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Abstract. Though algebraic geometry over C is often used to describe the closure of the tensors
of a given size and complex rank, this variety includes tensors of both smaller and larger rank. Here
we focus on the n × n × n tensors of rank n over C, which has as a dense subset the orbit of a
single tensor under a natural group action. We construct polynomial invariants under this group
action whose nonvanishing distinguishes this orbit from points only in its closure. Together with an
explicit subset of the defining polynomials of the variety, this gives a semialgebraic description of the
tensors of rank n and multilinear rank (n, n, n). The polynomials we construct coincide with Cayley’s
hyperdeterminant in the case n = 2 and thus generalize it. Though our construction is direct and
explicit, we also recast our functions in the language of representation theory for additional insights.
We give three applications in different directions: First, we develop basic topological understanding
of how the real tensors of complex rank n and multilinear rank (n, n, n) form a collection of path-
connected subsets, one of which contains tensors of real rank n. Second, we use the invariants to
develop a semialgebraic description of the set of probability distributions that can arise from a simple
stochastic model with a hidden variable, a model that is important in phylogenetics and other fields.
Third, we construct simple examples of tensors of rank 2n − 1 which lie in the closure of those of
rank n.
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1. Introduction. The notion of tensor rank naturally extends the familiar no-
tion of matrix rank for two-dimensional numerical arrays to d-dimensional arrays and
likewise has extensive connections to applied problems. However, basic questions
about tensor rank can be much more difficult to answer than their matrix analogues,
and many open problems remain. Several natural problems concerning tensor rank are
to determine for a given field the rank of an explicitly given tensor, to determine for
a given field and format the possible ranks of all tensors, and to determine for a given
field and format the generic rank(s) of a tensor. While the matrix versions of these
problems are solved by an understanding of Gaussian elimination and determinants,
for higher-dimensional tensors they have so far eluded general solutions.

The case of 2 × 2 × 2 tensors, however, is quite well studied [10] and provides
one model of desirable understanding: Over C or R, such a tensor may have rank 0,
1, 2, or 3 only. Over C, descriptions of the sets of tensors of each of these possible
ranks may be given, in terms of intersections, unions, and complements of explicit
algebraic varieties. These descriptions can thus be phrased as Boolean combinations
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of polynomial equalities. Over R, analogous explicit descriptions require polynomial
inequalities using “>” as well, and the descriptions are thus semialgebraic. For larger
tensors of any given rank the existence of a semialgebraic description is a consequence
of the Tarski–Seidenberg theorem [34, 30]. While in theory quantifier elimination
can produce such a description, in practice the procedure is infeasible, and complete
explicit descriptions are generally not known.

A polynomial of particular importance in understanding the 2 × 2 × 2 case is
Cayley’s hyperdeterminant [8],

Δ(P ) = (p2000p
2
111 + p2001p

2
110 + p2010p

2
101 + p2011p

2
100)(1.1)

− 2(p000p001p110p111 + p000p010p101p111 + p000p011p100p111

+ p001p010p101p110 + p001p011p110p100 + p010p011p101p100)

+ 4(p000p011p101p110 + p001p010p100p111),

also known as the tangle in the physics literature [9]. The function Δ has nonzero
values precisely on a certain dense subset of those 2× 2× 2 tensors of complex tensor
rank 2. If a tensor is real, the sign of the Δ further indicates information about its
tensor rank over R [10]: If Δ > 0, then the tensor has real tensor rank 2, and if Δ < 0,
its real tensor rank is 3.

The role of Δ here can be partially understood as a consequence of it being an
invariant of the group GL(2,C)×GL(2,C)×GL(2,C), which acts on 2×2×2 complex
tensors in the three indices and preserves their tensor rank. The transformation
property of Δ under this group, along with explicit evaluation at a particular tensor
of rank 2, implies that it is nonzero on an orbit which is dense among all tensors of
rank 2. The fact that it is zero off of this orbit can be shown by first determining a
list of canonical representatives of other orbits and then explicitly evaluating Δ on
them to see that it vanishes. Thus both the transformation property of Δ under the
group and the ability to evaluate Δ at specific points are essential.

In this work we focus on n× n× n tensors of tensor rank n, over C and over R,
with the goal of generalizing our detailed understanding of the 2 × 2 × 2 tensors to
this particular case. Although we do not translate our results here to the cases of
n1 × n2 × n3 tensors of rank n with n ≤ ni, this should be possible by applying maps
of Cni → Cn. Thus what is most important about this case is that the dimensions
of the tensor are sufficiently large that they do not put constrictions on studying the
given rank n. (A more careful reading will show that for many arguments we only
need ni ≥ n for at least two values of i.)

Over C, the rank-2 tensors are dense among all 2 × 2 × 2 tensors. However, for
n > 2, the closure of the rank-n tensors in the n × n × n ones forms an algebraic
variety of dimension strictly less than n3. From the closure operation, this variety
contains all tensors of rank < n, as well as some of rank > n. Much previous work has
focused on determining defining polynomials of this variety, that is, polynomials that
vanish on all such rank-n tensors. For n = 3, the ideal of polynomials defining this
variety is known [15]. For n = 4 a set-theoretic defining set of polynomials has been
determined [12, 7, 13]. For all n ≥ 3, many polynomials in the ideal are known through
a general construction of “commutation relations” [3, 4] (see also [31]). Moreover, the
commutation relations give the full ideal up to an explicit saturation, and taking a
radical. Nonetheless, the full ideal is still not understood if n ≥ 4.

In this paper we turn from studying polynomial equalities related to tensor rank
issues to inequalities. Our main contribution is a generalization to arbitrary n of
the n = 2 hyperdeterminant, Δ, of Cayley. We obtain polynomial functions whose
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nonvanishing singles out a dense orbit of the tensors of rank n from their closure.
We emphasize that this generalization does not lead to those functions standardly
called “hyperdeterminants” in the modern mathematics literature [16], but rather to
a set of functions that generalize the properties of Δ in another way, appropriate to the
problem at hand. Just as Δ defines a one-dimensional representation of GL(2,C)×
GL(2,C) × GL(2,C), our functions determine a multidimensional representation of
GL(n,C)×GL(n,C)×GL(n,C).

The usefulness of studying invariant spaces of polynomials for investigating tensor
rank issues is, of course, not new (see, for instance, the survey [23] and its references
for instances going beyond Δ). Because the relevant representation theory is so highly
developed, such study can be fairly abstract. While the gap between abstractly un-
derstanding such polynomials and concretely evaluating them is conceptually a small
one, in practice it is by no means trivially bridged ([7] gives an excellent illustration
of this). Since our arguments depend crucially on being able to explicitly evaluate
our invariant polynomials on certain tensors, a concrete approach to developing them
is warranted here.

Specifically, we investigate the transformation properties of our functions under a
group action, a reduction under that action of most tensors to a semicanonical form
which is made possible by knowledge of the commutation relations, and the evaluation
of our functions at these semicanonical forms. Together, these allow us to make precise
statements about the zero set of these polynomials within the closure of the rank-n
n × n × n tensors that are analogous to statements about the zero set of Δ in the
2×2×2 case. We also relate the functions we construct to certain others with similar
transformation properties and show that those can be used as substitutes, provided
that they do not vanish at a point. This leads us to reframe our work in the language
of representation theory. Finally we show how our generalization of Δ can be used
for three different applications.

This paper is organized as follows: After definitions and preliminaries in section 2,
in section 3 we recall relevant facts about the algebraic variety of n × n × n tensors
of rank n and construct semicanonical orbit representatives under the group action.
We then construct our invariant polynomial functions in section 4 and determine
on which complex tensors of complex border rank at most n they vanish. Then in
section 5 we study these functions in the framework of representation theory for the
group GL(n,C)×GL(n,C)×GL(n,C).

As a first application, in section 6 we use these polynomials to investigate real
tensors of complex rank n. We show that the zero set of our invariants divides the real
points on the variety into several path components, each of which contains tensors
of a single signature. These signatures are characterized by the number of complex
conjugate pairs of rank-1 tensors in their unique rank-n decomposition. We also
determine the number of path components of each signature and find that the tensors
of real rank n form a single component. We extend, from n = 2 to n = 3, the result
that the sign of a polynomial invariant distinguishes whether a tensor of complex rank
n also has real rank n. For larger n, the sign of our invariant is insufficient to single
out the component composed of tensors of real rank n, but why it fails to do so is
made clear.

In section 7 we turn to the application which originally motivated our interest in
n × n × n tensors of rank n, which is their appearance as certain statistical models,
in both latent class analysis and phylogenetics. For these applications (which we
introduce more thoroughly in section 7), such a tensor represents a joint probability
distribution of three observed random variables, each with discrete state space of
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size n, and thus has nonnegative entries summing to 1. Its decomposition into a sum of
rank-1 tensors reflects the structure of the stochastic model, in which the distributions
of each of the observed variables depend on the state of a common hidden (latent,
or unobservable) variable with n states. The phylogenetic application can be seen
through an interpretation of the observed variables as having four states, the bases
A,C,G, T that may appear at a particular site in DNA sequences from three species,
while the state of the hidden variable represents the base in an ancestral organism
from which the others evolved.

For these statistical applications, the rank-1 components of these tensors are
themselves probability distributions, up to scaling, so it is important to not only
determine the rank of a tensor, but also be able to determine whether the rank-1
components have nonnegative entries. The 2× 2× 2 rank-2 case and its extension to
phylogenetic trees have recently been studied in [36] (see also [19, 28]). In that work
Cayley’s hyperdeterminant Δ played an important role. Our work here began as a
step toward extending some of the results of [36] from n = 2 to n > 2. In this paper,
however, we limit ourselves to the simplest phylogenetic model (on a 3-leaf tree), as
the extension to larger trees depends on other ideas which will be presented in [5].
Despite lacking a good test for determining that a tensor of complex rank n has real
rank n, we borrow ideas from [5] to give semialgebraic conditions that ensure a tensor
is a probability distribution arising from the latent class model (with certain mild
conditions on the parameters).

As a final application of the main theorems of this paper, in section 8 we show
examples of n × n × n tensors of border rank n, but rank larger than n. We give a
simple, explicit example of a tensor of this sort with rank 2n − 1. When n = 2 this
gives the well-known canonical form of a complex rank-3 tensor; however, for general
n > 2 this produces a new class of examples of “rank jumping” by a large amount.

2. Three-dimensional tensors, group actions, and rank. Denote the space
of all complex tensors of format (n1, n2, n3) by S = S(n1, n2, n3) = Cn1 ⊗Cn2 ⊗Cn3 .
Note that S ∼= Cn1n2n3 , but that one may view an element of S concretely as an
n1 × n2 × n3 array of complex numbers. We thus identify such tensors with three-
dimensional hypermatrices.

Let

G(C) = GL(n1,C)×GL(n2,C)×GL(n3,C)

and

G(R) = GL(n1,R)×GL(n2,R)×GL(n3,R) ⊂ G(C),

which act on S through the three indices of tensors. We write this action on the right,
using several interchangeable notations, so that for P ∈ S, (g1, g2, g3) ∈ G(C),

P (g1, g2, g3) = ((P ∗1 g1) ∗2 g2) ∗3 g3 = · · · = ((P ∗3 g3) ∗2 g2) ∗1 g1,
where, for instance,

(P ∗3 g3)ijk =

n3∑
l=1

Pijlg3(l, k),

with similar formulas for the action in other indices. This notation is also useful for
multiplication by vectors, so that if v ∈ Cn3 , for instance, then P ∗3 v is a matrix
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with entries

(P ∗3 v)ij =
n3∑
k=1

Pijkvk.

For i ∈ {1, 2, 3}, by the i-slices of P we mean the ni matrices P ∗i ej , whose
entries have the ith index fixed as j. For example, for i = 3, a tensor P has matrix
slices P1, P2, . . . , Pn3 , where Pj = P (·, ·, j). The action of G(C) on a tensor can
be understood through transformation of these slices, as P ′ = P (g1, g2, I) has slices
P ′
j = gT1 Pjg2, while P ′′ = P (I, I, g3) has slices P

′′
j =

∑
k Pkg3(k, j).

The complex tensor rank of P ∈ S is the smallest integer r such that

P =

r∑
i=1

ui ⊗ vi ⊗wi

for some ui ∈ Cn1 , vi ∈ Cn2 , and wi ∈ Cn3 . For a real tensor, the real tensor rank is
defined analogously, requiring that ui,vi,wi be real. Note that if a tensor is real, its
real and complex tensor ranks need not be equal, though the complex tensor rank is
an obvious lower bound for the real tensor rank.

There is also a notion of multilinear rank of such a tensor, which is an ordered
triple (r1, r2, r3). Here ri is the rank of the transformation

C
ni → C

nj ⊗ C
nk ,

v 
→ P ∗i v

associated to P , and thus is the ordinary matrix rank of the njnk×ni flattening of P .
The multilinear rank of a real tensor is thus independent of the choice of field R or C,
as the analogous fact holds for matrices.

Both tensor rank (which we often will refer to as simply rank, or C-rank or R-rank
if the field must be made clear) and multilinear rank are invariant under the action
of the general linear group. More precisely, if P ′ = Pg with g ∈ G(C), then P ′ and
P have the same C-rank and multilinear rank. If P is real and g ∈ G(R), then P and
P ′ have the same R-rank as well.

For the remainder of the paper, we restrict our attention to the case

n1 = n2 = n3 = n,

although, as pointed out in the introduction, many results are easily modified to cases
with ni ≥ n.

If v ∈ Cn, let diag(v) denote the n × n diagonal matrix whose (i, i)-entry is vi.
Similarly, let Diag(v) denote the n × n × n diagonal tensor with (i, i, i)-entry vi. In
particular, if 1 is the vector with all entries 1, then diag(1) = In is the identity matrix.
We denote its tensor analogue by D = Dn = Diag(1).

By D(C) and D(R) we denote the G(C)- and G(R)-orbits of D, respectively.
Proposition 2.1. D(C) is the set of all n× n× n complex tensors of C-rank n

and multilinear rank (n, n, n).
D(R) is the set of all n × n × n real tensors of R-rank n and multilinear rank

(n, n, n).
Proof. First, observe that D = Diag(1) has C-rank and R-rank n and multilinear

rank (n, n, n): The multilinear rank is clear since the n2 × n flattenings of D all have
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the standard basis vectors among their rows. The C-rank and R-rank of D are at
most n, since

D =
n∑

i=1

ei ⊗ ei ⊗ ei.

If D had C-rank or R-rank k < n, so that D =
∑k

i=1 ui ⊗ vi ⊗wi, then

In = D ∗3 1 =

k∑
i=1

(wi · 1)ui ⊗ vi

would have matrix rank less than n, which is absurd.
That every element of these orbits has the stated tensor rank and multilinear

rank is a consequence of their invariance under the group actions.
To see that every complex tensor P of rank n and multilinear rank (n, n, n) lies

in D(C), first write

P =

n∑
i=1

ui ⊗ vi ⊗wi.

Then since the first flattening of P to an n2 × n matrix has rank n, the ui must
be independent, so the matrix g1 with ith row ui is in GL(n,C). By the same
reasoning, the matrices g2, g3 with ith rows vi,wi are in GL(n,C). Then one checks
that P = D(g1, g2, g3) ∈ D(C). The same argument applies in the real case.

Note that not every tensor of C-rank n is in D(C). For instance, the tensor P
with slices I, 0, 0, . . . , 0 has tensor rank n, but is not in D(C) since it has multilinear
rank (n, n, 1). However, P is in the closure of D(C), since one can give a sequence
{hi} of elements in GL(n,C) with lim hi = 1eT1 , and then limD(I, I, hi) = P . Similar
reasoning shows that any tensor of complex tensor rank ≤ n is in the closure of D(C)
and that an analogous statement holds for D(R).

Finally, note that the closures of D(C) and D(R) also contain tensors of rank
greater than n. Indeed, the phenomenon that tensor rank may increase when one
takes a limit is a key difference from the matrix rank. We will return to this with
some explicit examples in section 8.

3. The variety of rank-n tensors, and certain orbit representatives. Let
Vn ⊆ Cn3

denote the closure of D(C), under either the Zariski or standard topology,
as these give the same set. This is the smallest algebraic variety containing all tensors
of C-rank n and multilinear rank (n, n, n). (It is straightforward to see that it is
also the smallest variety containing all tensors of C-rank n.) Since Vn is the closure
of a G(C)-invariant set, Vn is also G(C)-invariant. As mentioned in section 2, for
all n ≥ 2, Vn contains both tensors of rank less than n and tensors of rank greater
than n. Tensors in Vn � Vn−1 have rank ≥ n, and are said to have border rank n.

A key fact we will use is that for all n some defining equations for the variety Vn

are known, those given by the commutation relations [3, 4]. The essential idea behind
these first appeared in the literature on tensors in [31], though much earlier work in
the statistics literature on latent class models contains the idea as well.
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Proposition 3.1. The ideal I(Vn) of polynomials vanishing on Vn includes those
obtained from entries of the following matrix equations, i = 1, 2, 3, 1 ≤ j < k ≤ n:

(3.1) (P ∗i ej) adj(P ∗i v)(P ∗i ek)− (P ∗i ek) adj(P ∗i v)(P ∗i ej) = 0,

where v ∈ Cn is an arbitrary vector, and adj denotes the classical adjoint matrix.
While the identity (3.1) still holds if the ej , ek appearing in it are replaced by more

general vectors, this yields only linear combinations of the identities above and thus
no essentially new polynomials. Moreover, by treating v as a vector of indeterminates
and considering the coefficients of the monomials in v that result from (3.1), one may
list a finite set of polynomials in P linearly spanning this set for all choices of v.

In the case n = 2, these relations are all trivial (i.e., simplify to 0 = 0). If n = 3,
these polynomials are known to generate I(V3) [15]. For n ≥ 4, it is known that
additional polynomials are needed to generate I(Vn), but little is known about them.
A reward offered by one of the authors (ESA) in 2007 for determining I(V4) has led
to that question being called “the salmon problem.” Currently, only set-theoretic
defining polynomials have been determined [12, 7, 13].

Though the orbit of D is dense in Vn, additional orbits lie in Vn as well. Next
we show that some of the G(C)-orbits in Vn have orbit representatives of a certain
form. This semicanonical form will be used for determining on which tensors the
functions constructed in the next section vanish. While the determination of orbit
representative for tensors of certain specific sizes has been studied by many (e.g., [26])
and usually leads to long lists of canonical forms, we can avoid addressing the general
problem as we are focused solely on tensors of a specific rank and do not need our
forms to be unique within an orbit.

Definition 3.2. An n × n × n tensor P is i-slice-nonsingular if there is some
C-linear combination of the i-slices that is nonsingular, and slice-nonsingular if it is
i-slice-nonsingular for some i ∈ {1, 2, 3}. If P is not i-slice-nonsingular, we say it is
i-slice-singular. If P is not slice-nonsingular, we say it is slice-singular.

Note that P is i-slice-nonsingular if and only if one can act on P in the ith index
by an element of GL(n,C) to obtain a tensor with a nonsingular i-slice. Thus the
terms in the above definition all depend only on the G(C)-orbit of P . To investigate
orbits, we consider slice-singular and slice-nonsingular orbits separately.

Let x = (x1, x2, . . . , xn) be a vector of indeterminates. Then P is i-slice-singular
precisely when hi(P ;x) = det(P ∗i x) is the zero polynomial in x. Thus the
i-slice-singular tensors form an algebraic variety, defined by setting equal to zero
the coefficients of each x-monomial in the expansion of hi.

Proposition 3.3. Suppose P is i-slice-nonsingular and for that i satisfies the
polynomials of (3.1) in Proposition 3.1. Then P has a G(C)-orbit representative with
all i-slices upper triangular.

Moreover, if the matrix Z whose columns are the diagonals of the i-slices of such
a representative is nonsingular, then P ∈ D(C). If Z is singular, then an orbit
representative exists for P with upper triangular i-slices and at least one slice strictly
upper triangular.

Theorem 4.1 below implies that the matrix Z of this theorem is nonsingular
precisely when P ∈ D(C).

Proof. For convenience, suppose P is 3-slice-nonsingular, with 3-slices P1, P2, . . . ,
Pn. Then, passing to other elements in its G(C)-orbit, we may first assume that
P has a nonsingular slice, and then that it has an identity slice, say P1 = I. But
then the commutation relations of Proposition 3.1 with v = e1 require that for any
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1 ≤ j, k ≤ n,

Pj adj(P1)Pk − Pk adj(P1)Pj = 0,

so

PjPk = PkPj .

Since these parallel slices commute, they can be simultaneously upper-triangularized,
by a unitary g1. Thus, acting by (gT1 , g

−1
1 , I) ∈ G(C), we may assume that the slices

Pi are all upper-triangular.
Let Z be the matrix whose columns are the diagonals of the slices; i.e., Z(i, j) =

P (i, i, j).
Suppose first that Z is nonsingular. Then acting on P by (I, I, g2) for appropri-

ately chosen g2 will preserve the upper-triangular form of the slices, keeping P1 = I,
but making another slice, say P2, have distinct entries on its diagonal: To see this,
note that the action of (I, I, g2) on P will send Z to Zg2. Choose some nonsingular
Z ′ whose first column is 1 and whose second column has distinct entries, and choose
g2 so Zg2 = Z ′. Then P ′ = P (I, I, g2) will have all upper-triangular slices, with 1
on the diagonal of P ′

1 and distinct entries on the diagonal of P ′
2. To see that in fact

P ′
1 = I, for any fixed i < j consider the row vector wij = P (i, j, ·), whose entries

come from the strictly upper-triangular entries of the 3-slices. Now there is some row
vector a with wij = aZ. But since the first entry of wij is 0, and the first column of
Z is 1, we see 0 = a1. Thus wijg2 = aZg2 = aZ ′ implies that the first entry of wijg2
is also 0, since the first column of Z ′ is 1.

Assuming now that P2 has distinct entries on its diagonal, it can be diagonalized
by acting on P by some (gT3 , g

−1
3 , I), without changing P1 = I or the diagonal entries

of P2. But then the commutation of P2 with all other slices shows that they are
also diagonal. Moreover, Z being nonsingular is equivalent to a statement that no
nonzero linear combination of the upper-triangular slices is nilpotent. This property
is preserved by the action of (gT3 , g

−1
3 , I), and so the new matrix Z of diagonals is

nonsingular as well. Thus, by a final action by (I, I, Z−1), we obtain D.
If, on the other hand, Z is singular when the Pi are upper-triangular, then there

exists a g4 ∈ GL(n,C) with Zg4 having a column of zeros. Acting on P by (I, I, g4)
preserves the upper-triangular form of the slices but ensures that one slice has zeros
on the diagonal.

4. Construction of invariant functions, and their behavior on Vn. In
this section, for all n > 2 we construct explicit polynomial and rational functions
on the n × n × n tensors, with invariance properties under G(C). When n = 2 this
construction gives Cayley’s hyperdeterminant Δ, though for larger n we were not
able to find this generalization in the literature. We then investigate the values these
functions take on when restricted to Vn. Using Proposition 3.3, the explicitness of our
construction allows us to show that the nonvanishing of the functions distinguishes
the orbit D(C).

Let x = (x1, . . . , xn) be a column vector of auxiliary indeterminates. For an
n× n× n tensor P , consider the following functions for i ∈ {1, 2, 3}:

hi(P ;x) = det(P ∗i x),(4.1)

fi(P ;x) = (−1)n−1 det(Hx(hi(P ;x))).(4.2)
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Here detM denotes the determinant of a matrix M , and Hx is the Hessian operator
on a scalar-valued function, giving the matrix of second-order partial derivatives with
respect to the indeterminates x.

These functions are polynomials in the entries of P and x, homogeneous in each.
Their degrees are

degP (hi) = n, degx(hi) = n,(4.3)

degP (fi) = n2, degx(fi) = n(n− 2).(4.4)

From the action of G(C) on tensors, the functions above inherit certain invariance
properties. If P ′ = P (g1, g2, g3) and {i, j, k} = {1, 2, 3}, then one sees

(4.5) hi(P
′;x) = det(gj) det(gk)hi(P ; gix).

Since, by the chain rule,

Hx (hi(P
′;x)) = det(gj) det(gk)g

T
i ((Hxhi)(P ; gix)) gi,

taking determinants yields

(4.6) fi(P
′;x) = det(gj)

n det(gk)
n det(gi)

2fi(P ; gix).

Remark. When n = 2, note that fi(P ;x) = fi(P ) is independent of x and can
be seen to be independent of i as well, by calculating its explicit formula. Moreover,
fi(P ) = Δ(P ) since in this case our construction is exactly Schläfli’s construction of
the 2 × 2 × 2 hyperdeterminant from the 2 × 2 determinant: Since det(P ∗i x) is a
quadratic form when n = 2, the determinant of the Hessian of this form is the same as
the discriminant of the form. Schläfli’s construction is typically presented using the
discriminant [16], and that formulation then generalizes to yield (a multiple of) the
hyperdeterminant for tensors of larger dimension (2× 2× 2× 2, etc.). Our functions
fi are a different generalization of the construction, for which the format of the tensor
is n× n× n and does not yield hyperdeterminants.

Remark. For n ≥ 3, fi is not independent of the auxiliary indeterminates x. In
classical language, such a function might be called a covariant for the ith factor in
G(C), or a concomitant (see, for instance, [18, 24, 27]). Only in the case n = 2 is
fi an invariant in the strict sense of the term (i.e., associated to a one-dimensional
representation). In section 5 we will see that fi is associated with a higher-dimensional
representation when n > 2.

We next use the function fi to obtain a semialgebraic description of the orbit
D(C). Since the vector x has indeterminate entries, by a statement that fi(P ;x) = 0
we mean that when fi is evaluated at P , the resulting polynomial in x is identically
zero. Thus fi(P ;x) �= 0 means that at least one coefficient of an x-monomial is
nonzero at P .

Theorem 4.1. P ∈ D(C) if and only if for some i ∈ {1, 2, 3}, P satisfies
the equations (3.1) and fi(P ;x) �= 0. Moreover, if these conditions hold for one
i ∈ {1, 2, 3}, then they hold for all.

Proof. Since D ∗i x = diag(x1, x2, . . . , xn), one computes

(4.7) hi(D;x) = x1x2 · · ·xn,
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so

fi(D;x) = (−1)n−1

× det

⎛
⎜⎜⎜⎝

0 x3x4x5 · · ·xn x2x4x5 · · ·xn · · · x2x3x4 · · ·xn−1

x3x4x5 · · ·xn 0 x1x4x5 · · ·xn · · · x1x3x4 · · ·xn−1

...
. . .

...
x2x3x4 · · ·xn−1 x1x3x4 · · ·xn−1 x1x2x4 · · ·xn−1 · · · 0

⎞
⎟⎟⎟⎠

and

(x1x2 · · ·xn)
2fi(D;x) = (−1)n−1 det

⎛
⎜⎜⎜⎝(x1x2 · · ·xn)

⎛
⎜⎜⎜⎝
0 1 1 · · · 1
1 0 1 · · · 1
...

. . .
...

1 1 1 · · · 0

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ ;

hence

(4.8) fi(D;x) = (n− 1)(x1x2 · · ·xn)
n−2.

The transformation formula (4.6) then implies that if P ∈ D(C), then fi(P ;x) �= 0
for all i. That equations (3.1) hold when P ∈ D(C) is stated in Proposition 3.1.

Conversely, suppose for some i that fi(P ;x) �= 0 and equations (3.1) hold. Then
P must be i-slice-nonsingular, since i-slice-singularity means that hi(P ;x) is the zero
polynomial, which implies that fi(P ;x) = 0. Thus Proposition 3.3 applies, and we
see that P is G(C)-equivalent to a tensor P ′ with upper-triangular slices in index i.
If such a P ′ had a slice with diagonal 0, then det(P ′ ∗i x) would be independent
of one of the xi, so its Hessian would have a zero row (and column), implying that
fi(P

′;x) is the zero polynomial. By the transformation property (4.6), it would
follow that fi(P ;x) = 0 as well. Thus the slices of P ′ cannot have diagonals of 0, and
Proposition 3.3 thus shows P ∈ D(C).

Note that the above theorem is concerned only with values of the fi on the variety
defined by equations (3.1); it makes no statement about fi off this variety.

Since the variety defined by equations (3.1) is a supervariety of Vn, we immediately
obtain the following.

Corollary 4.2. P ∈ D(C) if and only if P ∈ Vn and fi(P ;x) �= 0 for some
(and hence all) i ∈ {1, 2, 3}.

Equations (4.7) and (4.8) suggest consideration of the rational function

ri(P ;x) =
fi(P ;x)

(n− 1)hi(P ;x)n−2
,

which is defined on the i-slice-nonsingular tensors and satisfies

(4.9) ri(D;x) = 1.

Moreover, if P ′ = P (g1, g2, g3), then the transformation formulas (4.5) and (4.6) yield

(4.10) ri(P
′;x) = det(g1)

2 det(g2)
2 det(g3)

2ri(P, gix).

Since ri(D;x) is independent of x, (4.10) implies that ri(P ;x) is independent of x
when P ∈ D(C) and thus, by continuity, when P ∈ Vn.
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Corollary 4.3. P ∈ D(C) if and only if P satisfies the equations (3.1) and
ri(P ;x) is defined and nonzero for some (and hence all) i ∈ {1, 2, 3}.

In this statement the condition that P satisfies the equations (3.1) can, of course,
be replaced by P ∈ Vn, as in Corollary 4.2.

While it is tempting to hope that ri(P ;x) is independent of x for all P , one can
verify that this is not the case even when n = 3. Indeed, for the tensor

P =

⎡
⎣
⎛
⎝1 0 0
0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝0 0 0
0 1 0
0 0 0

⎞
⎠ ,

⎛
⎝0 1 0
1 0 0
0 0 1

⎞
⎠
⎤
⎦ ,

we have that

h3(P ;x) = det

⎛
⎝x z 0
z y 0
0 0 z

⎞
⎠ = xyz − z3,

and

f3(P ;x) = det

⎛
⎝0 z y
z 0 x
y x −6z

⎞
⎠ = 2xyz + 6z3.

Thus ri(P ;x) is neither independent of x nor a polynomial function of x. This example
can easily be modified for n ≥ 3.

Suppose now that one had a polynomial, F (P ), satisfying

(4.11) F (P ′) = det(g1)
2k det(g2)

2k det(g3)
2kF (P ),

when P ′ = P (g1, g2, g3). That is, suppose F (P ) is an invariant of weight (2k, 2k, 2k)
for G(C). Then, provided that F (D) �= 0, we may normalize so that F (D) = 1, and
then observe that by their transformation formulas

(4.12) ri(P )k = F (P ) for P ∈ D(C),

and thus, by continuity,

fi(P ;x)k = (n− 1)khi(P ;x)k(n−2)F (P )

for all P ∈ Vn. This yields the following.
Proposition 4.4. Let F (P ) be an invariant of weight (2k, 2k, 2k) for G(C) such

that F (D) �= 0. Then Theorem 4.1 and Corollary 4.2 remain true if fi is replaced by
the function

Gi(P ;x) = hi(P ;x)k(n−2)F (P ).

While it is relatively straightforward to investigate the existence of polynomial
invariants with weights of the type required for F (P ) for small n, it is less easy to
give them explicitly. We discuss this further in the next section.

5. Representations and n × n × n tensors. The previous section took an
explicit, constructive approach to defining the invariants fi. Here we turn to a more
general understanding of the representation theory of G(C). In particular, the trans-
formation formula (4.6) of fi and Proposition 4.4 indicate that studying all polyno-
mials with good transformation properties under the group action might be useful.
As a general background to the material in this section, we suggest [11, 14, 17, 25].
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5.1. Representations and decompositions. As we will be concerned only
with complex representations of complex groups, we suppress mention of C in our
notation in this section. We also let V ∼= Cn (which should not be confused with our
use of Vn for an algebraic variety in other sections).

Recall that a representation of a group G is a homomorphism ρ : G → GL(W ).
If W has no proper subspaces that are invariant under the action of G, then ρ is said
to be irreducible. In particular, the irreducible representations of the general linear
group on V ∼= Cn are well understood to be

ρλ : GL(V ) ∼= GL(n,C) → GL(V λ) ∼= GL(nλ,C),

where the ρλ are labelled by integer partitions λ = (λ1, λ2, . . . , λ�), with λ1 ≥ λ2 ≥
· · · ≥ λ� > 0. We say λ is a partition of m and write λ  m and |λ| = m when∑�

i=1 λi = m. We refer to � as the depth of λ. The representing space V λ ∼= C
nλ (also

referred to as a G-module), of dimension nλ, can be expressed using the Schur functors
V λ = Sλ (V ), but it is usually simpler to avoid explicitly doing so, and instead work
with the characters of the representations. The characters {λ} = tr ◦ρλ, where “tr”
denotes trace, are given by the Schur functions sλ [24], with

{λ} (g) = sλ(ξ),

where ξ = (ξ1, ξ2, . . . , ξn) are class parameters (eigenvalues) for g. Crucially, the Schur
functions can be defined, and their properties explored, in a combinatorial manner
quite independently of their role as characters for the general linear group [25].

The dimension nλ = {λ}(I) of the representation ρλ can be calculated by the
hook length formula, which counts the number of semistandard tableaux of shape λ.
For instance, the defining representation of GL(V ) is associated to the partition (1),
with n(1) = n, so {1} denotes its trace and s(1)(ξ) = ξ1 + ξ2 + · · ·+ ξn.

From two representations ρλ and ρλ′ of GL(V ), one can construct the tensor
product representation (ρλ⊗ρλ′)(g) := ρλ(g)⊗ρλ′(g), with character denoted by {λ}⊗
{λ′}. While this representation may be reducible, its decomposition into irreducible
representations of GL(V ) can be found using the pointwise product of Schur functions:

({λ} ⊗ {λ′})(g) = sλ(ξ)sλ′(ξ) =
∑
α

cαλλ′sα(ξ).

Here the multiplicities cαλλ′ are computable using the Littlewood–Richardson rule [25],
with, for instance, software such as Schur [35].

The irreducible representations of GL(n1)×GL(n2)×GL(n3) are tensor products
of the irreducible representations of the GL(ni):

ρλ1 × ρλ2 × ρλ3 : GL(n1)×GL(n2)×GL(n3) → GL(nλ1)×GL(nλ2)×GL(nλ3),

where (ρλ1 × ρλ2 × ρλ3)(g1, g2, g3) := ρλ1(g1) ⊗ ρλ2(g2) ⊗ ρλ3(g3). We denote the
character of this representation by {λ1} × {λ2} × {λ3} to distinguish it from the
product of characters of the sort described in the last paragraph.

The transformation of tensors P ∈ U ∼= V ⊗V ⊗V under elements g = (g1, g2, g3)
of G = G(C) = GL(n,C)×GL(n,C)×GL(n,C) gives a representation of G with
character {1} × {1} × {1}:

tr(g1 ⊗ g2 ⊗ g3) = tr(g1) tr(g2) tr(g3) = s(1)(ξ)s(1)(ξ
′)s(1)(ξ′′).
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Denote the space of homogeneous polynomials of degree d in the components of tensors
P ∈ U by C[U ]d. This space inherits an action of G by

f 
→ g ◦ f,

where g ◦ f(P ) := f(P (g1, g2, g3)), and hence forms a G-module. By a standard
argument, it is possible to identify C[U ]d ∼= U (d) = S(d) (U). While C[U ]d is usually
not an irreducible G-module, through characters we can identify its decomposition
into irreducible modules. This is done by applying the corresponding Schur function
plethysm, denoted by ⊗,

(5.1) ({1} × {1} × {1})⊗{d} =
∑

σ1,σ2,σ3�n
γ(d)
σ1σ2σ3

{σ1} × {σ2} × {σ3},

where the multiplicities γ
(d)
σ1σ2σ3 can be calculated using standard group theory tech-

niques implemented in software such as Schur [35], at least in cases of relatively small
degree. (See below for an outline, and [32] for a more complete explanation.) In terms
of G-modules, we can use (5.1) to identify

(5.2) C [U ]d
∼=

⊕
σ1,σ2,σ3�n

γ(d)
σ1σ2σ3

V σ1 ⊗ V σ2 ⊗ V σ3 .

The primary focus of this section is to relate the functions fi(P ;x) to this decompo-
sition.

The coefficients in a plethysm formula such as (5.1) are the structure constants
for Schur function “inner” products, denoted by ∗:

{α} ∗ {β} =

{∑
μ�n γμ

αβ{μ} if |α| = |β| = n,

0 otherwise,

where γμ
αβ is the multiplicity of the irreducible representation {μ} occurring in the

decomposition of the tensor product of the irreducible representations {α} and {β}
in the symmetric group Sn. By linearity and associativity, we can similarly define

{α} ∗ {β} ∗ · · · ∗ {ζ} =
∑
μ�n

γμ
αβ···ζ{μ},

and the general plethysm of a product of defining representations is

(5.3) ({1} × {1} × · · · × {1})⊗{μ} =
∑

α,β,...,ζ � |μ|
γμ
αβ···ζ{α} × {β} × · · · × {ζ}.

Equation (5.1) is then the special case of a threefold product.
Remark. If in (5.3) the characters {1} are replaced by {ρ}, {σ}, {τ}, . . . , then

the expansion on the right-hand side of (5.3) would be over the respective plethysms,
({ρ}⊗{α}), ({σ}⊗{β}), ({τ}⊗{μ}), . . . . The simpler case of (5.3) arises since {1}⊗{α}
≡ {α}, {1}⊗{β} ≡ {β}, etc.

Remark. A familiar application of this theory is given by considering the k × k
minors of an n× n matrix A. Under the action of GL(n)×GL(n) : A 
→ g1Ag

T
2 , for

each integer 1 ≤ k ≤ n, the span of the k × k minors of A is an invariant subspace
of the homogeneous polynomials of degree k in the entries of A. In terms of Schur
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function characters, the minors must therefore appear in the decomposition of the
plethysm

(5.4) ({1} × {1})⊗{k} =
∑

α,β�k
γ
(k)
αβ {α} × {β} .

Adopting the standard shorthand of using exponents to signify repeated integers in a
partition, (k) and (1k) = (1, 1, . . . , 1) label the one-dimensional “trivial” and “sign”

representations of the symmetric groupSk, respectively. The calculation γ
(k)

(1k)(1k)
= 1

follows immediately from the tensor product sgn(σ) ⊗ sgn(σ) = sgn(σ)sgn(σ) = 1
for all σ ∈ Sk.

Thus the character {1k}×{1k} appears exactly once in the above expansion. Via

the hook length formula one finds dim(ρ(1k) × ρ(1k)) = dim(ρ(1k))
2 =

(
n
k

)2
, and the

associated irreducible subspace is confirmed to be that spanned by the k × k minors
of A.

5.2. One-dimensional representations. As first use of this viewpoint, we
investigate polynomial invariants of G(C), that is, one-dimensional representations
within the vector space of polynomial functions. Proposition 4.4 indicates that any
polynomial F satisfying (4.11) for any positive integer k can be used in characterizing
the points on D(C) (provided that F (D) �= 0), so we seek to find such F .

The one-dimensional representation det(g)k of GL(n) has character {kn}. Via
calculations with Schur [35], by decomposing C [U ] for n = 2, 3, 4, we find that there
are polynomials in the entries of P transforming as {22}×{22}×{22}, {23}×{23}×
{23}, {24} × {24} × {24} of degree d = 4, 6, 8 for n = 2, 3, 4, respectively. Since the
multiplicities of the representation in the decomposition are found to be

1 = γ
(4)
(22)(22)(22) = γ

(6)
(23)(23)(23) = γ

(8)
(24)(24)(24),

the polynomial is uniquely determined up to scaling. Thus for n = 2, 3, 4 we denote
this function by τn and call it the n-tangle, since Cayley’s hyperdeterminant τ2 = Δ is
called the tangle in the physics literature, and τ2, τ3, and τ4 all transform with weight
(2, 2, 2). (We have not yet fixed a choice of scaling for τ3, τ4, but we will below.)
This progression stops with n = 4, but for n = 5, 6 there are invariants transforming
with weight (3, 3, 3), which again occur with multiplicity 1 and so are unique up to
scaling. These results are summarized in Table 5.1. Beyond n = 7, computations
with Schur become prohibitive, although we verified that there are no weight (2, 2, 2)
representations for 8 ≤ n ≤ 16.

Table 5.1

Multiplicities γ
(nk)
(kn)(kn)(kn)

of one-dimensional representations of weight (k,k,k) in the space of

homogeneous polynomials of degree nk in the entries of tensors of format n × n × n, as computed
by Schur.

Tensor Weight
format (2,2,2) (3,3,3) (4,4,4)

2× 2× 2 1 0 1
3× 3× 3 1 1 2
4× 4× 4 1 1 5
5× 5× 5 0 1 6
6× 6× 6 0 1
7× 7× 7 0 0
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While the existence of invariants with the desired transformation property for
n < 6 is now established, to use them in Proposition 4.4 requires that we also know
that they do not vanish at D. Just as this can be easily seen from the explicit formula
(1.1) for the tangle when n = 2, to establish this in the cases n = 3, 4, we turn to an
explicit construction of the invariant.

For n = 3, let εijk be the antisymmetric Levi–Civita tensor with ε123 = ε231 =
ε321 = 1, ε213 = ε321 = ε123 = −1, and εijk = 0 otherwise. Consider the degree 6
polynomial τ3 : U → C defined by

τ3(P ) =
3∑
1

Pi1i2i3Pj1j2j3Pk1k2k3Pl1l2l3Pm1m2m3Pn1n2n3

× εi1j1k1εj2k2l2εk3l3m3εl1m1n1εm2n2i2εn3i3j3 ,

where all 18 indices run from 1 to 3 in the sum. Since εijk defines a one-dimensional
representation of GL(3) by∑

1≤i′,j′,k′≤3

g(i, i′)g(j, j′)g(k, k′)εi′j′k′ = det(g)εijk for g ∈ GL(3,C),

it is straightforward to check that

τ3(P (g1, g2, g3)) = det(g1)
2 det(g2)

2 det(g3)
2τ3(P )

for all (g1, g2, g3) ∈ G(C).
As noted in [33], expanding τ3 as a polynomial yields 1152 terms [2], and thus

it is not the zero polynomial. But we wish to establish the stronger statement that
τ3(D) �= 0. Expressing D in components Dijk = δijδjk, one first finds

τ3(D) =
∑

1≤i,j,k,l,m,n≤3

εijkεjklεklmεlmnεmniεnij .

Now the first factor in the summand, εijk, is zero unless i, j, k ∈ {1, 2, 3} are distinct.
Then the product of the first two factors is zero unless additionally l = i. Considering
the remaining four ε factors in this way, nonzero contributions also require m = j and
n = k. Thus

τ3(D) =
∑

i,j,k distinct

ε2ijkε
2
jkiε

2
kij = 6.

This confirms both that τ3 is a nonzero polynomial and that it evaluates to a positive
value on the diagonal tensor.

Similar considerations give the 4-tangle. With εijkl denoting the sign of the
permutation (ijkl) when i, j, k, l are distinct, and 0 otherwise, let

τ4(P ) =

4∑
1

Pi1i2i3Pj1j2j3Pk1k2k3Pl1l2l3Pm1m2m3Pn1n2n3Pr1r2r3Ps1s2s3

× εi1j1k1l1εm1n1r1s1εi2l2m2s2εj2k2n2r2εi3j3m3n3εk3l3r3s3 ,

where all 24 indices run from 1 to 4 in the sum. A polynomial expansion of this has
431,424 terms [2]. By an argument analogous to that for τ3, one sees that the only
nonzero terms in

τ4(D) =

4∑
1

εijklεmnrsεilmsεjknrεijmnεklrs
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occur when m = k, n = l, r = i, s = j, and thus that τ4(D) = 24, confirming that
τ4(D) is also nonzero.

We do not have an explicit construction of invariants for n = 5, 6 that have weight
(3, 3, 3), and we therefore do not know whether they vanish at D.

5.3. Higher-dimensional representations. The functions fi constructed in
section 4 are not invariants when n > 2, due to their dependence on the auxiliary
variables x, and thus do not define one-dimensional representations of G(C). We
therefore turn to studying higher-dimensional representations in polynomials.

A consequence of considering irreducible modules of polynomials is that state-
ments concerning polynomials vanishing on G(C)-invariant sets which apply to a
specific element of the module must also apply to the module as a whole. This is
formalized in the following two lemmas.

Lemma 5.1. Let f ∈ C[U ]d. Then 〈{g ◦ f : g ∈ G}〉
C
, the linear span of the

G-orbit of f , is a G-module. In particular, if W is an irreducible submodule of C[U ]d,
and 0 �= f ∈ W , then 〈{g ◦ f : g ∈ G}〉

C
= W.

Proof. If p ∈ 〈{g ◦ f : g ∈ G}〉
C
, then, for some finite subset S ⊂ G and ch ∈ C,

p =
∑
h∈S

ch (h ◦ f) .

Thus if g ∈ G,

g ◦ p =
∑
h∈S

ch (gh ◦ f) ∈ 〈{g ◦ f : g ∈ G}〉
C
,

so the linear span of the orbit is a G-module.
Now for any G-module W and f ∈ W , 〈{g ◦ f : g ∈ G}〉

C
⊆ W. Irreducibility of

W and f �= 0 thus implies that 〈{g ◦ f : g ∈ G}〉
C
= W .

Although as stated here this lemma applies to f in a G-module of polynomials,
the result is a standard one for any G-module. Though also stated for polynomials,
the next result holds more generally for G-modules of functions where the action of
G arises from an action on their domain.

Lemma 5.2. Let S be a G-invariant subset of U , and let W ⊆ C[U ]d be an
irreducible G-module. Then f |S ≡ 0 for some nonzero f ∈ W if and only if p|S ≡ 0
for all p ∈ W .

Proof. Let f ∈ W with f |S ≡ 0. Then for any p ∈ W , P ∈ U , by the preceding
lemma

p(P ) =
∑
h∈S

ch (h ◦ f) (P ) =
∑
h∈S

ch f(Ph).

But P ∈ S implies Ph ∈ S, so this shows p|S ≡ 0.
There are several G-invariant sets of interest in this paper. They are D(C), the

orbit of the tensor D; Vn = D(C), the orbit closure; and Vn �D(C), the complement
of the orbit in its closure. However, by continuity, polynomials that vanish on D(C)
vanish on its closure Vn as well, so investigating polynomials vanishing on either of
these sets leads to polynomials in the defining ideal of the variety Vn. Indeed, some
such polynomials are given in Proposition 3.1, though not from the point of view of
representations.

The functions fi(P ;x) constructed in section 4, however, are zero on Vn �D(C),
and nonzero onD(C), by Corollary 4.2. Thus Lemma 5.2 suggests relating the classical
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viewpoint on fi used in their construction to the language of representations. Without
loss of generality we focus on f3(P ;x) and think of f3(P ;x) as providing a set of
functions f3( · ;x) : P 
→ f3(P ;x) parametrized by the auxiliary variables x.

Notationally, we use nonnegative integer vectors α = (α1, α2, . . . , αn) to express
a monomial xα := xα1

1 xα2
2 · · ·xαn

n of total degree d =
∑

1≤i≤n αi. Then

f3(P ;x) =
∑
α

pα(P )xα,

with coefficients pα ∈ C[U ]n2 , where the monomials xα are interpreted as basis ele-
ments for C[V ]d ∼= V (d), with d = n(n− 2).

One can see directly that no pα is identically zero: To start, note that (4.8) gives

∑
α

pα(D(I, I, g3))x
α = f3(D(I, I, g3);x)(5.5)

= det(g3)
2f3(D; g3x)

= det(g3)
2(n− 1)((g3x)1(g3x)2 · · · (g3x)n)n−2.

Choosing g3 ∈ GL(n,C) with strictly positive entries, every possible monomial xα

appears in the expansion of ((g3x)1(g3x)2 · · · (g3x)n)n−2. Hence pα(D(I, I, g3)) �= 0
for all α.

To understand the transformation of pα under g = (g1, g2, g3) ∈ G(C), observe
that g3 maps the monomial xα of total degree d by

xα 
→
(

n∑
i1=1

g3(1, i1)xi1

)α1
(

n∑
i2=1

g3(2, i2)xi2

)α2

· · ·
(

n∑
in=1

g3(2, in)xin

)αn

:=
∑
β

g̃3(α, β)x
β .

The matrix elements g̃3(α, β) provide precisely the irreducible representation ρλ :
GL(n,C) → GL(nλ,C) with λ = (d) and g̃3 = ρ(d)(g3). The polynomials pα(P )
therefore transform under G(C) as

(5.6) pα 
→ det(g1)
n det(g2)

n det(g3)
2
∑
β

pβ g̃3(β, α).

This formula also implies that the pα are independent: If c = (cα) specifies a de-
pendency relation

∑
cαpα = 0, then from (5.6) it follows that d = g̃3c gives another

dependency relation for every choice of g3. By the irreducibility of ρ(d), and varying g3,
this can happen only if all pα vanish identically, which they do not.

Now let W be the span of {pα}. Since the pα are independent, (5.6) defines
a linear map on W , making W an irreducible G(C)-module. The character of the
corresponding representation of G(C) is the product {nn} × {nn} × ({2n} ⊗ {d}),
with d=n(n− 2). Application of the Littlewood–Richardson rule [25] shows that, as
a character of GL(n,C) where partitions of depth greater than n are excluded, the
third factor is {2n} ⊗ {d} = {2 + n(n− 2), 2n−1}.

Thus the polynomial f3(P ;x) is associated to a module W of polynomials in
the entries of P alone that transforms as {nn} × {nn} × {2 + n(n − 2), 2n−1}. The
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dimension of such an irreducible module is calculated by the hook length formula as

dim((nn))× dim((nn))× dim((2 + n(n− 2), 2n−1)) = 1× 1×
(
n(n− 2) + (n− 1)

n(n− 2)

)

=

(
n2 − n− 1

n− 1

)
.

This result is not a surprise, since it is the dimension of the space of homogeneous
polynomials in n variables of degree n(n − 2), i.e., the cardinality of the basis {pα}
of W .

The multiplicity of modules transforming as {nn} × {nn} × {2 + n(n− 2), 2n−1}
in the decomposition of C [U ]n2 can be calculated, at least for a few small values of n,
using Schur, and are given in Table 5.2. Note that in the notation for the multiplicity

γ
(n2)

(nn)(nn)(2+n(n−2),2(n−1)),

whose values are given in the table, the superscript (n2) should be read as a one-
part partition of the integer n2, while the subscripts (nn) denote the n-part partition
(n, n, . . . , n) of n2 in the standard shorthand notation for partitions.

Table 5.2

Irreducible modules associated to the functions f3 on n×n×n tensors, along with their multiplic-

ities γ
(n2)

(nn)(nn)(2+n(n−2),2(n−1))
and dimensions

(n2−n−1
n−1

)
, in the space of homogeneous polynomials

of degree n2 in the entries of P .

n Module Multiplicity Dimension

2 {22} × {22} × {22} 1 1
3 {33} × {33} × {5, 22} 2 10
4 {44} × {44} × {10, 23} 5 165
5 {55} × {55} × {17, 24} 10 3876

For n = 3, the multiplicity of 2 shown in Table 5.2 allows not only for the
existence of fi but also for an additional function transforming in the same way (or,
more accurately, for a two-dimensional space of such functions containing fi). Indeed,
from the transformation formula (4.5) for hi and the fact that τ3 is an invariant of
weight (2, 2, 2), the function Gi(P ;x) = hi(P ;x)τ3(P ) will be such a function. This
is precisely the construction given in Proposition 4.4, and since τ3(D) �= 0, that result
applies. By the discussion preceding that proposition, fi/hi is not independent of x
and thus cannot be a multiple of τ3. Thus fi and Gi are independent.

Similarly, for n = 4, Gi = h2
i τ4 and fi transform in the same way and can be seen

to be independent. While Table 5.2 indicates the existence of three other independent
functions with the same transformation property, we have no explicit understanding
of them and do not know what, if anything, they (or linear combinations of them)
indicate about tensor rank.

6. Application to real tensors. In this section we investigate real tensors in
D(C). As Corollary 4.2 gives a semialgebraic description of D(C), it is natural to
seek a similar description of D(R). To obtain conditions that define D(R) we should,
of course, include the additional condition that a tensor P be real. However, even
in the case that n = 2, this is not sufficient to define D(R); one also needs that
Δ(P ) > 0 [10].
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Using our functions fi as a tool, our main results are as follows. For n = 3 the
sign of an invariant function can be used to distinguish D(R), extending the n = 2
result in this single case. For all n ≥ 2, the zero set of our fi partitions the real points
in D(C) into connected components. Within a component, all tensors have the same
number of complex conjugate pairs of rank-1 tensors in their rank decompositions.
Moreover, with one exception, there is a single component for each allowable number
of pairs. In particular one component of the real points is D(R).

Let Vn(R) = Vn ∩Rn3

denote the real points on Vn.
Lemma 6.1. Suppose P ∈ D(C) ∩ Vn(R). Then, up to simultaneous permutation

of the rows of the gi, P can be uniquely expressed as P = D(g1, g2, g3), subject to the
following conditions:

(i) The first nonzero entry of every row of g1 and g2 is 1.
(ii) For some k ≤ n/2, the first 2k rows of every gi are complex (and neither

real nor purely imaginary) in conjugate pairs, and the remaining rows are real.
Thus P has a unique decomposition into complex rank-1 components with 2k complex
components in conjugate pairs and n− 2k real components.

Proof. For some g1, g2, g3 ∈ GL(n,C), P = D(g1, g2, g3), which implies

(6.1) P =
n∑

i=1

gi
1 ⊗ gi

2 ⊗ gi
3,

where gi
j is the ith row of gj . Since the rows of each gj are independent, Kruskal’s

theorem [20, 21, 29] implies that this rank-1 decomposition is unique, up to ordering
of the summands. However the individual vectors gi

j can be multiplied by scalars aij ,

as long as ai1a
i
2a

i
3 = 1. Requiring the first nonzero entries in each row of g1, g2 to be 1

removes that freedom.
Since P is real, the complex conjugate of the decomposition in (6.1) must give the

same decomposition, up to order of the summands. Thus for each i either gi
1⊗gi

2⊗gi
3

is real or its complex conjugate also appears as a summand.
We may thus simultaneously permute the rows of the gj , so for i = 1, . . . , k

g2i−1
1 ⊗ g2i−1

2 ⊗ g2i−1
3 = g2i

1 ⊗ g2i
2 ⊗ g2i

3 ,

and for 2k < i ≤ n the summand is real.
Having done this, since each gi

1,g
i
2 has an entry of 1, from the conjugate sum-

mands we first see that g2i−1
3 = g2i

3 for i = 1, . . . , k and then that similar statements
hold for the rows of g1 and g2. Thus all three gi have the first 2k rows in conjugate
pairs. Moreover, none of these first 2k rows of any gi is real, lest there be a repeated
row, contradicting that gi ∈ GL(n,C). Likewise, these rows are not purely imaginary.

An analogous argument shows that the remaining rows of the gi are real.
For P ∈ D(C) ∩ Vn(R), we refer to the ordered pair (n − 2k, k) of this lemma as

the signature of P . For P /∈ D(C)∩ Vn(R), the rank-1 tensor decomposition may not
be unique, so we leave the signature undefined. The orbit D(R) thus comprises those
P ∈ D(C) with signature (n, 0).

Information on the signature of a tensor can be obtained from the value of the
function ri defined in section 4, as we now show.

Theorem 6.2. For all n, the set of tensors P ∈ Vn(R) for which ri(P ) > 0 is
precisely those tensors of signature (n− 2k, k) with k even.
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In particular, for n = 2, D(R) is precisely the set of tensors P ∈ V2(R) with
Δ(P ) > 0, and for n = 3, D(R) is precisely the set of tensors P ∈ V3(R) with
τ3(P ) > 0.

For any n ≥ 3, D(R) is precisely the set of tensors P ∈ Vn(R) with fi(P ;x) �= 0
such that when fi(P ;x) is factored into linear forms as

fi(P ;x) = c

n∏
j=1

lj(x)
n−2,

then all of the linear forms lj may be taken to be real.
In this statement the conditions P ∈ Vn(R) with fi(P ;x) �= 0 can be replaced,

by Theorem 4.1 and Corollary 4.2, by an explicit collection of polynomial equalities
and fi(P ;x) �= 0.

Proof. If P has signature (n − 2k, k), then P = D(g1, g2, g3), where each gi has
exactly k pairs of complex conjugate rows. Thus gi = σgi for some permutation σ
with detσ = (−1)k. This implies that det gi = (−1)k det gi, so det gi is real or purely
imaginary according to whether k is even or odd. Thus (det gi)

2 is positive or negative
according to whether k is even or odd. Using the properties of ri given in formulas
(4.10) and (4.9), the first claim is established.

Note that for n = 2, 3, the only allowable even value for k is zero. The claim
for n = 2 is then immediate since ri = Δ in that case. For n = 3 the claim follows
similarly, from the facts that τ3 is of weight (2, 2, 2) and τ3(D) > 0, so, by equation
(4.12), τ3 is a positive multiple of ri when restricted to D(C).

For arbitrary n ≥ 3, P ∈ Vn, and fi(P ;x) �= 0 is equivalent to P ∈ D(C) by
Corollary 4.2. By (4.6) and (4.8), we have that for P = D(g1, g2, g3),

fi(P ;x) = c′fi(D, gix) = c
n∏

j=1

lj(x)
n−2

for some scalars c′, c and linear forms lj defined by the rows of gi. If P ∈ D(R), so
that the gi may be taken to be real, then fi(P ;x) has a factorization using real linear
forms. For n ≥ 3 and P /∈ D(R), by Lemma 6.1 such a factorization exists with
at least two lj complex and not multiples of real forms. By unique factorization in
the ring C[x], there can be no factorization into powers of real linear forms in this
case.

Note that the statement in this theorem about the factorization into linear forms
of fi(P ;x) could be replaced with a similar one about hi(P ;x).

We next consider the connected components obtained from Vn(R) by removing
the zero set of an fi. Let Zn = {P ∈ Vn(R) | fi(P ;x) = 0}, and note that Zn is
independent of the choice of i ∈ {1, 2, 3}, by Corollary 4.2.

Theorem 6.3. On each path component of Vn(R)�Zn the signature is constant.
For each 0 ≤ k < n/2, there is one path component of signature (n− 2k, k). When n
is even, there are four components with signature (0, n/2).

Proof. Suppose a component of Vn(R)�Zn contains tensors of signature (n−2k, k)
for two different values of k. Let k(P ) denote the second term in the signature
(n − 2k, k) of a tensor P . Then in this component we can choose a tensor P0 and a
sequence of tensors P1, P2, P3, . . . with lim�→∞ P� = P0, k(P0) = k0 �= k1 = k(P�) for
� ≥ 1. But then

(6.2) lim
�→∞

fi(P�;x) = fi(P0;x).
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By Theorem 6.2, for each � > 0 the function fi(P�;x) factors as

(6.3) fi(P�;x) = c�

n∏
j=1

l�,j(x)
n−2,

where we assume that the linear forms in this factorization have been normalized so
that

l�,j(x) = u�,j · x,

with ||u�,j || = 1 for all j. We further assume that complex vectors u�,2j−1 = u�,2j for
1 ≤ j ≤ k1 are associated to the nonreal linear forms, and real vectors u�,j 2k1 < j ≤ n
to the real ones.

By compactness of the unit sphere in Cn, passing to a subsequence of {P�}, we
may assume that for each j

lim
�→∞

u�,j = uj

for some unit vector uj . Let lj(x) = uj · x. Now by (6.2) and (6.3) we see that

fi(P0;x) =

(
lim
�→∞

c�

) n∏
j=1

lj(x)
n−2.

Since for n− 2k1 values of j the u�,j are real, at least this many of the uj are. Thus,
since k0 �= k1, we have k0 < k1.

However, k0 < k1 implies that for some 1 ≤ j ≤ k1, u2j = lim�→∞ u�,2j is real.
But since u�,2j−1 = u�,2j, this means that u2j = u2j−1. This is impossible, as these
vectors are, up to scaling, rows of some gi where P0 = D(g1, g2, g3), and thus must
be independent.

Thus the signature is constant on each component.
The number of path components that exist for any fixed value of k, 0 ≤ k ≤ n/2,

is always at least one, since one can construct a real tensor of signature (n − 2k, k).
We now turn to giving an upper bound on the number of such components.

Note first that a 2× n matrix with complex conjugate rows can be expressed as(
1 i
1 −i

)(
r1
r2

)

for row vectors r1, r2 ∈ Rn. Thus if Jk is an n×n block diagonal matrix with k blocks
of ( 1 i

1 −i ) and n− 2k singleton blocks of 1, then tensors in Vn(R)� Zn with signature
(n− 2k, k) form the G(R)-orbit of D(Jk, Jk, Jk). We thus seek to bound the number
of path components of this orbit.

Recall that GLn(R) has two path components, GL+
n (R) and GL−

n (R), with mem-
bership according to the sign of the determinant. Then G(R) has eight path compo-
nents, one of which is

G+(R) = GL+
n (R)×GL+

n (R)×GL+
n (R).

The trivial bound on the number of components of the G(R) orbit of D(Jk, Jk, Jk) is
thus 8.
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Suppose k ≤ (n− 1)/2, so tensors of signature (n− 2k, k) have at least one real
rank-1 component, and Jk has at least one 1× 1 diagonal block, which we assume is
the last. Let K = diag(1, 1, . . . , 1,−1), and observe that since JkK = KJk,

D(Jk, Jk, Jk)(K, I, I) = D(K, I, I)(Jk, Jk, Jk)

= D(I,K, I)(Jk, Jk, Jk)

= D(Jk, Jk, Jk)(I,K, I),

and similarly D(Jk, Jk, Jk)(I,K, I) = D(Jk, Jk, Jk)(I, I,K). Since det(K) = −1,
this implies that the G(R)-orbit of D(Jk, Jk, Jk) is the union of the G+(R)-orbits
of D(Jk, Jk, Jk) and D(Jk, Jk, Jk)(K, I, I). To show that there is only one path com-
ponent, we now need only show that D(Jk, Jk, Jk) and D(Jk, Jk, Jk)(K, I, I) are in
the same component.

If k < (n−1)/2, then Jk has at least two 1×1 diagonal blocks in the last positions.
Let

R2 =

(
0 1
−1 0

)
, σ2 =

(
0 1
1 0

)
.

Then one checks that

D2(σ2, R2, R2) = D2.

Letting R be the n × n block diagonal matrix R = diag(1, 1, . . . , 1, R2), and letting
σ = diag(1, 1, . . . , 1, σ2), it follows that

D(Jk, Jk, Jk)(σ,R,R) = D(Jk, Jk, Jk).

Since det(R) = 1 and det(σ) = −1 = det(K), D(Jk, Jk, Jk)(σ,R,R) is in the G+(R)-
orbit, and hence the path component, of D(Jk, Jk, Jk)(K, I, I). Thus D(Jk, Jk, Jk)
and D(Jk, Jk, Jk)(K, I, I) are in the same component, and there is only one path
component of signature (n− 2k, k).

In the case when n is odd and k = (n − 1)/2, Jk has a single 1 × 1 block in the
last position. Observe that(

1 i
1 −i

)(
1 0
0 −1

)
=

(
0 1
1 0

)(
1 i
1 −i

)
,

so if L = diag(1, 1, . . . , 1,−1, 1), then

JkL = diag(1, 1, . . . , 1, σ2, 1)Jk.

Thus

D(Jk, Jk, Jk)(L,L, L) = D(Jk, Jk, Jk).

Now D(Jk, Jk, Jk)(LK,LK,LK) is in the G+(R)-orbit, and thus path component, of
D(Jk, Jk, Jk), but

D(Jk, Jk, Jk)(LK,LK,LK) = D(Jk, Jk, Jk)(L,L, L)(K,K,K)

= D(Jk, Jk, Jk)(K,K,K)

= D(Jk, Jk, Jk)(K, I, I).

Thus there is only one path component of signature (1, k).
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If n is even and k = n/2, Jk has only 2×2 blocks on its diagonal. Then JkK = σJk,
where σ = diag(1, 1, . . . , 1, σ2). Thus

D(Jk, Jk, Jk)(K,K, I) = D(σ, σ, I)(Jk , Jk, Jk)

= D(I, I, σ)(Jk, Jk, Jk)

= D(Jk, Jk, Jk)(I, I,K),

with similar formulas for the action of (K, I,K) and (I,K,K) on D(Jk, Jk, Jk). One
then sees that the G(R)-orbit of D(Jk, Jk, Jk) is the union of the G+(R)-orbits of
D(Jk, Jk, Jk), D(JkK, Jk, Jk), D(Jk, JkK, Jk), and D(Jk, Jk, JkK). To show that
there are four path components of signature (0, k), it remains to show that these four
tensors lie in different components.

To this goal, consider a point P0 of signature (0, k), so that

P0 = D(Jk, Jk, Jk)(g1, g2, g3),

with (g1, g2, g3) ∈ G(R). Since fi(P0;x) �= 0, we also have hi(P0;x) �= 0. But by (4.5),

h3(P0;x) = det(g1) det(g2) det(Jk)
2h3(D(I, I, Jk); g3x),

while a direct calculation shows that

h3(D(I, I, Jk);x) =

k∏
i=1

(x2
2i−1 + x2

2i).

Thus h3(P0;x) is a nonzero polynomial in x whose values are either nonnegative on all
of Rn or nonpositive, with similar statements valid for h1, h2. But a straightforward
continuity argument shows that along a path composed of points P with signature
(0, k) the polynomial hi(P ;x), viewed as a function of x, cannot pass between being
nonnegative-valued and nonpositive-valued without being identically zero for some P .
Since it is not identically zero at any point of signature (0, k), on each path component
it must be either nonnegative-valued for all P or nonpositive-valued for all P .

But since

h3(D(Jk, Jk, Jk);x) = h3(D(Jk, Jk, Jk)(I, I,K);x)

= −h3(D(Jk, Jk, Jk)(K, I, I);x) = −h3(D(Jk, Jk, Jk)(I,K, I);x)

and

h1(D(Jk, Jk, Jk);x) = h1(D(Jk, Jk, Jk)(K, I, I);x)

= −h1(D(Jk, Jk, Jk)(I,K, I);x) = −h1(D(Jk, Jk, Jk)(I, I,K);x),

we can conclude that the four points all lie in different path components, and so there
are four path components of points of signature (0, k).

Remark. Even in the well-studied case n = 2, the assertion of Theorem 6.3 seems
to be a new result.
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7. Application to a stochastic model. We consider here a discrete statistical
model with a single hidden variable, in order to obtain a semialgebraic description of
its set of probability distributions

As a graphical model, it is specified by a 3-leaf tree, as shown in Figure 7.1.
The internal node of the tree, and each leaf, represent random variables, all with
n states. The internal node variable is hidden (i.e., unobservable). The observed
leaf variables are independent when conditioned on the state of the hidden one. The
hidden variable thus provides an “explanation” of dependencies between the observed
ones. This simple conditional independence model with a hidden variable is common
in many statistical applications, and is variously called a hidden naive Bayes model, a
latent class model, or a 3-leaf tree model, although often the four variables are allowed
to have state spaces of different sizes.

In applications, the observed variables in this model might represent three char-
acteristics (such as the results, + or −, of medical tests) measured on individuals in a
population, while the hidden variable represents a “latent class” to which the individ-
ual belongs (such as whether the individual has or does not have a certain disease).
The probabilities of the test outcomes depend on the disease condition, yet given an
individual’s disease state, the results of the tests are independent of each other.

Given this model for fixed n, one can view a probability distribution arising from it
as an n× n× n tensor. A natural problem is to find a semialgebraic characterization
of such tensors, that is, a collection of polynomial equalities and inequalities that
precisely cut out the distributions arising from the model. The structure of the
probability model ensures that the rank of the tensor is at most n and, moreover,
that each summand in a decomposition as a sum of n rank-1 tensors has nonnegative
entries. Understanding polynomial equalities holding on these distributions amounts
to understanding the defining ideal of the variety Vn, work on which was reviewed
in section 3. Inequalities holding on such tensors are much more poorly understood.
While the existence of inequalities in the tensor entries that ensure the tensor arises
from meaningful stochastic parameters (e.g., nonnegative) follows from general theory
of real algebraic geometry, explicit inequalities have previously not been given for
arbitrary n.

Our interest in the model is motivated by its appearance as the general Markov
model in phylogenetics, where in the special case n = 4 it is used to model evolution of
DNA sequences by base substitution. One might think of the unobserved variable as
representing the base (A, C, T, or G) at a site in a sequence of an ancestral organism
from which we have no data, and the observed variables as the state of the site in
three currently extant descendants of it. Though trees with more than 3 leaves are,
of course, essential for phylogenetic applications, in a related work [5] it is shown how

Xh

X1

X3

X2

Fig. 7.1. A graphical model, in which the 3 leaves represent observed random variables
X1,X2,X3, and the central node represents a hidden random variable Xh. As considered here,
all variables are assumed to have n states. The structure of the graph indicates that the leaf vari-
ables are independent when conditioned on the hidden variable.
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to extend a semialgebraic description for the 3-leaf tree to m-leaf trees.
Denoting this model by Mn, we first describe its parametrization. With [n] =

{1, 2, . . . , n} as the state space of all random variables, let π = (π1, . . . , πn) denote the
probability distribution vector for the hidden variable Xh, so that πi = P(Xh = i).
For the observed variables Xi, i = 1, 2, 3, an n × n stochastic matrix Mi has (j, k)-
entry specifying the conditional probability P(Xi = k | Xh = j), so each row of each
Mi sums to 1. The connection of this model to the tensor rank questions we study
in this paper arises from the observation that a probability distribution for Mn is
specified by the n× n× n tensor

P = Diag(π)(M1,M2,M3).

The domain we consider for the parametrization map is specified by requiring that
1. π have strictly positive entries summing to 1,
2. the Mi have nonnegative entries and row sums of 1, and
3. the Mi are nonsingular.

For some statistical applications it is also natural to strengthen the second requirement
so that the Mi have strictly positive entries; we thus comment on this situation as
well in Proposition 7.1.

Note that a few trivial inequalities in the entries of P that must hold are obvious:
Since P ∈ Mn is a probability distribution, its entries must be nonnegative. If one
additionally assumes that the Mi have strictly positive entries, then P must have
strictly positive entries as well.

For n = 2, a complete semialgebraic description of M2 has been given in two
recent independent works [36, 19], using different approaches. In particular, in [36]
the 2×2×2 hyperdeterminant Δ plays a key role, though many statistically motivated
ideas are also used. Here we give a semialgebraic description of Mn for all n ≥ 2,
using the invariants developed in earlier sections that generalize Δ.

Recall a principal minor of a matrix is the determinant of a submatrix chosen
with the same row and column indices. A leading principal minor is one for which
these indices are {1, 2, 3, . . . , k} for some k.

Proposition 7.1. An n× n× n tensor P is in the image of the parametrization
map for Mn if and only if the following conditions hold:

1. P is real, with nonnegative entries summing to 1.
2. For some (and hence all) i, P satisfies the commutation relations given by

(3.1), and the polynomial fi(P ;x) is not identically zero.
3. det(P ∗i 1) �= 0 for all i ∈ {1, 2, 3}.
4. For at least one (and hence all) of the following matrices, all leading principal

minors are strictly positive:

det(P ∗1 1)(P ∗2 1) adj(P ∗1 1)(P ∗3 1)T ,
det(P ∗2 1)(P ∗1 1) adj(P ∗2 1)(P ∗3 1),(7.1)

det(P ∗3 1)(P ∗1 1)T adj(P ∗3 1)(P ∗2 1).
5. For all 1 ≤ l ≤ n, all principal minors of the three matrices

det(P ∗1 1)(P ∗2 1) adj(P ∗1 1)(P ∗3 el)T ,
det(P ∗1 1)(P ∗2 el) adj(P ∗1 1)(P ∗3 1)T ,(7.2)

det(P ∗2 1)(P ∗1 el) adj(P ∗2 1)(P ∗3 1)
are nonnegative.
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Here adj(M) denotes the classical adjoint of a matrix M .
If parameters of the model are restricted so that entries of Mi are strictly posi-

tive, then in condition 5 one should replace “principal minors” by “leading principal
minors” and “nonnegative” by “positive.”

Note that the only equality constraints in the theorem are those in conditions 1
and 2. In particular, a full set of generators of the ideal I(Vn) is not used (when
n ≥ 3) in this semialgebraic description of the model.

Our proof will repeatedly use the following well-known classical result on matrices
defining quadratic forms.

Theorem 7.2 (Sylvester’s theorem). Let A be an n × n real symmetric matrix
and Q(v) = vTAv the associated quadratic form on Rn. Then the following hold:

1. Q is positive definite if and only if all leading principal minors of A are strictly
positive.

2. Q is positive semidefinite if and only if all principal minors of A are non-
negative.

Proof of Proposition 7.1. We first discuss the necessity of these conditions. The
necessity of condition 1 is clear. Condition 2 holds by Theorem 4.1, since

P = Diag(π)(M1,M2,M3) = D(diag(π)M1,M2,M3)

shows that P is in the G(C)-orbit of D.
For condition 3, observe that P ∗i 1 is the marginalization of the distribution to

two observed variables; thus one sees that

P ∗i 1 = MT
j diag(π)Mk

for distinct i, j, k. Since π has positive entries, and Mj,Mk are nonsingular, the
determinant of this matrix is nonzero.

Condition 4 can be restated, after dividing the first formula of (7.1) by the positive
number det(P ∗1 1)2, as asserting the positivity of leading principal minors of

(P ∗2 1)(P ∗1 1)−1(P ∗3 1)T

and two similar expressions. But expressed in terms of parameters, this is

(MT
1 diag(π)M3)(M

T
2 diag(π)M3)

−1(MT
1 diag(π)M2)

T = MT
1 diag(π)M1.

This symmetric matrix, and similar matrices obtained from the other expressions,
define positive definite quadratic forms because π has positive entries. Thus by
Sylvester’s theorem, all their principal minors are positive.

A similar argument shows the necessity of condition 5. For instance, letting r3l
be the vector whose entries are the products πiM3(i, l), one sees that

det(P ∗1 1)(P ∗2 1) adj(P ∗1 1)(P ∗3 el)T = det(P ∗1 1)2MT
1 diag(r3l )M1.

Since the entries of M3 are nonnegative, this matrix defines a positive semidefinite
quadratic form, and thus by Sylvester’s theorem has nonnegative principal minors. If
the entries of the Mi are positive, then this matrix defines a positive definite form
and thus has positive leading principal minors.

Turning to sufficiency, assume that conditions 1–5 are met by a tensor P . By
Theorem 4.1, condition 2 implies P = D(g1, g2, g3) for some gi ∈ GL(n,C). More-
over, by the realness of P in condition 1, from Lemma 6.1 we also know that any
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complex entries in the gi occur in complex conjugate rows. Our goal is to modify this
expression, so the gi are replaced by stochastic matrices, and D by a diagonal tensor
with positive entries.

Letting si = gi1 be the vector of row sums of gi, we have

P ∗1 1 = gT2 diag(s1)g3,

P ∗2 1 = gT1 diag(s2)g3,

P ∗3 1 = gT1 diag(s3)g2.

Thus the nonvanishing of the determinants of these matrices by condition 3 tells us
that the row sums are all nonzero. Letting Mi = diag(si)

−1gi and π be the vector of
entrywise products of s1, s2, s3, we thus have P = Diag(π)(M1,M2,M3). Here each
Mi has unit row sums, π has nonzero entries, and

P ∗1 1 = MT
2 diag(π)M3,

P ∗2 1 = MT
1 diag(π)M3,

P ∗3 1 = MT
1 diag(π)M2.

Since P is real, these expressions are as well, although we have not yet shown that
Mi and π have real entries. Nonetheless, all Mi have the same number of conjugate
(nonreal) pairs of rows, in corresponding positions, with the corresponding entries of
π also conjugate (though possibly real).

Now substituting the above expressions for marginalizations in the three expres-
sions in condition 4, we have that they simplify to

det(P ∗1 1)2MT
1 diag(π)M1,

det(P ∗2 1)2MT
2 diag(π)M2,

det(P ∗2 1)2MT
3 diag(π)M3.

This shows that MT
i diag(π)Mi is real for each i. We now argue that if Mi is not

real, then the quadratic form Qi associated to MT
i diag(π)Mi is not positive definite.

To that end, suppose that two rows (say, the first two) of Mi are complex conjugates
and thus, by Lemma 6.1, of the form

m1
i = r1 + ir2, m2

i = m1
i = r1 − ir2, ri ∈ R

n
� {0},

and that the corresponding entries of π are π1, π2 = π1. Then for any real vector v
orthogonal to the real and imaginary parts of the other rows of Mi, evaluating the
quadratic form at v yields

Qi(v) = π1(m
1
i · v)2 + π1(m

1
i · v)2.

If we additionally choose v to be orthogonal to r2, but not to r1, then

Qi(v) = π1(r1 · v)2 + π1(r1 · v)2 = 2�(π1)(r1 · v)2.
Positive definiteness of Qi would thus imply �(π1) > 0. However, if we instead choose
v to be orthogonal to r1, but not to r2, then

Qi(v) = π1(ir2 · v)2 + π1(ir2 · v)2 = −2�(π1)(r2 · v)2,
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so positive definiteness would imply �(π1) < 0. Thus if Mi were not real, then Qi

would not be positive definite.
But if Qi is not positive definite, by Sylvester’s theorem, the positivity of leading

principal minors asserted in condition 4 must be violated. Thus condition 4 implies
that at least one of the Mi is real, so all are by Lemma 6.1. Applying Sylvester’s
theorem again to the positive definite form Qi then implies that π has real positive
entries.

Finally, condition 5 ensures that the entries of the Mi are nonnegative. For
instance,

det(P ∗1 1)(P ∗2 1) adj(P ∗1 1)(P ∗3 ej)T = det(P ∗1 1)2MT
1 diag(π) diag(m̃j

3)M1,

(7.3)

where m̃j
3 is the jth column of M3. Thus all principal minors of this matrix being

nonnegative implies that the associated quadratic form is positive semidefinite and
thus that m̃j

3 has nonnegative entries. To instead ensure that these entries are strictly
positive, we require that the quadratic form be positive definite, and thus that all
leading principal minors be positive.

For further work in this direction, we direct the reader to [5].

8. Application to “rank jumping.”. It is well known that the limit of a se-
quence of tensors of a fixed rank r > 1 may be strictly larger than r (that is, tensor
rank, unlike matrix rank, is not upper semicontinuous). This “rank jumping” is re-
sponsible for the fact that a given tensor may not have a best approximation by a
tensor of fixed lower rank and can thus be of concern in applied settings.

A tensor that is the limit of tensors of rank r, but not of smaller rank, is said to
have border rank r. Thus the border rank of a tensor is always less than or equal to
its rank.

For instance, while the tensors of complex rank 2 are dense among the 2× 2× 2
tensors, there is a unique G(C)-orbit of rank-3 tensors [10], which therefore have bor-
der rank 2. An orbit representative, called the Werner tensor in the physics literature,
is usually taken as

e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e2.

For our purposes, it is more convenient to apply a permutation in the second index,
so that its 3-slices become

W =

[(
1 0
0 1

)
,

(
0 1
0 0

)]

and thus have the form described in Proposition 3.3. One may express W as an
explicit limit of rank-2 tensors using a difference quotient [10]. This difference quotient
construction generalizes to other formats, to produce simple examples of tensors whose
rank is larger than their border rank.

Proposition 3.3 suggests a different way of obtaining W and many other tensors
whose rank exceeds their border rank. Our goal in this section is to provide some
explicit examples.

In the n = 3 case, consider the tensor given by 3-slices as

K3 =

⎡
⎣
⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝0 1 0
0 0 1
0 0 0

⎞
⎠ ,

⎛
⎝0 0 1
0 0 0
0 0 0

⎞
⎠
⎤
⎦
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and its perturbation as

K3,ε =

⎡
⎣
⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝0 1 0
0 ε 1
0 0 2ε

⎞
⎠ ,

⎛
⎝0 ε 1
0 ε2 3ε
0 0 4ε2

⎞
⎠
⎤
⎦ .

Both tensors are 3-slice nonsingular and have commuting slices, since for each the
third slice is the square of the second.

For arbitrary n, one can similarly construct Kn with slices whose entries are
all zeros except for successive superdiagonals of 1’s. Perturbing the diagonal of the
second slice by adding (0, ε, 2ε, 3ε, . . . , (n − 1)ε), we can perturb the other slices to
be appropriate powers of the perturbed second slice, so that we obtain Kn,ε with
all 3-slices commuting. The matrix Zn,ε of diagonals of the slices of Kn,ε is then a
Vandermonde matrix and hence nonsingular for ε �= 0.

Now Kn,ε meets the hypotheses of Proposition 3.3 and has slices already upper-
triangularized. Moreover, since Zn,ε is nonsingular for ε �= 0, it follows that Kn,ε ∈
D(C).

Since Kn is in the closure of all Kn,ε, we see that K ∈ Vn has border rank at
most n. Since the multilinear rank of Kn is (n, n, n), it cannot have border rank less
than n, so its border rank is exactly n. Since f3(Kn;x) = 0, Theorem 4.1 shows that
Kn /∈ D(C). Since this orbit is precisely the tensors of rank n and multilinear rank
(n, n, n), this implies that the tensor rank of Kn must be strictly greater than n.

We now determine the rank precisely.
Proposition 8.1. For any n > 0, Kn has border rank n and rank 2n−1, over C.
Proof. The fact that Kn has border rank n has been discussed.
To show that the rank is at most 2n − 1 we give an explicit representation,

suggested by A. Jensen. We work with a more symmetric tensor K ′
n, obtained by

acting on Kn by a permutation in the second index, reversing the order of the columns
of each slice. For example,

K ′
3 =

⎡
⎣
⎛
⎝0 0 1
0 1 0
1 0 0

⎞
⎠ ,

⎛
⎝0 1 0
1 0 0
0 0 0

⎞
⎠ ,

⎛
⎝1 0 0
0 0 0
0 0 0

⎞
⎠
⎤
⎦ .

In general, K ′
n will be the n× n × n tensor of all zeros, except for 1’s in the (i, j, k)

position when i+ j + k = n+ 2.
Let ζ denote a primitive (2n−1)th root of unity. Let vl = (ζl, ζ2l, . . . , ζnl). Then

we claim that

K ′
n =

2n−1∑
l=1

1

2n− 1
ζl(n−3)vl ⊗ vl ⊗ vl,

and thus K ′
n has rank at most 2n− 1. Indeed, the (i, j, k) entry of this sum is

1

2n− 1

2n−1∑
l=1

ζl(i+j+k+n−3) =

{
1 if (2n− 1) | (i+ j + k + n− 3),

0 otherwise.

Since n ≤ (i + j + k + n − 3) ≤ 4n− 3, the nonzero entries occur only when i + j +
k + n− 3 = 2n− 1, i.e., when i + j + k = n+ 2.
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To see that the rank is at least 2n− 1, suppose Kn could be expressed as

Kn =

2n−2∑
l=1

ul ⊗ vl ⊗wl,

with ui,vi,wi ∈ Cn. Since the 12|3 flattening ofKn has rank n, the wi must span Cn.
Thus without loss of generality we may assume that B = {w1,w2, . . . ,wn} is a basis
for Cn. Let B∗ = {w∗

1,w
∗
2 , . . . ,w

∗
n} be the dual basis. Then for any i ∈ {1, 2, . . . , n},

w∗
i annihilates at least n − 1 of the wj , so Kn ∗3 w∗

i is a matrix of rank at most
(2n− 2)− (n− 1) = n− 1. But one sees from the explicit form of Kn that Kn ∗3 w∗

i

can have rank at most n− 1 only if w∗
i has first coordinate 0. This contradicts that

B∗ is a basis.
One can construct many other examples of rank jumping by considering variants

of the arguments above using different Jordan block structures of the slices. For
example,

L =

⎡
⎣
⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝0 1 0
0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝0 0 0
0 0 0
0 0 1

⎞
⎠
⎤
⎦

can be perturbed to

Lε =

⎡
⎣
⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝0 1 0
0 ε 0
0 0 0

⎞
⎠ ,

⎛
⎝0 0 0
0 0 0
0 0 1

⎞
⎠
⎤
⎦ ∈ D(C).

Here one can see that L has tensor rank at most 4 (by subtracting the third slice
from the first). Since it also has multilinear rank (3, 3, 3) and by Theorem 4.1 is not
in D(C), its tensor rank must be exactly 4.

Finally, we note that the maximal C-rank of an n×n×n tensor of border rank n
for n = 2 is well known to be 3. For n = 3, it is claimed in [21] that the maximal rank
is 5. The tensor Kn achieves these bounds in both cases. We know of no examples of
n×n×n tensors of border rank n whose rank exceeds 2n− 1, the rank of Kn. It has
been conjectured by one of the authors (JAR; see [6]) that no such tensors exist.

It should be noted that the tensors Kn described in this section are similar to
those given in Theorem 5.6 of [1] of size n× n× (�log2 n�+ 1), whose rank is 2n− 1
when n = 2k and whose border rank has been shown to be n [22]. (When n �= 2k, the
rank of these tensors is slightly smaller than 2n− 1.) Related examples are also given
in Corollary 5.7 of [1] of tensors of size n×(n+1)×(n+1) and rank approximately 3n.
However, the border rank of these tensors has only been shown to be bounded above
by approximately 2n when n = 2k [22], with the precise border rank unknown. Thus
it is unclear what the gap between rank and border rank is for these last examples.
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