 1, � − 1) for k ≥ 3, k > � ≥ 1.

Lemma 11 1. r(x1y1 | k, 0) ≤ 1
k+2 for k ≥ 3,

2. r(x1y1 | k, �) + r(x1y1y2 | k, �) < 1
k−1 if k ≥ 3 and � = 0, or if k ≥ 4 and

k > � ≥ 1.

Proof For claim (1) first note that Lemma 10 (1) and (2) establish the k = 3 case.
Then using Lemma 10 (3) one sees inductively that for k > 3,

r(x1y1 | k, 0) ≤ 1
(k+2

2

) +
(k
2

)
(k+2

2

)
1

k + 1
= k2 + k + 2

(k + 2)(k + 1)2

≤ (k + 1)2

(k + 2)(k + 1)2
= 1

k + 2
.

For claim (2) when � = 0, note that by Lemma 10 (1), (2), (5), (9), and (10),

r(x1y1 | 3, 0) + r(x1y1y2 | 3, 0) = 1

5
+ 3

10
· 1
3

+ 1

10
· 1 = 2

5
<

1

2
,

so the base case of k = 3 holds. Then for k > 3, using Lemma 10 (1), (3), and (10)
we have

r(x1y1 | k, 0) + r(x1y1y2 | k, 0)
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= 1
(k+2

2

) +
(k
2

) + 3
(k+2

2

) r(x1y1 | k − 1, 0) +
(k−1

2

)
(k+2

2

)r(x1y1y2 | k − 1, 0)

= 1
(k+2

2

) + k + 2
(k+2

2

) r(x1y1 | k − 1, 0)

+
(k−1

2

)
(k+2

2

)
(
r(x1y1 | k − 1, 0) + r(x1y1y2 | k − 1, 0)

)
.

Using an inductive hypothesis and claim (1) of this proposition yields

r(x1y1 | k, 0) + r(x1y1y2 | k, 0)
<

2

(k + 2)(k + 1)
+ 2

k + 1
· 1

k + 1
+ (k − 1)(k − 2)

(k + 2)(k + 1)
· 1

k − 2

= 1

k + 2
+ 2

(k + 1)2
<

1

k + 1
+ 2

(k + 1)2
<

1

k − 1
.

Assume now k ≥ 4 and k > � ≥ 1, and consider first the case that k − � = 1 or 2.
Applying Lemma 10 (6) and (13) repeatedly, we have

r(x1y1 | k, �) + r(x1y1y2 | k, �)
= 3

(k
2

)
(
r(x1y1 | 3, � − k + 3) + r(x1y1y2 | 3, � − k + 3)

)
.

From Lemma 10

r(x1y1 | 3, 1) + r(x1y1y2 | 3, 1) = 1

9
+ 1

3
= 4

9
,

r(x1y1 | 3, 2) + r(x1y1y2 | 3, 2) = 0 + 1

3
= 1

3
,

so for k ≥ 4,

r(x1y1 | k, �) + r(x1y1y2 | k, �) <
6

k(k − 1)
· 4
9

<
1

k − 1
.

If k − � ≥ 3, then applying Lemma 10 (6) and (13) repeatedly gives

r(x1y1 | k, �)+r(x1y1y2 | k, �)=
(k−�

2

)
(k
2

) (r(x1y1 | k−�, 0)+r(x1y1y2 | k − �, 0)) .

Using what we proved above, this shows
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r(x1y1 | k, �) + r(x1y1y2 | k, �) <

(k−�
2

)
(k
2

) · 1

k − � − 1
<

1

k − 1
.

��
Lemma 12 Let

R(k, �) = r(x1x2 | k, �) + r(x1x2y1 | k, �) − r(x1y1 | k, �) − r(x1y1y2 | k, �).

Then for k = 3, � = 0, 1, 2, and for k ≥ 4, � = 0, R(k, �) = 0. For k ≥ 4 and
k > � ≥ 1, R(k, �) > 0.

Proof For k = 3, the events Sp(x1x2) and Sp(x3y1y2) are the same, as are Sp(x1x2y1)
and Sp(x3y2), so using exchangeability of the xi and of the yi lineages

r(x1x2 | k, �) = r(x1y1y2 | k, �),
r(x1x2y1 | k, �) = r(x1y1 | k, �).

Thus R(3, �) = 0 for � = 0, 1, 2. For k ≥ 3, Lemma 10 (1) implies R(k, 0) = 0.
Now consider k ≥ 4, k > � ≥ 1. By Lemma 10 (4), (6), (11), and (13) we find

R(k, l) = 1
(k
2

)
(
1 + r(x1y1 | k − 1, � − 1) +

(
k − 2

2

)
R(k − 1, � − 1)

−(k − 2)
(
r(x1y1 | k − 1, � − 1) + r(x1y1y2 | k − 1, � − 1)

))
.

An inductive hypothesis that R(k − 1, � − 1) ≥ 0, Lemma 11, and the positivity of
r(x1y1 | k − 1, � − 1) then show

R(k, l) >
1

(k
2

)
(
1 + 0 +

(
k − 2

2

)
0 − (k − 2)

1

k − 2

)
= 0.

��
Lemma 13 Consider a species tree with topology ((T, a), (b1, b2)), where T is a
subtree on at least three taxa, one of which is c. Suppose the edge above (T, a) has
positive length. Then under the multispecies coalescent model,

P(Sp(ac)) + P(Sp(ab2c)) − P(Sp(b1c)) − P(Sp(b1b2c)) > 0.

Proof Let ρ denote the root of the species tree, and v the MRCA of the taxa on T and
a.

To establish the claimed inequality, it is enough to show it holds when conditioned
onwhether the b1 and b2 lineages have coalesced before reaching ρ or not. If they have
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coalesced below ρ to form a single lineage, then the events Sp(ab2c) and Sp(b1c)
have probability zero. Thus using b for b1b2, we wish to show

P(Sp(ac)) − P(Sp(bc)) > 0.

This follows immediately from Proposition 6.
We henceforth condition on the event that the lineages from b1 and b2 are distinct

at ρ. Noticing that all four probabilities in the expression of interest are 0 if the c
lineage coalesces with any lineage below v, we further condition on the event that the
c lineage is distinct at v, so there are k ≥ 3 distinct lineages at v, and that � coalescent
events occur on the edge above v. Calling this event C = C(k, �),

P(Sp(ac) | C) = r(x1x2 | k, �),
P(Sp(ab2c) | C) = r(x1x2y1 | k, �),
P(Sp(b1c) | C) = r(x1y1 | k, �),

P(Sp(b1b2c) | C) = r(x1y1y2 | k, �).

From Lemma 12 we find that conditioned on C the expression of interest is strictly
positive for k ≥ 4, k > � ≥ 1, and zero for k = 3, � = 0, 1, 2 and k ≥ 4, � = 0.
Weighting the conditioned expressions by the probabilities of the C and summing we
get the unconditioned expression. Since T has at least 3 taxa and the branch length
above v has positive length, some of the summands corresponds to the event C(k, �)
with k ≥ 4, k > � ≥ 1; thus the full expression is positive. ��

Finally, Proposition 7 follows from Theorem 2, Lemmas 9 and 13.

B.3 Proof of Proposition 8

To establish Proposition 8, we first extend the results of Lemma 10, and those that
follow it, to splits of size 4.

A proof of the following is left to the reader.

Lemma 14 1. r(x1x2x3y1 | 3, 0) = 1,

2. r(x1x2x3y1 | k, 0) = 6
(k+2

2 )
r(x1x2y1 | k − 1, 0) + (k−2

2 )

(k+2
2 )

r(x1x2x3y1 | k − 1, 0) for

k ≥ 4,
3. r(x1x2x3y1 | 4, �) = 1

2r(x1x2y1 | 3, � − 1) for � = 1, 2, 3,

4. r(x1x2x3y1 | k, �) = 3
(k2)

r(x1x2y1 | k−1, �−1)+ (k−3
2 )

(k2)
r(x1x2x3y1 | k−1, �−1)

for k ≥ 5, k > � ≥ 1,
5. r(x1x2y1y2 | 3, �) = 1 for � = 0, 1, 2,

6. r(x1x2y1y2 | k, �) = 1
(k2)

r(x1y1y2 | k−1, �−1)+ (k−2
2 )

(k2)
r(x1x2y1y2 | k−1, �−1)

for k ≥ 4, k > � ≥ 1,
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Lemma 15 Let U (k, �) =

r(x1y1 | k, �) + r(x1x2y1 | k, �) + r(x1y1y2 | k, �) + r(x1x2y1y2 | k, �).

Then U (k, �) < 1
k−2 for k ≥ 4, k > � ≥ 0.

Proof We first take up the case that � = 0, and observe by Lemmas 10 and 14 that for
k ≥ 4,

U (k, 0) = 1
(k+2

2

)
(
1 + (2k + 3) (r(x1y1 | k − 1, 0) + r(x1y1y2 | k − 1, 0))

− r(x1y1y2 | k − 1, 0) +
(
k − 2

2

)
U (k − 1, 0)

)
.

Since

U (3, 0) = 1

5
+ 1

5
+ 1

5
+ 1 = 8

5
,

we see

U (4, 0) = 1

15

(
1 + 11

(
1

5
+ 1

5

)
− 1

5
+ 1 · 8

5

)
= 34

75
<

1

4 − 2
,

establishing the k = 4, � = 0 case. Proceeding inductively for k ≥ 5, and using
Lemma 11 (2), we have

U (k, 0) <
1

(k+2
2

)
(
1 + (2k + 3)

1

k − 2
− 0 +

(
k − 2

2

)
1

k − 3

)

= k2 + 2k + 6

k2 + 3k + 2
· 1

k − 2
<

1

k − 2
.

For � > 0, if k ≥ 4, k > � ≥ 1, Lemmas 10 and 14 show

U (k, �) = 1
(k
2

)
((

k − 2

2

)
U (k − 1, � − 1)

+(k − 1) (r(x1y1 | k − 1, � − 1) + r(x1y1y2 | k − 1, � − 1))

)
. (14)

In particular, since

U (3, 1) = 1

9
+ 1

9
+ 1

3
+ 1 = 14

9
,

U (3, 2) = 0 + 0 + 1

3
+ 1 = 4

3
,
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then

U (4, 1) = 1

6

(
8

5
+ 3

(
1

5
+ 1

5

))
= 7

15
<

1

4 − 2
,

U (4, 2) = 1

6

(
14

9
+ 3

(
1

9
+ 1

3

))
= 13

27
<

1

4 − 2
,

U (4, 3) = 1

6

(
4

3
+ 3

(
0 + 1

3

))
= 7

18
<

1

4 − 2
,

providing, along with the cases with � = 0, the base cases for induction. Now for
k ≥ 5, k > � ≥ 1, we see from Eq. (14), Lemma 11 (2), and an inductive hypothesis
that

U (k, �) <
1

(k
2

)
((

k − 2

2

)
1

k − 3
+ (k − 1)

1

k − 2

)

= k2 − 2k + 2

k(k − 1)(k − 2)
<

1

k − 2
.

��
Lemma 16 Let

S(k, �) = r(x1x2 | k, �) + r(x1x2x3 | k, �) + r(x1x2x3y1 | k, �)
− r(x1y1 | k, �) − r(x1y1y2 | k, �) − r(x1x2y1y2 | k, �).

Then for k = 4, � = 0, 1, 2, 3 and for k ≥ 5, � = 0, S(k, �) = 0. For k ≥ 5,
k > � ≥ 1, S(k, �) > 0.

Proof Since for k = 4, the events Sp(x1x2) = Sp(x3x4y1y2), Sp(x1x2x3) =
Sp(x4y1y2), and Sp(x1x2x3y1) = Sp(x4y2), so using exchangeability of the xi and
of the yi lineages we have

r(x1x2 | 4, �) = r(x1x2y1y2 | 4, �),
r(x1x2x3 | 4, �) = r(x1y1y2 | 4, �),

r(x1x2x3y1 | 4, �) = r(x1y1 | 4, �),

so S(4, �) = 0 for � = 0, 1, 2, 3. For k ≥ 5, Lemma 10 (1) implies S(k, 0) = 0.
For k ≥ 5, k > � ≥ 1, using Lemmas 10 and 14 we find

S(k, �) = 1
(k
2

)
((

k−3

2

)
S(k−1, �−1) − (k−3)U (k − 1, � − 1) + kR(k − 1, � − 1)

+ 1 + 2r(x1y1 | k − 1, � − 1) + r(x1y1y2 | k − 1, � − 1))

)
.
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Using an inductive hypothesis, Lemmas 15, and 12 and nonnegativity of probabilities,
this implies

S(k, �) >
1

(k
2

)
((

k − 3

2

)
· 0 − (k − 3)

1

k − 3
+ k · 0 + 1 + 2 · 0 + 0

)
= 0.

��
Proof of Proposition 8 On the species tree ((T, (a1, a2)), (b1, b2)) let ρ denote the
root, v the MRCA of the taxa on T and the ai , and let c be a taxon on T . We first show
that since the edge above v has positive length, then

P(Sp(a1c)) + P(Sp(a1a2c)) + P(Sp(a1b2c)) + P(Sp(a1a2b2c))

−P(Sp(b1c)) − P(Sp(b1a2c)) − P(Sp(b1b2c)) − P(Sp(b1a2b2c)) > 0. (15)

To establish this, it is enough to show it holds when conditioned on whether or
not the a1 and a2 lineages have coalesced before reaching v, and whether or not the
b1 and b2 lineages have coalesced before reaching ρ. If both pairs have coalesced in
this way, then the events Sp(a1c), Sp(a1b2c), Sp(a1a2b2c), Sp(b1c), Sp(b1a2c), and
Sp(b1a2b2c) all have probability zero. Using a for a1a2 and b for b1b2, we need only
show

P(Sp(ac)) − P(Sp(bc)) > 0.

This follows immediately from Proposition 6. Similarly, the cases in which exactly
one of the pairs of a1, a2 lineages or b1, b2 lineages have coalesced in the population
immediately ancestral to their respective MRCAs follow from Proposition 7.

We henceforth condition on the event that the ai lineages are distinct at v and the
bi lineages are distinct at ρ. Noticing that all eight probabilities in the expression of
interest are 0 if the c lineage coalesces with any lineage below v, we further condition
on the c lineage being distinct at v (so there are k ≥ 4 lineages in total entering the
population above v) and � coalescent events occur between v and ρ.

Then, with C = C(k, �) denoting the event that these conditioning requirements are
met,

P(Sp(a1c) | C) = r(x1x2 | k, �),
P(Sp(a1a2c) | C) = r(x1x2x3 | k, �),
P(Sp(a1b2c) | C) = r(x1x2y1 | k, �),

P(Sp(a1a2b2c) | C) = r(x1x2x3y1 | k, �),
P(Sp(b1c) | C) = r(x1y1 | k, �),

P(Sp(b1a2c) | C) = r(x1x2y1 | k, �),
P(Sp(b1b2c) | C) = r(x1y1y2 | k, �),

P(Sp(b1a2b2c) | C) = r(x1x2y1y2 | k, �).
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After substituting these in to the expression in (15), from Lemma 16 we see that
when conditioned on C it is strictly positive for k ≥ 5, k ≥ � ≥ 1 and zero for k = 4,
� = 0, 1, 2, 3 and for k ≥ 5, � = 0. Thus weighting the conditioned expressions by the
probabilities of the C and summing over all relevant k and �, we see the unconditioned
inequality (15) holds since T has at least 3 taxa so summands with k ≥ 5, � ≥ 1 are
present.

Interchanging the ai and bi in inequality (15) shows the negativity of the
expression on the tree ((T, (b1, b2)), (a1, a2)). Since its vanishing on the tree
(T, ((a1, a2), (b1, b2))) was shown in Theorem 2, the proof is complete. ��
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