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A SEMIALGEBRAIC DESCRIPTION OF THE GENERAL MARKOV
MODEL ON PHYLOGENETIC TREES∗
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Abstract. Many of the stochastic models used in inference of phylogenetic trees from biological
sequence data have polynomial parameterization maps. The image of such a map—the collection of
joint distributions for all parameter choices—forms the model space. Since the parameterization is
polynomial, the Zariski closure of the model space is an algebraic variety which is typically much
larger than the model space but amenable to study with algebraic methods. Of practical interest,
however, is not the full variety but the subset formed by the model space. Here we develop complete
semialgebraic descriptions of the model space arising from the k-state general Markov model on
a tree, with slightly restricted parameters. Our approach depends upon both recently formulated
analogues of Cayley’s hyperdeterminant and on the construction of certain quadratic forms from the
joint distribution whose positive (semi)definiteness encodes information about parameter values.
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1. Introduction. Statistical inference of evolutionary relationships among or-
ganisms from DNA sequence data is routinely performed using probabilistic models
of sequence evolution along a tree. A site in a sequence is viewed as a 4-state (A,C,G,
T) random variable, which undergoes state changes as it descends along the tree from
an ancestral organism to its modern descendants. Such models exhibit a rich mathe-
matical structure, which reflects both the combinatorial features of the tree and the
algebraic way in which stochastic matrices associated to edges of the tree are com-
bined to produce a joint probability distribution describing sequences of the extant
organisms.

One thread in the literature on such models has utilized the viewpoint of algebraic
geometry to understand the probability distributions that may arise. This is natural,
since the distributions are in the image of a polynomial map, and the image thus
lies in an algebraic variety. The defining equations of this variety (which depend on
the tree topology) are called phylogenetic invariants. That a probability distribution
satisfies them can be taken as evidence that it arose from sequence evolution along the
particular tree. Phylogenetic invariants and varieties have been extensively studied by
many authors [11, 23, 15, 19, 18, 2, 29, 6, 10, 25, 9] (see [5] for more references) with
goals ranging from biological (improving data analysis) to statistical (establishing the
identifiability of model parameters) to purely mathematical.

However, it has long been understood that, in addition to the equalities of phylo-
genetic invariants, inequalities should play a role in characterizing those distributions
of interest for statistical purposes. Much of a phylogenetic variety is typically com-
posed of points not arising from stochastic parameters but rather from applying the
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same polynomial parameterization to complex parameters. Thus the model space—
the set of probability distributions arising as the image of stochastic parameters on a
tree—can be considerably smaller than the set of all probability distributions on the
variety. A recent computation [32] demonstrated that for the 2-state general Markov
model on the 3-leaf tree, for example, the model space is only about 8% of the non-
negative real points on the variety. Inequalities can thus be crucial in determining if
a probability distribution arises from a model.

In the pioneering 1987 paper of Cavender and Felsenstein [11], polynomial equal-
ities and inequalities are given that can test which of the 3 possible unrooted leaf-
labeled 4-leaf trees might have produced a given probability distribution, and thus
in principle determine evolutionary relationships between 4 organisms. Despite many
advances in understanding phylogenetic invariants in the intervening years, little has
been accomplished in finding or understanding the necessary inequalities. The poten-
tial usefulness of such inequalities, meanwhile, has been demonstrated in [16], where
an inequality that holds for the 2-state model on all tree topologies plays a key role
in studying loss of biodiversity under species extinction. In [7] a small number of in-
equalities, dependent on the tree, were used to show that for certain mixture models
trees were identifiable from probability distributions.

Recent independent works by Zwiernik and Smith [32] and by Klaere and Lieb-
scher [20] provided the first substantial progress on the general problem of finding
sufficient inequalities to describe the model space. Both groups successfully formu-
lated inequalities for the 2-state general Markov model on trees, using different view-
points. While the 2-state model has some applicability to DNA sequences, through a
purine/pyrimidine encoding of nucleotides, it is not clear how to extend these methods
to more general k-state models, or even to the k = 4 state model directly applicable
to DNA sequences.

In this work we provide a novel approach to understanding the model space of the
general Markov model on trees which has the advantage of extending from the 2-state
to the k-state model with little modification. Our goal is a semialgebraic description
(given by a boolean combination of polynomial equalities and inequalities) of the set
of probability distributions that arise on a specific tree. Such a description exists by
the Tarski–Seidenberg theorem [31, 26], since the stochastic parameter space for any
k-state general Markov model is a semialgebraic set, so its image under the polynomial
parameterization must be as well. However, we seek an explicit description, and the
Tarski–Seidenberg theorem does not provide a useful means of obtaining it.

Our method for obtaining a semialgebraic model description applies equally easily
for all k and all trees. We obtain inequalities using a recently formulated analogue
of Cayley’s 2 × 2 × 2 hyperdeterminant from [1], and the construction of certain
quadratic forms from the joint distribution whose positive (semi)definiteness encodes
information about parameter values. Using Sylvester’s classic theorem about the
minors of real symmetric matrices defining such quadratic forms, we give the explicit
semialgebraic description.

To prove our results for general k, we must impose some restrictions on the
set of parameters under consideration and thus formulate a notion of nonsingular
parameters. In the k = 2 case, this notion is particularly natural from a statistical
point of view, as it expresses independence of certain subsets of variables. For any
k, nonsingular parameters allow the use of natural GL(k,C) actions on probability
distributions, which is fundamental to our techniques.

There is yet another method for obtaining a partial semialgebraic description
of the general Markov model on trees, using Sturm sequences. From a probability
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distribution P , it is possible to construct matrices which—if P is in the image of the
Markov parameterization on a tree T—are diagonalizable with eigenvalues equal to
some of the numerical parameters. Using Sturm theory, one can then test that these
parameters are actually probabilities, i.e., if they lie in the interval (0, 1). Indeed,
the Sturm approach can produce polynomial inequalities of smaller degree than the
quadratic form approach introduced here. While this may have practical advantages
(since the distributions arising on phylogenetic trees have very small entries with
many sampling zeroes and numerical error is a real problem in polynomial evaluation
at this magnitude), we do not develop the method here.

This paper is organized as follows: In section 2 we formally introduce the general
Markov model on trees and set basic notations and terminology, including the notion
of nonsingular parameters. In section 3, we give a semialgebraic description of the
general Markov model on the 3-leaf tree using the work of [1] and Sylvester’s theorem
on quadratic forms. In section 4, we give the main result: a semialgebraic description
of the k-state general Markov model on n-leaf trees for nonsingular parameters. For
the 2-state model, we prove a stronger result, dropping the nonsingularity assumption.

2. Definitions and notations.

2.1. The general Markov model on trees. We review the k-state general
Markov model on trees, GM(k), whose parameters consist of a combinatorial object,
a tree, and a collection of numerical parameters that are associated to a rooted version
of the tree. Let T = (V,E) be a binary tree with leaves L ⊆ V , |L| = n, and {Xa}a∈V

a collection of discrete random variables associated to the nodes, all with state space
[k] = {1, 2, . . . , k}. Distinguish an internal node r of T to serve as its root, and direct
all edges of T away from r. Though necessary for parameterizing the model, the
choice of r will not matter in our final results, as will be shown in section 4.

For a tree T rooted at r, numerical parameters {π, {Me}e∈E} for the GM(k)
model on T are:

(i) A root distribution row vector π = (π1, . . . , πk) with nonnegative entries
summing to 1;

(ii) Markov matrices Me, of size k × k with nonnegative entries and row sums
equal to 1.

The vector π specifies the distribution of the random variable Xr, i.e., πi =
Prob(Xr = i), and the Markov matrices Me for e = (ae, be) ∈ E give transition
probabilities Me(i, j) = Prob(Xbe = j | Xae = i) of the various state changes in
passing from the parent vertex ae to the child vertex be. Letting X = (Xa)a∈V and
j ∈ [k]|V |, the joint probability distribution at all nodes of T is thus

Prob(X = j) = πjr
∏
e∈E

Me(jae , jbe).

By marginalizing over all variables at internal nodes of T , we obtain the joint distri-
bution, P , of states at the leaves of T ; if k ∈ [k]|L| is an assignment of states to leaf
variables, then

P (k) =
∑

m∈[k]|V �L|
Prob(X = (k,m)),

where (k,m) is an assignment of states to all the vertices of T compatible with k. It
is natural to view P as an n-dimensional k × · · · × k array, or tensor, with one index
for each leaf of the tree.
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For fixed T and choice of r, we use ψT to denote the parameterization map

ψT : {π, {Me}e∈E} �→ P.

That the coordinate functions of ψT are polynomial is apparent, and essential to our
work here. Note that we may naturally extend the domain of the polynomial map to
larger sets, by dropping the nonnegativity assumptions in (i) and (ii) but retaining
the condition that rows must sum to 1. We will consider real parameters and a real
parameterization map, as well as complex parameters and a complex parameterization
map. In contrast, we refer to the original probabilistic model as having stochastic
parameters. Since the parameterization maps are all given by the same formula, we
use ψT to denote them all, but will always indicate the current domain of interest.

The image of complex, real, or stochastic parameters under ψT is an n-dimensional
k×· · ·×k tensor, whose kn entries sum to 1. When parameters are not stochastic, this
tensor generally does not specify a probability distribution, as there can be negative
or complex entries. We refer to any tensor whose entries sum to 1, regardless of
whether the entries are complex, real, or nonnegative, as a distribution, but reserve
the term probability distribution for a nonnegative distribution. With this language,
the image of complex parameters under ψT is a distribution, but may or may not
be a probability distribution. Similarly, while the matrix parameters Me have rows
summing to one even for complex parameters, we reserve the term Markov matrix
exclusively for the stochastic setting.

2.2. Algebraic and semialgebraic model descriptions. Most previous al-
gebraic analysis of the GM(k) model has focused on the algebraic variety associated
to it for each choice of tree T . With this viewpoint one is essentially passing from the
parameterization of the model, as given above, to an implicit description of the image
of the parameterization as a zero set of certain polynomial functions, traditionally
called phylogenetic invariants [11, 23, 5].

Whether one considers stochastic, real, or complex parameters, the collection
of phylogenetic invariants for GM(k) on a tree T are the same. Thus they cannot
distinguish probability distributions that arise from stochastic parameters from those
arising from nonstochastic real or complex ones. To complicate matters further, there
exist distributions that satisfy all phylogenetic invariants for the model on a given tree
but are not even in the image of complex parameters. Though the algebraic issues
behind this are well understood, they prevent classical algebraic geometry from being
a sufficient tool to focus exclusively on the distributions of statistical interest.

To gain a more detailed understanding, we seek to refine the algebraic description
of the model given by phylogenetic invariants into a semialgebraic description: to do
this, we must supplement the polynomial equations holding on a superset of the image
with polynomial inequalities sufficient to distinguish the stochastic image precisely.

Recall that a subset of Rn is called a semialgebraic set if it is a boolean combi-
nation (finite intersections and unions) of sets each of which is defined by a single
polynomial equality or inequality. The Tarski–Seidenberg theorem [31, 26] implies
that the image of a semialgebraic set under a polynomial map is also semialgebraic.
Since for all T the stochastic parameter space of ψT is clearly semialgebraic, this
implies that semialgebraic descriptions exist for the images of the ψT . Determining
such descriptions explicitly is our goal.

2.3. Nonsingular parameters, positivity, and independence. Some of our
results will be stated with additional mild conditions placed on the allowed parameters
for the GM(k) model. We state these conditions here and explore their meaning.
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Definition 2.1. A choice {π, {Me}e∈E} of stochastic, real, or complex parame-
ters for GM(k) on a tree T with root r is said to be nonsingular provided

(i) at every (hidden or observed) node a, the marginal distribution va of Xa

has no zero entry, and
(ii) for every edge e, the matrix Me is nonsingular.

Parameters which are not nonsingular are said to be singular.
For stochastic parameters, the first condition in this definition can be replaced

with a simpler one:
(i′) the root distribution π has no zero entry.

Statement (i) follows from (i′) and (ii) inductively, since if all entries of va are positive
and M(a,b) is a nonsingular Markov matrix, then the distribution vb = vaM(a,b) at a
child b of a has positive entries. However, for complex or real parameters requirement
(i) is not implied by (i′) and (ii), as a simple example shows:

(2.1) va = (1/2, 1/2) and M(a,b) =

(
s 1− s

2− s s− 1

)

are singular parameters since vb = (1, 0), even though va has no zero entries and
M(a,b) is a nonsingular for s �= 1.

It is also natural to require that all numerical parameters of GM(k) on a tree
T be strictly positive. This means that all states may occur at the root, and every
state change is possible in passing along any edge of the tree. This assumption is
plausible from a modeling point of view and can be desirable for technical statistical
issues as well. Note that positivity of parameters does not ensure nonsingularity,
since a Markov matrix may be singular despite all its entries being greater than zero.
Similarly, nonsingularity of parameters does not ensure positivity since a nonsingular
Markov matrix may have zero entries.

Given a joint probability distribution of random variables, two subsets of vari-
ables are independent when the marginal distribution for the union of the sets is the
product of the marginal distributions for the two sets individually. We also use this
term, in a nonstandard way, to apply to complex or real distributions when the same
factorization holds.

To illustrate this usage, consider a tree T with two nodes, r, a, and one edge
(r, a). For complex parameters π and M(r,a), the joint distribution of Xr and Xa is
given by the matrix

P = diag(π)M(r,a).

Then the variables are independent exactly when P is a rank 1 matrix: P = πTva.
For k = 2 this occurs precisely when the parameters are singular. For k > 2, however,
independence implies that the parameters are singular, but not vice versa. In general,
singular parameters ensure that P has rank strictly less than k, but not that P has
rank 1. These comments easily extend to larger trees to give the following.

Proposition 2.2. Suppose P = ψT (π, {Me}) for a choice of complex GM(k)
parameters on an n-leaf tree T . If the parameters are nonsingular, then there is no
proper partition of the indices of P into independent sets. For k = 2, the converse
also holds.

That the converse is false for k > 2 is a complicating factor for the generalization
of our results from the k = 2 case. Indeed, this is the reason we ultimately restrict
to nonsingular parameters, avoiding a detailed analysis for all intermediate ranks
1 < rank(P ) < k.
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In closing this section, we note that for any P ∈ Im(ψT ), there is an inherent
and well-understood source of nonuniqueness of parameters giving rise to P , some-
times called “label-swapping.” Since internal nodes of T are unobservable variables,
the distribution P is computed by summing over all assignments of states to such
variables. As a result, if the state names were permuted for such a variable, and
corresponding changes made in numerical parameters, P would be left unchanged.
At best, parameters leading to P can be determined only up to such permutations.

In the case of nonsingular parameters, label-swapping is the only source of non-
uniqueness of parameters leading to P [13]. (See also [22].) This uniqueness result is
used repeatedly in subsequent results. In contrast, for singular parameters there are
additional sources of nonuniqueness beyond label-swapping.

2.4. Marginalizations, slices, group actions, and flattenings. Viewing
probability distributions on n variables as n-dimensional tensors gives natural as-
sociations between statistical notions and tensor operations. For example, summing
tensor entries over an index, or a collection of indices, corresponds to marginalizing
over a variable, or collection of variables. Considering only those entries with a fixed
value of an index, or collection of indices, corresponds (after renormalization) to con-
ditioning on an observed variable, or collection of variables. Rearranging array entries
into a new array, with fewer dimensions but larger size, corresponds to agglomerating
several variables into a composite one with a larger state space. Here we introduce
the necessary notation to formalize these tensor operations.

Definition 2.3. For an n-dimensional k× · · · × k tensor P , integer i ∈ [n], and
vector v = (v1, · · · , vk), define the (n− 1)-dimensional tensor P ∗i v by

(P ∗i v)(j1, . . . , ĵi, . . . , jn) =
k∑

ji=1

P (j1, . . . , ji, . . . , jn)vji ,

where ˆ denotes omission. Similarly for a k × k matrix M , define the n-dimensional
tensor P ∗i M by

(P ∗i M)(j1, . . . , jn) =

k∑
�=1

P (j1, . . . , ji−1, �, ji+1, . . . , jn)M(�, ji).

The �th slice of P in the ith index is defined by P···�··· = P ∗ie�, where e� is the �th
standard basis vector, and the ith marginalization of P is defined by P···+··· = P ∗i 1,
where 1 is the vector of all 1s.

When the above operations on a tensor are performed in different indices, they
commute. This allows the use of n-tuple notation for the operation of matrices in all
indices of a tensor, such as the following:

P · (M1,M2, . . . ,Mn) = (· · · ((P ∗1 M1) ∗2 M2) · · · ) ∗n Mn.

Although the Mi need not be invertible, restricting to that case gives the natural
(right) group action of GL(k,C)n on k× · · ·× k tensors. This generalizes the familiar
operation on two-dimensional tensors P , i.e., on matrices, where

P · (M1,M2) = (P ∗1 M1) ∗2 M2 =MT
1 PM2.

If v ∈ Ck, then Diag(v) denotes the three-dimensional k × k × k diagonal tensor
whose only nonzero entries are the vi in the (i, i, i) positions. That this notion is
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useful for the GM(k) model is made clear by the observation that for a 3-leaf star tree
T , rooted at the central node,

(2.2) ψT (π, {M1,M2,M3}) = Diag(π) · (M1,M2,M3).

If P is an n-dimensional k × · · · × k tensor and [n] = A �B is a disjoint union of
nonempty sets, then the flattening of P with respect to this bipartition, FlatA|B(P ),
is the k|A| × k|B| matrix with rows indexed by i ∈ [k]|A| and columns indexed by
j ∈ [k]|B|, with

FlatA|B(P )(i, j) = P (k),

where k ∈ [k]n has entries matching those of i and j, appropriately ordered. Thus
the entries of P are simply rearranged into a matrix, in a manner consistent with the
original tensor structure. When P specifies a joint distribution for n random variables,
this flattening corresponds to treating the variables in A and B as two agglomerate
variables, with state spaces the product of the state spaces of the individual variables.
We assume throughout that all flattenings use some fixed orderings on the agglomerate
state spaces but do not usually specify it explicitly since it plays no substantial role.

Notation such as Flat1|23(P ), for example, will be used to denote the matrix
flattening obtained from a three-dimensional tensor using the partition of indices
A = {1}, B = {2, 3}. If e is an edge in an n-leaf tree, then e naturally induces a
bipartition of the leaves, by removing the edge and grouping leaves according to the
resulting connected components. A flattening for such a bipartition is denoted by
Flate(P ).

Finally, we note that flattenings naturally occur in the notion of independence:
If [n] = A � B, then the sets are independent precisely when FlatA|B(P ) is a rank 1
matrix.

3. GM(k) on 3-leaf trees. In this section we derive a semialgebraic description
of GM(k) on the 3-leaf tree, the smallest example of interest. Results for the 3-leaf tree
also serve as a building block for the study of the model on larger trees in section 4.
For this section, T is fixed, with leaves 1, 2, 3 and root r at the central node.

When k = 2, Cayley’s hyperdeterminant plays a critical role, as was highlighted
in [33]. Though our formulation will be different, we take the hyperdeterminant [12,
17, 14] as our starting point. For a 2× 2× 2 tensor A = (aijk), the hyperdeterminant
Δ(A) is

Δ(A) =
(
a2111a

2
222 + a2112a

2
221 + a2121a

2
212 + a2122a

2
211

)
− 2

(
a111a112a221a222 + a111a121a212a222 + a111a122a211a222

+ a112a121a212a221 + a112a122a221a211 + a121a122a212a211
)

+ 4
(
a111a122a212a221 + a112a121a211a222

)
.

The function Δ has the invariance property

(3.1) Δ(P · (g1, g2, g3)) = det(g1)
2 det(g2)

2 det(g3)
2Δ(P )

for (g1, g2, g3) ∈ GL(2,C)3. This fact, combined with a study of canonical forms for
GL(2,C)3-orbit representatives, leads to the following theorem.

Theorem 3.1 (see [14, Theorem 7.1]). A complex 2 × 2 × 2 tensor P is in the
GL(2,C)3-orbit of D = Diag(1, 1) if, and only if, Δ(P ) �= 0. A real tensor is in the
GL(2,R)3-orbit of D if, and only if, Δ(P ) > 0.
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Suppose that k = 2 and P = ψT (π, {M1,M2,M3}) arises from real nonsingular
parameters on T . Then, (2.2) states P = Diag(π) · (M1,M2,M3), but letting M

′
1 =

diag(π)M1 we also have

P = D · (M ′
1,M2,M3).

Thus P is in the GL(2,R)3-orbit of D, and by Theorem 3.1, Δ(P ) > 0. However,
if P is a probability distribution satisfying Δ(P ) > 0, we cannot conclude that P
arises from stochastic, or even real, nonsingular parameters; additional inequalities
are needed for a semialgebraic model description.

Nonetheless, motivated by the role the hyperdeterminant plays in the semialge-
braic description of the GM(2) model, in a separate work Allman et al. [1] construct
generalizations of Δ for k ≥ 2. These functions are defined by

fi(P ;x) = det(Hx(det(P ∗i x))),

where x is a vector of auxiliary variables, Hx denotes the Hessian operator, and
i ∈ {1, 2, 3}. The next theorem establishes that the nonvanishing of these polynomials,
in conjunction with the vanishing of some others, identifies the orbit of Diag(1),
yielding an analogue of Theorem 3.1 for larger k.

Theorem 3.2 (see [1]). A complex k×k×k tensor P lies in the GL(k,C)3-orbit
of Diag(1) if, and only if, for some i ∈ {1, 2, 3}, the following hold:

(i) (P ∗i ej) adj(P ∗i x)(P ∗i e�) − (P ∗i e�) adj(P ∗i x)(P ∗i ej) = 0 for all
j, � ∈ [k]. Here adj denotes the classical adjoint, and equality means as a matrix of
polynomials in x.

(ii) fi(P ;x) is not identically zero as a polynomial in x.
Moreover, if the enumerated conditions hold for one i, then they hold for all.

When k > 2, the GL(k,C)3-orbit of Diag(1) is not dense among all k × k × k
tensors; rather its closure is a lower dimensional subvariety. This explains the necessity
of the equalities in item (i). In the case k = 2, the equalities of (i) hold for all tensors
and, in addition, fi(P ;x) = Δ(P ). Thus Theorem 3.2 includes the first statement of
Theorem 3.1.

We emphasize that for k > 2, the functions fi are not the ones usually referred
to as hyperdeterminants [17], but rather a different generalization of Δ. Moreover,
sign properties of fi(P ;x) similar to that given in Theorem 3.1 for Δ(P ) do not exist
in general. See [1] for details.

With semialgebraic conditions ensuring that a tensor is in the GL(k,C)3 orbit of
Diag(1) in hand, we seek further conditions to ensure that it arises from nonsingular
stochastic parameters. We proceed in two steps: first, we give requirements that a
tensor is the image of complex parameters under ψT , and then that these parameters
are nonnegative.

Proposition 3.3. Let P be a complex k × k × k distribution. Then P is in the
image of nonsingular complex parameters for GM(k) on the 3-leaf tree if, and only if,
P is in the GL(k,C)3-orbit of Diag(1) and det(P ∗i 1) �= 0 for i = 1, 2, 3. Moreover,
the parameters are unique up to label-swapping.

Proof. To establish the reverse implication, suppose P = Diag(1) · (g1, g2, g3)
for some gi ∈ GL(k,C), and let ri = gi1 denote the vector of row sums of gi. A
computation shows that

P ∗3 1 = gT1 diag(r3)g2.
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Thus det(P ∗3 1) �= 0 is equivalent to the row sums of g3 being nonzero, and similarly
for the other gi.

Now Mi = diag(ri)
−1
gi is a complex matrix with row sums equal to one. Letting

π = (
∏3

i=1 r
i
1, . . . ,

∏3
i=1 r

i
k) be the vector of entry-wise products of the ri, the entries

of π are nonzero and

P = Diag(π) · (M1,M2,M3).

Since P is a distribution,

1 = ((P ∗1 1) ∗2 1) ∗3 1
= (((Diag(π) · (M1,M2,M3)) ∗1 1) ∗2 1) ∗3 1
= ((Diag(π) ∗1 M11) ∗2 M21) ∗3 M31

= ((Diag(π) ∗1 1) ∗2 1) ∗3 1
= π · 1,

so π is a valid complex root distribution. Thus, P is in the image of ψT for complex,
nonsingular parameters.

The forward implication in the theorem is straightforward.
Combining this proposition with Theorems 3.1 and 3.2, we obtain the following.
Corollary 3.4. A k × k × k complex distribution P is the image of complex,

nonsingular parameters for GM(k) on the 3-leaf tree if, and only if, it satisfies the
semialgebraic conditions (i) and (ii) of Theorem 3.2 and

(iii) for i = 1, 2, 3, det(P ∗i 1) �= 0.
For k = 2, P is the image of real nonsingular parameters for GM(2) on the 3-leaf

tree if, and only if, it satisfies Δ(P ) > 0 and the semialgebraic conditions (iii).
The key to ensuring that nonsingular parameters are stochastic is the construction

of certain quadratic forms whose positive semidefiniteness (respectively, definiteness)
encodes nonnegativity (respectively, positivity) of the numerical parameters. A clas-
sic result of Sylvester [30], in the form of sign conditions on minors, then gives a
semialgebraic version of these conditions. Since our goal is an explicit semialgebraic
description, we state the theorem for reference.

Recall that a principal minor of a matrix is the determinant of a submatrix chosen
with the same row and column indices, and that a leading principal minor is one of
these where the chosen indices are {1, 2, 3, . . . , k} for any k.

Theorem 3.5 (Sylvester’s theorem). Let A be an n × n real symmetric matrix
and Q(x) = xTAx the associated quadratic form on Rn. Then

1. Q is positive semidefinite if, and only if, all principal minors of A are non-
negative, and

2. Q is positive definite if, and only if, all leading principal minors of A are
strictly positive.

In conjunction with Sylvester’s theorem, the following gives a semialgebraic char-
acterization of our model of interest.

Theorem 3.6. A k×k×k probability distribution P is the image of nonsingular
stochastic parameters for the GM(k) model on the 3-leaf tree if, and only if, conditions
(i), (ii), and (iii) of Theorem 3.2 and Corollary 3.4 are satisfied, and

(iv) the matrix

(3.2) det(P··+)PT
+·· adj(P··+)P·+·
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is positive definite and the matrices

det(P··+)PT
i·· adj(P··+)P·+· for i = 1, . . . , k,

det(P··+)PT
+··adj(P··+)P·i· for i = 1, . . . , k,(3.3)

det(P+··)P·+·adj(P+··)PT
··i for i = 1, . . . , k.

are all positive semidefinite.
Moreover, the probability distribution P is the image of nonsingular positive pa-

rameters if, and only if, conditions (i), (ii), and (iii) are satisfied and
(iv′) all of the matrices in (3.2) and (3.3) are positive definite.
In both cases, the nonsingular parameters are unique up to label-swapping.
Proof. Let P be an arbitrary k×k×k probability distribution. By Corollary 3.4,

the first 3 conditions are equivalent to P = ψT (π, {M1,M2,M3}) for complex non-
singular parameters. We need to show the addition of assumption (iv) is equivalent
to parameters being nonnegative.

Note that

P··+ = P ∗3 1 =MT
1 diag(π)M2,

P·+· = P ∗2 1 =MT
1 diag(π)M3,

P+·· = P ∗1 1 =MT
2 diag(π)M3.

Since P··+ is nonsingular, the product

(3.4) PT
+··P

−1
··+P·+· =MT

3 diag(π)M3

is symmetric and the matrix of a real quadratic form. Similarly, using slices, additional
quadratic forms are defined by the symmetric matrices

PT
i··P

−1
··+P·+· =MT

3 diag(π)Λ1,iM3,

PT
+··P

−1
··+P·i· =MT

3 diag(π)Λ2,iM3,(3.5)

P·+·P−1
+··P

T
··i =MT

1 diag(π)Λ3,iM1,

where Λj,i = diag(Mjei) is the diagonal matrix with entries from the ith column
of Mj. Multiplying all these matrices by the square of an appropriate nonzero de-
terminant clears denominators and preserves signs yielding the matrices in (3.2) and
(3.3). It follows that condition (iv) is necessary if P arises from nonsingular stochastic
parameters.

It remains to show that if the matrices in (3.2) and (3.3) are positive definite and
positive semidefinite as in (iv), then all the Mi are real and stochastic, and π has
positive entries. Letting rij denote the jth row of matrix Mi, by Kruskal’s theorem
[21, 22] the summands in

P =

k∑
j=1

πj r1j ⊗ r2j ⊗ r3j

are uniquely determined, up to order. Since P is real, P = P and this uniqueness
implies that any complex summands occur in conjugate pairs. It follows easily that
we may assume only the first 2� rows of all Mi are complex and that ri,2j−1 = ri,2j
and π2j−1 = π2j for j = 1, . . . , �.
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We argue next that the positive definiteness of the matrix in (3.2), or equivalently
of that in (3.4), implies the Mi are real, and the entries of π are positive. To this end,
suppose the first two rows of M3 are complex (nonreal) conjugates, and consider any
nonzero v ∈ Rk, orthogonal to the real and imaginary parts of the last k − 2 rows of
M3. Then

Q(v) = vT
(
MT

3 diag(π
)
M3)v = π1 (r31 · v)2 + π1 (r31 · v)2.

If v is chosen to also be orthogonal to �(r31), then Q(v) = 2�(π1) (�(r31) · v)2, and
since Q is positive definite we find �(π1) > 0. If instead v is chosen to be orthogonal
to �(r31), then Q(v) = −2�(π1) (�(r31)·v)2, implying �(π1) < 0. This contradiction
establishes that M3 is real. Since M3 is nonsingular, it therefore has no conjugate
rows. Thus all Mi and π are real. Moreover, since Q is positive definite and M3 is
real, the entries of π are positive.

Finally, consider the matrices from (3.3). Since π has positive entries and Mi

are real, the associated real quadratic forms are all positive semidefinite only if the
entries of the Mi are all nonnegative. Since the parameters are nonsingular, the only
source of nonuniqueness is label-swapping.

The second statement of the theorem, about positive parameters, requires only a
minor modification to this argument.

Remark. The j×j minors of the matrices in (3.2) and (3.3) are polynomials in the
entries of P of degree j(2k+1) with j = 1, . . . , k. However, as the leading determinant
in the products defining those matrices is real and nonzero, one can remove an even
power of it without affecting the sign of the minors. Thus a polynomial inequality of
degree j(2k+ 1) can be replaced by one of lower degree, j(k+ 1)+ ejk, where ej = 0
or 1 is the parity of j.

We illustrate Theorem 3.6 by considering the probability distribution with exact
rational entries given by

P =

⎡
⎣0.1500 0.0130 0.1053̄ 0.0130 0.0050 0.0153̄ 0.1053̄ 0.0153̄ 0.0776̄
0.0130 0.0050 0.0153̄ 0.0050 0.0090 0.0093̄ 0.0153̄ 0.0093̄ 0.0186̄
0.1053̄ 0.0153̄ 0.0776̄ 0.0153̄ 0.0093̄ 0.0186̄ 0.0776̄ 0.0186̄ 0.0620

⎤
⎦ ,

which by checking conditions (i-iii) above arises from nonsingular parameters. Con-
sidering the symmetric nonnegative matrix Q = det(P··+)PT

1·· adj(P··+)P·+·, a com-
putation shows that det(Q) < 0 so that by Sylvester’s theorem, Q does not define a
positive semidefinite quadratic form, and P does not arise from stochastic parameters.
Indeed, P was constructed from a stochastic vector π, but complex matrices Mi.

In the case of the 2-state model, the above result can be made more complete by
also explicitly describing the image of singular parameters. Such results are not new—
see [27, 8, 32, 20] and for related work [24]—but much of the success of these previous
analyses has been derived by careful consideration of statistical interpretations of
particular quantities computed from a probability distribution P (e.g., covariances,
conditional covariances, moments, tree cumulants). Such statistical interpretations,
however, are specific to the binary model and do not generalize to larger state spaces.
We include a novel proof here, based on our viewpoint.

Theorem 3.7. A probability distribution P is in the image of the stochastic
parameterization map ψT for the GM(2) model on the 3-leaf tree if, and only if, one
of the following occur:

1. Δ(P ) > 0, det(P ∗i 1) �= 0 for i = 1, 2, 3, the matrix of (3.2) is positive
definite, and the six matrices of (3.3) are positive semidefinite. In this case, P is the
image of unique (up to label-swapping) nonsingular parameters.
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2. Δ(P ) = 0, and all 2 × 2 minors of at least one of the matrices Flat1|23(P ),
Flat2|13(P ), Flat3|12(P ) are zero. In this case, P arises from singular parameters. If
P has all positive entries, then it is the image of infinitely many singular stochastic
parameter choices.

Proof. Using Theorem 3.6 and the comments immediately following Theorem 3.2,
case 1 is already established under the weaker condition that Δ(P ) �= 0. However,
since the parameters are nonsingular when Δ(P ) �= 0 and real when the conditions of
case 1 are satisfied, by Theorem 3.1 we may assume equivalently that Δ(P ) > 0.

To establish case 2, first assume P = ψT (π, {M1,M2,M3}) is the image of singular
stochastic parameters. Then certainly P has nonnegative entries summing to 1, and
by (2.2) and (3.1), Δ(P ) = 0. Now

Flat1|23(P ) =MT
1 diag(π)M,

where M is the 2 × 4 matrix with rows obtained by taking the tensor product of
corresponding rows of M2 and M3. (That is, M(i, (j, k)) = M2(i, j)M3(i, k).) Thus
this flattening has rank 1 if π has a zero entry or M1 has rank 1. Similar products
for the other flattenings show that singular parameters imply that at least one of the
flattenings Flat1|23(P ),Flat2|13(P ),Flat3|12(P ) has rank 1, and hence its 2× 2 minors
vanish.

Conversely, suppose Δ(P ) = 0 and at least one of the flattenings has vanishing
2 × 2 minors, and hence rank 1. Then by the classification of orbits given in [14,
Table 7.1], P is in the GL(2,R)3-orbit of one of the following four tensors: the tensor
Diag(1, 0) (in which case all three flattenings have rank 1) or one of the 3 tensors with
parallel slices I and the zero matrix (in which case exactly one of the flattenings has
rank 1).

If P = Diag(1, 0) · (g1, g2, g3), then P (i, j, k) = g1(1, i)g2(1, j)g3(1, k). Since the
entries of P are nonnegative and sum to 1, one sees the top rows of each gi can
be chosen to be nonnegative, summing to 1. The bottom row of each gi can also
be replaced with any nonnegative row summing to 1 that is independent of the top
row. Taking π = (1, 0), this gives us infinitely many choices of singular stochastic
parameters giving rise to P . Alternatively, one could choose each Markov matrix
to have two identical rows, and any π with nonzero entries to obtain other singular
stochastic parameters leading to P .

For the remaining cases assume, without loss of generality, that P = E ·(g1, g2, g3),
where E··1 = I, and E··2 is the zero matrix. Then P··1 = g3(1, 1)(g

T
1 g2) and P··2 =

g3(1, 2)(g
T
1 g2). Since the entries of P are nonnegative and add to 1, we may assume

that the top row of g3 is also nonnegative and adds to 1. Choose M3 to have two
identical rows matching the top row of g3. Now P··+ = gT1 g2 is a rank-2 nonnegative
matrix with entries adding to 1. Such a matrix can be written in the form P··+ =
MT

1 diag(π)M2 with, for instance, M1 = I, π = P·++, M2 = diag(π)−1P··+. Then
one has P = ψT (π, {M1,M2,M3}). If P has positive entries, one may also choose M1

sufficiently close to I so that M1, π = (MT
1 )−1P·++, M2 = diag(π)−1(MT

1 )
−1
P··+ all

have nonnegative entries, thus obtaining infinitely many singular parameter choices
leading to P . (The example of P = (1/2)E shows that with only nonnegative entries
there may be only finitely many singular parameter choices leading to P .)

Remark. The analysis of the singular parameter case in this proof, by appealing
without explanation to [14, Table 7.1], has not made explicit the importance of the
notion of tensor rank. Indeed, that concept is central to both [14] and [1] and thus
plays a crucial behind-the-scenes role in this work as well. The first singular case, a
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tensor in the orbit of Diag(1, 0), is of tensor rank 1, while the second, a tensor in the
orbit of E, is of tensor rank 2 yet multilinear rank (2, 2, 1). The nonsingular case is
those of tensor rank 2 and multilinear rank (2, 2, 2).

Remark. The equality Δ(P ) = 0 appearing in case 2 of Theorem 3.7 is redundant
in that it is implied by the vanishing of the minors of any one of the flattenings.
Moreover, these quadratics simply express that at least one of the leaf variables is
independent of the others.

Minor modifications to the above argument extend the result to positive param-
eters.

Theorem 3.8. A probability distribution P is in the image of the positive stochas-
tic parameterization map for the GM(2) model on the 3-leaf tree if, and only if, the
conditions of Theorem 3.7 are met with the following modification to case 1: all of the
matrices are positive definite.

Proof. This is straightforward replacing “nonnegative” with “positive” in the
argument of Theorem 3.7, though in case 2, if P is in the orbit of Diag(1, 0), then one
must use the second construction of singular parameters.

4. GM(k) on n-leaf trees. We now extend the results of the previous sections
to n-leaf trees for n > 3. To vary the choice of the root node of the tree in our
arguments, we need the following. Similar lemmas are given in [28, Theorem 2] and
[2, Proposition 1].

Lemma 4.1. Suppose stochastic parameters are given for the GM(k) model on
a tree T with the root located at a specific node of T . Then there are stochastic
parameters for T rooted at any other node of T , or at a node of valence 2 introduced
along an edge of T , which lead to the same distribution. Moreover, if the original
parameters were nonsingular and/or positive, then so are the new ones.

Note that for nonstochastic parameters, Lemma 4.1 fails to hold as the examples
in (2.1) show. The problem is simply that a column sum of P = diag(π)M can be
zero though the column is not the zero vector, so one cannot solve for a factorization

of P = M̃T diag(π̃) as needed for moving the root from one vertex of an edge to the
other. For real and complex parameters, moving the root is possible under the more
stringent hypothesis that the parameters are nonsingular.

Lemma 4.2. Suppose real or complex nonsingular parameters are given for the
GM(k) model on a tree T with the root located at a specific node of T . Then there are
nonsingular parameters for T rooted at any other node of T , or at a node of valence
2 introduced along an edge of T , which lead to the same distribution.

We now show that independent subsets of variables allow the question of deter-
mining if a distribution arises from parameters on a tree to be “decomposed” into the
same question for the marginalizations to the subsets.

Proposition 4.3. Let P be a joint distribution of a set L of k-state variables such
that for some partition L1|L2| · · · |Ls of L, the variable sets Li and Lj are independent
for all i �= j. Suppose the marginal distribution of each Li arises from nonsingular
GM(k) parameters on a tree Ti. Then P arises from GM(k) parameters on any tree
T which can be obtained by connecting the trees T1, T2, . . . , Ts by the introduction of
new edges between them, with endpoints possibly subdividing either edges of the Ti or
previously introduced edges joining some of the Ti.

If, in addition, the parameters for each of the marginal distributions Li are
stochastic, then P arises from stochastic parameters for the GM(k) model on an |L|-
leaf tree. If the parameters for the |Li|-leaf trees are positive, then so are those on the
|L|-leaf tree.
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Note that the converse of this statement—that if P arises from parameters for
the GM(k) model on an |L|-leaf tree, then the marginal distributions of each Li arise
from parameters for the GM(k) model on an |Li|-leaf tree—is well known and does
not require the independence of the variable sets, nor nonsingularity of parameters.

Proof. It is enough to consider a partition of L into two independent subsets,
L1|L2. Let T be any tree formed by connecting T1 and T2 by a single edge, possibly
with endpoints introduced to subdivide edges of one or both of the Ti. If e = (r1, r2)
is the edge joining T1 and T2, with ri in Ti, then under the nonsingularity assumption
by Lemma 4.2 we may assume that parameters on T1 and T2 are given for roots r1
and r2. We root T at r1 and then specify parameters on T as the root distribution
π1 for T1, all matrix parameters on the edges of T1 and T2, and for the edge e the
matrix Me = 1π2, where π2 is the root distribution on T2.

Let P̃ denote the image of these parameters under ψT . The edge e of T induces
the split L1|L2 of the leaf variables, and flattening with respect to e gives Flate(P̃ ) =
ATCB where A,B are k× k|L1| and k× k|L2| matrices depending only on the matrix
parameters on the subtrees T1 and T2, and

C = diag(π1)Me = diag(π1)1π2 = πT
1 π2.

Indeed, in the stochastic case, A gives probabilities of observations at the leaves L1

conditioned on the state at r1, B gives probabilities of observations at the leaves L2

conditioned on the state at r2, and C is a matrix giving the joint distribution of states
at r1 and r2. Observing that ATCB = (π1A)

T (π2B), independence implies that P̃ is
the product of the same marginal distributions on L1 and L2 as P , and hence P̃ = P .

For stochastic parameters, the result follows by the same argument, but using
Lemma 4.1 to move the root in T while preserving nonsingularity and/or positivity
of parameters.

By this proposition, the only sets we must understand to build a semialgebraic
description for the full n-leaf stochastic model are the image of parameters for m-leaf
trees, m ≤ n, when no subsets of the m leaf variables are independent. In the case
k = 2, by Proposition 2.2, this is precisely the images of nonsingular parameters. For
k > 2, where this equivalence does not hold, we give a semialgebraic description for
nonsingular parameters, avoiding the complications of intermediate ranks.

Proposition 4.4. Let P be an n-dimensional k × k × · · · × k distribution with
n ≥ 3. Then P arises from nonsingular complex parameters on a binary tree T if,
and only if,

(i) all marginalizations of P to 3 variables arise from nonsingular parameters
on the induced 3-leaf, 3-edge trees, and

(ii) for all internal edges e of T , all (k + 1) × (k + 1) minors of the matrix
flattening Flate(P ) are 0.

Moreover, such nonsingular parameters are unique up to label-swapping at internal
nodes of T .

Note that condition (i) can be stated in terms of explicit semialgebraic conditions,
using Corollary 3.4. Also, the polynomial equalities of condition (ii) are usually called
edge invariants [6].

Proof. For the forward implication, condition (i) follows since marginalizations
arise from the model on the associated induced subtree, using Markov matrices that
are products of the original ones. Item (ii) is from [6], where it is shown that all
P ∈ Im(ψT ) satisfy the edge invariants. (The nonsingularity of parameters is not
required for either of these.)
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For the reverse implication, we proceed by induction on the size n of the variable
set L. The claim holds by assumption in the base case of n = 3. Assume the statement
is true for fewer than n ≥ 4 variables. We identify leaves of T with the variables
associated to them. Choose some internal edge e0 = (a, b) of T , corresponding to
the split L1|L2 of L, with |L1|, |L2| ≥ 2, a in the subtree spanned by L1, and b in
the subtree spanned by L2. Introducing a vertex c subdividing (a, b), let T1 be the
subtree with leaves L1 ∪ {c} and T2 the subtree with leaves L2 ∪ {c}. Thus (a, c) in
T1 and (b, c) in T2 are the edges formed from dividing (a, b).

Since the edge invariants are satisfied by P , Flate0(P ) has rank at most k. There-
fore, there exist k|L1| × k and k × k|L2| matrices A,B, both of rank at most k, with

Flate0(P ) = AB.

Choose a single variable �2 ∈ L2 and let Q denote the marginalization of P to L1∪{�2}.
Then there is a k|L2| × k matrix N such that

Flate0(P )N = ABN = Flate1(Q),

where this last flattening is along the edge e1 = (a, �2) in the induced subtree on
L1 ∪ {�2}. Stated differently, multiplication by N marginalizes over all those leaves
in L2 except �2.

Since Q also satisfies conditions (i) and (ii), by the inductive hypothesis Q arises
from nonsingular parameters. Moreover, we see that Flate1(Q) has rank k, since
marginalization over all but one variable in L1 is seen to produce a rank k matrix
from the nonsingular parameterization. It follows that the k× k matrix BN has rank
k. Replacing A and B with AC and C−1B for some invertible k × k matrix C, we
may further assume the rows of BN add to 1.

Now sinceQ arises from nonsingular parameters on a (|L1|+1)-leaf tree isomorphic
to T1 rooted at a, we claim that Q′ = Q ∗�2 (BN)−1 arises from nonsingular complex
parameters on T1 for some suitable choice of B. Indeed, Q′ arises from the same
parameters as Q, except that on the edge (a, c) we use the matrix parameter that
is the product of the one on the edge leading to �2 and (BN)−1. Since (BN)−1 is
a nonsingular matrix with rows summing to one, the only condition to check is that
the marginalization of the resulting distribution to c has no zero entries. But this
marginalization is vc = v�2(BN)−1 and has a zero entry only if v�2 is in the left

nullspace of one (or more) of the columns of (BN)
−1

. However, replacing A and B
with AC and C−1B for some appropriate nonsingular matrix C whose rows sum to
one, we can ensure that vc has no zero entries.

Since the parameters producing Q′ are nonsingular, by Lemma 4.2 we may reroot
T1 at c with parameters the root distribution vc, matrices {Me} on all edges of T1
corresponding to ones in T , and matrix M(c,a) on the edge (c, a).

Now with K the matrix which marginalizes Flate0(P ) over all elements of L1 but
one, say �1, we see

K Flate0(P ) = KAB = Flate2(U),

where U is the marginalization of P over the same elements of L1 and the last flat-
tening is on e2 = (b, �1) in the induced subtree, which is isomorphic to T2. But by
induction U arises from nonsingular parameters on T2 rooted at b. Let M be the
product of the matrix parameters on the edges in the path from c to �1 in T1. Then
U ′ = U ∗�1 M−1 also arises from nonsingular parameters on T2 (checking that its
marginalization to c is v�1M

−1 = vc, which has no zeros by construction).
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Note now that U ′ has flattening (M−1)TKAB. But (M−1)TKA = diag(vc) by
construction. Thus diag(vc)B is the c|L2 flattening of a tensor arising on T2 from
nonsingular complex parameters. With the root at c, letMe be the Markov parameters
for all edges of T2 corresponding to ones in T , and M(c,b) the Markov matrix on (c, b).
The root distribution vc is the same as for T1.

It remains to check that P is the image of the parameters on T with subdivided
edges (c, a) and (c, b) rooted at c given by vc, {Me}e�=(a,b), and M(c,a) and M(c,b).
But these parameters lead to the distributions Q′ and U ′ on T1 and T2, respectively.
Since Flat(a,c)(Q

′) = A while Flat(c,b)(U
′) = diag(vc)B, the equation Flate(P ) = AB

shows they produce P on T .
That the parameters are unique, up to label-swapping at the internal nodes of T ,

follows from the 3-leaf case.
Note that in establishing the reverse implication in Proposition 4.4 we did not

use condition (i) for every 3-variable marginalization. Informally, given a tree T one
could choose a sequence of edges which can be successively cut (by the introduction
of the node c in the inductive proof above) to produce a forest of 3-taxon trees. Then
condition (i) is only needed for a subset of the 3-leaf marginalizations, determined by
the sequence of edges chosen to cut and the choice of the variables denoted �1, �2 in
the proof. Similarly, not all edge flattenings of condition (ii) are used: For the first
edge to be cut, one uses the full edge flattening, but after that, only edge flattenings
of marginalizations to subsets of variables are needed. Thus the full set of conditions
given in this proposition is actually equivalent to a subset of them.

Supposing now that an n-dimensional distribution P arises from nonsingular com-
plex parameters on a binary tree T , we wish to give semialgebraic conditions that are
satisfied if, and only if, the parameters are stochastic. By considering only marginal-
izations to 3 variables and appealing to Theorem 3.6, we can give conditions that
hold precisely when the root distribution and products of matrix parameters along
any path leading from an interior vertex of T to leaves are stochastic. This immedi-
ately yields semialgebraic conditions that the root distribution and matrix parameters
on terminal edges are stochastic. However, additional criteria are needed to ensure
that matrix parameters on interior edges are stochastic. Adopting the convention
that a 4-leaf tree is labeled by the partition of leaves induced by its single internal
edge, in the next proposition we give conditions for stochastic parameters on a 4-leaf
tree.

Proposition 4.5. Suppose a distribution P arises from nonsingular complex
parameters for GM(k) on the 4-leaf tree 12|34. If the 3-marginalizations P···+ and
P+··· arise from stochastic parameters and, in addition, the k2 × k2 matrix

(4.1) det(P+··+) det(P·+·+) Flat13|24
(
P ∗2 (adj(PT

+··+)P
T
·+·+)) ∗3 (adj(P·+·+)P·++·)

)
is positive semidefinite, then P arises from stochastic parameters.

Note that the matrix in (4.1) could be replaced by ones where the roles of leaves
1 and 2 or of leaves 3 and 4 have been interchanged.

Proof. Root T at the interior node near leaves 1 and 2. Let Mi, i = 1, 2, 3, 4, be
the complex matrix parameter with row sums equal to one on the edge leading to leaf
i, M5 the matrix parameter on the internal edge, and π the root distribution. Define
the matrices

N32 = PT
+··+ =MT

3 M
T
5 diag(π)M2,

N31 = PT
·+·+ =MT

3 M
T
5 diag(π)M1.
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Then

P = P ∗2 N−1
32 N31

is a distribution arising from the same parameters as P except that M2 has been
replaced with M1, so that the same matrix parameter is used on the edges leading to
leaves 1 and 2.

Similarly with

N14 = P·++· =MT
1 diag(π)M5M4,

N13 = P·+·+ =MT
1 diag(π)M5M3,

then

(4.2) P̃ = P ∗3 N−1
13 N14

is a distribution arising from the same parameters as P except that M3 has been
replaced with M4.

Consider now the 13|24 flattening of P̃ , a flattening which is not consistent with
the topology of the underlying tree. As shown in [4], this can be expressed as a
product of k × k matrices

(4.3) Flat13|24(P̃ ) = ATDA,

where D is the diagonal matrix with the k2 entries of diag(π)M5 on its diagonal, and
A = M1 ⊗M4 is the Kronecker product. Because M1,M4 are nonsingular, so is A.
Since conditions on 3-marginals ensure that π has positive entries, we can ensure M5

has nonnegative entries by requiring that Flat13|24(P̃ ) be positive semidefinite. Since
the resulting inequalities would involve rational expressions, due to the inverses of
matrices, we first multiply Flat13|24 P̃ by squares of nonzero determinants to remove
denominators.

Together with Theorems 3.6 and 3.7, the last two propositions yield the following
theorem.

Theorem 4.6. Suppose P is an n-dimensional joint probability distribution for
the k-state variables Y1, . . . , Yn. Then P arises from nonsingular stochastic parame-
ters for GM(k) on an n-leaf binary tree T if, and only if,

(i) all marginalizations of P to 3 variables satisfy the conditions of Theorem 3.6
(or if k = 2 of Theorem 3.7) to arise from nonsingular stochastic parameters on a
3-leaf tree;

(ii) for all internal edges e of T , the edge invariants are satisfied by P , i.e., all
(k + 1)× (k + 1) minors of the matrix flattening Flate(P ) are 0;

(iii) for each internal edge e of T , and some choice of 4 leaves inducing a quartet
tree with internal edge e, the matrix flattening constructed in Proposition 4.5 for the
four-dimensional marginalization is positive semidefinite.

The full set of inequalities given in Theorem 4.6 also has additional redundancies.
To illustrate, in the 4-leaf case checking that only two of the 3-marginals, say, P+···
and P···+ for the tree 12|34, satisfy the conditions of Theorem 3.6 is sufficient.

For a 4-variable distribution P , it is straightforward to obtain explicit semialge-
braic conditions ensuring that P arises from strictly positive parameters: One need
only require the more stringent condition (iv′) of Theorem 3.6. Then the argument
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of Theorem 4.6 extends to establish the following, whose detailed statement we leave
to the reader.

Theorem 4.7. Semialgebraic conditions that a probability distribution P arises
from nonsingular positive parameters for GM(k) on a tree T can be explicitly given.
In particular, for nonsingular positive parameters, explicit conditions are obtained by
modifying (i), (ii), and (iii) of Theorem 4.6 using Theorems 3.6 and 3.8 to express that
the resulting quadratic forms are positive definite.

Note that one can also handle nonbinary trees by the techniques of this section. To
show that a distribution arises from nonsingular, or stochastic nonsingular, parameters
on a nonbinary tree, one need only show that it arises from parameters on a binary
resolution of the tree, and that the Markov matrix on each edge introduced to obtain
the resolution is the identity. But semialgebraic conditions that the Markov matrix on
an internal edge of a 4-leaf tree is I (or a permutation, since label-swapping prevents
us from distinguishing these) amount to requiring that the matrix of (4.3) has rank
k. Indeed, rank k implies that the Markov matrix on the internal edge has only k
nonzero entries, and since other conditions we have derived imply nonsingularity, the
matrix must be a permutation.

In closing, we give an example illustrating that the quadratic form approach of
Proposition 4.5, and thus of Theorem 4.6, detects a probability distribution that is in
the image of ψT for nonsingular real GM(2) parameters on the 4-taxon tree, where
each matrix parameter on a terminal edge is stochastic but the one on the internal edge
is not. By choosing parameters with some care, we can arrange that such a probability
distribution P satisfies that all 3-marginalizations arise from stochastic parameters,
yet P does not. Such examples are not new (see, for example, [3, 20, 32]), but we
include one here to illustrate our methods.

To create such an example, set the Markov parameter on each terminal edge to
have positive entries, using, for instance, the same M on each of these 4 edges. Then
choose the matrix parameter N on the internal edge of the tree to have very small
negative off-diagonal entries, so small that both MN and NM are Markov matrices.
The root distribution may be taken to be any probability distribution with positive
entries. An example of such an (exact) probability distribution is given by P with
slices

P··11 =

[
0.4005062 0.0565718
0.0565718 0.0545702

]
, P··12 =

[
0.0457358 0.0141662
0.0141662 0.0379118

]
,

P··21 =

[
0.0457358 0.0141662
0.0141662 0.0379118

]
, P··22 =

[
0.0100222 0.0330958
0.0330958 0.1316062

]
.

Here P satisfies all conditions of Theorem 4.6 except (iii). A computation shows that
the leading principal minors of the matrix in (4.1) are, when rounded to eight decimal
places, 0.00363408, 0.00001744, 0.00000060, and −0.00000005. The negativity of one
of these shows that P does not arise from stochastic parameters.

We conclude with a complete semialgebraic description of the 2-state general
Markov model on a 4-leaf tree without a restriction to nonsingular stochastic param-
eters. This is straightforward to give, since by Proposition 2.2 a distribution which
arises from parameters either has independent leaf sets so we can decompose the tree
using Proposition 4.3, or the parameters were nonsingular so Theorem 4.6 applies.

Proposition 4.8. For the 4-leaf tree 12|34, the image of the stochastic parameter
space under the general Markov model GM(2) is the union of the following sets of
nonnegative tensors whose entries add to 1:
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1. Probability distributions of 4 independent variables: P such that all 2 × 2
minors of every edge flattening vanish (i.e., all edge flattenings have rank 1).

2. Probability distributions with partition into minimal independent sets of vari-
ables of size 1, 3, of which there are 4 cases: If the partition is {{Y1}, {Y2, Y3, Y4}},
then P such that all 2× 2 minors of Flat1|234(P ) vanish, and P+··· satisfies the con-
ditions of Theorem 3.7, case 1.

3. Probability distributions with partition into minimal independent sets of vari-
ables of size 1, 1, 2, of which there are 6 cases: If the partition is {Y1}|{Y2}|{Y3, Y4},
then P such that all 2 × 2 minors of Flat1|234(P ) and Flat2|134(P ) vanish, and
det(P++··) is nonzero.

4. Probability distributions with partition into minimal independent sets of vari-
ables {{Y1, Y2}, {Y3, Y4}} of size 2, 2: P such that all 2 × 2 minors of Flat12|34(P )
vanish, yet det(P··++) and det(P++··) are nonzero.

5. Probability distributions with no independent sets of variables: P such that
the edge invariants for 12|34 are satisfied, the three-dimensional marginalizations P+···
and P···+ satisfy the conditions of Theorem 3.7, case 1, and all principal minors of
the matrix constructed in Proposition 4.5 are nonnegative.

In case 1, the only edge flattenings that are needed are those associated to terminal
edges. If these all have rank 1, then the flattening for the internal edge does as well.
In cases 1, 2, 3, the distributions arise from stochastic parameters on all 3 of the
binary topological trees with 4 leaves, as well as the star tree. Finally, note that all
15 possible partitions of variables do not appear, but only those 13 consistent with
the tree topology.

The above proposition extends to trees of arbitrary size, as long as k = 2, but the
number of possible partitions into independent sets of variables grows quickly.
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[28] M. A. Steel, L. Székely, and M. D. Hendy, Reconstructing trees from sequences whose sites

evolve at variable rates, J. Comput. Biol., 1 (1994), pp. 153–163.
[29] B. Sturmfels and S. Sullivant, Toric ideals of phylogenetic invariants, J. Comput. Biol., 12

(2005), pp. 204–228.
[30] J. J. Sylvester, A demonstration of the theorem that every homogeneous quadratic polynomial

is reducible by real orthogonal substitutions to the form of a sum of positive and negative
squares, Philos. Mag., IV (1852), pp. 138–142.

[31] A. Tarski, A Decision Method for Elementary Algebra and Geometry, 2nd ed., University of
California Press, Berkeley, CA, 1951.

[32] P. Zwiernik and J. Smith, Implicit inequality constraints in a binary tree model, Electron. J.
Stat., 5 (2011), pp. 1276–1312.

[33] P. Zwiernik and J. Smith, Tree cumulants and the geometry of binary tree models, Bernoulli,
18 (2012), pp. 290–321.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


