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1 Introduction

Methods of inference of the evolutionary history leading to currently extant species, or

taxa, have been transformed in recent years by the ready availability of biological se-

quence data such as that from DNA. While many approaches to this inference problem

have been developed, some of the methods most appealing theoretically are so computa-

tionally intensive that they cannot be carried out exactly when studying a large number

of taxa.

One approach to this issue is to first infer phylogenetic trees for smaller subsets

of the taxa, and then attempt to combine these smaller trees into a single larger one.

In particular, quartet methods of phylogenetic inference from biological sequence data

for n taxa entail first inferring the topology, perhaps with a measure of confidence, of

some or all of the trees relating subsets of four taxa, using information on those four

taxa alone. These quartet trees are then pieced together to form a larger tree, by any one

of a number of methods that have been proposed, such as those in [3, 4, 8, 17] to name

only a few.

If the inference problem begins with a collection of aligned sequences, of DNA

for instance, from the n taxa, then use of a quartet method would mean using these

aligned sequences only in subcollections of 4 at a time. Thus some information is poten-

tially being ignored. Understanding what information may be lost is therefore of interest.
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(Of course, if for each quartet of taxa we have aligned sequences from different parts of

the genome, there may be no loss of information.)

Suppose we restrict ourselves to phylogenetic inference methods that take as in-

put only data on the joint distribution of bases in n aligned sequences from the leaves

of the unknown tree. In particular, as with all methods currently in widespread use, we

use no information on the location of sites at which observed patterns occur. Then when

n > 4, no quartet method can fully answer all questions one might have about the rela-

tionship of observed pattern frequency data to models of sequence mutation.

To see this, for concreteness let Tr be a rooted bifurcating tree with leaves la-

beled by the five taxa a, b, c, d, and e, and consider any 2-state model M of sequence

mutation. For some particular choice of model parameters M, the expected pattern fre-

quency array (or joint distribution) at the leaves Eabcde = Eabcde(Tr,M,M) will be a

2×2×2×2×2 array, which we believe to be well approximated by the observed joint dis-

tribution. Then a quartet method of phylogenetic inference would, by definition, use only

the (approximations from the data of the) five 4-dimensional marginal arrays EΣbcde =∑2
i=1 Eabcde(i, ·, ·, ·, ·), EaΣcde, EabΣde, EabcΣe, and EabcdΣ obtained by summing Eabcde

over one of its indices.

However, if we define the “checkerboard” array of the same size as Eabcde by

Ci,j,k,l,m = (−1)i+j+k+l+m, (1.1)

then C has the property that all of its 4-dimensional marginal arrays are identically zero.

Thus for any choice of ε, Fabcde = Eabcde +εC will have the same 4-dimensional marginal

arrays as Eabcde.

If Fabcde were to describe the observed joint distribution of bases in some aligned

sequences, then one of two unfortunate possibilities must occur. The first is that Fabcde is

indeed the expected frequency array for some choice of model parameters, and so quar-

tet information even on “perfect data” is unable to distinguish between the parameters

leading to Eabcde and those leading to Fabcde, that is, parameters are not identifiable for

the model under consideration. The second possibility is that Fabcde is not the expected

frequency array for any choice of model parameters, and so while the quartet informa-

tion might lead us to conjecture that we have a distribution exactly consistent with the

model, in fact this is not the case.

This situation is analogous to other well-known issues in phylogenetic inference.

The first possibility echoes the fact that comparison of sequences for two taxa at a time

is not sufficient to identify model parameters under many simple models (e.g., general

Markov and submodels). Note that by Chang’s work [6], however, for the general Markov
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model, 3-taxon comparisons are sufficient to determine parameters under mild techni-

cal assumptions, and so the first possibility can be ruled out for that model. Still, for a

more general model incorporating rate variation or dependencies among sites, this is not

necessarily the case.

The second possibility is reminiscent of an issue that arises in using distance

methods for phylogenetic inference. One might assume that a certain model describes

the evolutionary process leading to some sequence data, and using an appropriate

model-based distance formula, calculate distances between terminal taxa. Then these

distances may be reasonably consistent with a certain metric tree. Nonetheless, the full

pattern frequency data may still be inconsistent with the model underlying the distance

formula used. In other words, the work done in verifying that the distances exactly fit a

tree does not verify that the model fits the full data, or that the distance formula used

was an appropriate one.

While quartet methods, then, cannot verify the full fit of a model to data, the com-

putational tasks presented by phylogenetic inference for n taxa when n is large still make

them attractive. Thus one goal of this paper is an understanding of the extent to which

a quartet method, or more generally a k-tet method, can ensure model fit. We of course

are focusing on what can in principal be rigorously verified by examining quartets, and

not on the more statistical issue of how to deal with the stochastic variation which will

make real data fail to exactly pass any such test.

By restricting our consideration to the general Markov model of base substitu-

tion, we can obtain some results which are less pessimistic than the preceding discus-

sion. Note that the general Markov model includes as special cases all those commonly

considered in the current literature—with the important exception of those allowing rate

variation across sites.

While quartet information is not sufficient for verifying that there are model pa-

rameters for the full n-taxon tree consistent with the full n-taxon data, it is sufficient

(under certain technical assumptions) for ensuring there are model parameters for the

full n-taxon tree that are consistent with all the quartet data. To be more precise, fix an

n-taxon tree T and suppose we wish to test whether a particular n-dimensional array X is

a joint distribution array describing pattern frequencies for the tree T and some param-

eter choice M. Assume that for the induced tree TQ associated to each quartet Q, we can

find parameters MQ that would produce the quartet distribution arising from X. Then

Theorem 4.3 shows that, under mild technical conditions, we can indeed find parameters

M for the entire n-taxon tree that will produce all the same quartet distributions. While

it is still possible that X �= E(M), Proposition 6.1, which generalizes the checkerboard

example above, then characterizes how they may differ.
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To put this in perspective, the situation is much different if one investigates the

same issue for triads (3-taxon subsets) instead of quartets. Recall that in [1, Section 7],

it was pointed out that one could have a 4-dimensional array, all of whose 3-dimensional

marginal arrays satisfied all phylogenetic invariants for the 3-taxon tree, yet which failed

to satisfy the 4-taxon invariants. Since [1] also showed that satisfying such invariants is

roughly equivalent to arising from a parameter choice, this means one would suspect

there are examples of 4-dimensional arrays that are not joint distribution arrays for the

general Markov model, yet all of whose 3-dimensional marginal arrays are. This suspi-

cion is in fact correct; we construct a specific example of this in Section 7.

Chang’s important result—that for the general Markov model, triad information

is enough for identifying parameters from the joint distribution array for an n-taxon

tree—of course assumes that one has a joint distribution array for the model to begin

with. Our example shows that if one does not know whether an array really arises from

the model, then one may be able to identify “local” (triad) parameters though no “global”

(n-taxon) parameters exist that are consistent with them. Quartet considerations, how-

ever, can ensure the existence of global parameters, as Theorem 4.3 shows.

One might compare this result to the simpler issue of using scalar distances be-

tween leaves to determine a tree. As is well known, any distance data can fit a 3-taxon

tree (allowing negative lengths), while for four or more taxa, this is not the case. That

4-point conditions of the sort introduced by Buneman [5] be satisfied on all quartets is

both necessary and sufficient for distance data to fit a tree, regardless of the number of

taxa. Thus our results can be viewed as an analog of the 4-point condition for parameters

of the general Markov model rather than for distances.

The results of [1] show how one can ensure that an array X is an expected fre-

quency array and has identifiable model parameters by requiring that it satisfy certain

explicitly given phylogenetic invariants and be “near diagonal.” This allows us to replace

the unwieldy assumption of Theorem 4.3 that parameters satisfying certain technical

conditions be recoverable for every quartet, with conditions that the n-dimensional ar-

ray be near diagonal and satisfy certain polynomial conditions induced from 4-taxon

subtrees. However, since phylogenetic invariants are insensitive to the difference be-

tween stochastic parameters and more general complex parameters, one only gets condi-

tions ensuring global complex parameters. In fact, this feature of invariants leads us to

take extra care to phrase all earlier results in the paper in a form appropriate to complex

parameters.

The explicit set of invariants of [1] was in fact constructed for κ-base sequences

on the n-taxon tree. While the degree of the polynomials was bounded by κ + 1, the car-

dinality of that set grows exponentially with n. On the other hand, the cardinality of the
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invariants arising from quartets grows only polynomially with n. Thus a much smaller

set of invariants than discussed in [1] can be used to test not for full model fit, but at

least for the existence of a set of parameters consistent with all quartet data.

Finally, we conclude with a restatement of some of our results in more algebraic-

geometric language. While this perspective de-emphasizes certain aspects of the results,

it may be a helpful one for further developments.

2 Notation and terminology

By an n-taxon tree T , we mean an unrooted tree with n leaves, labeled by the taxa a1, . . . ,

an, and with all internal vertices of valence 3. Note that internal vertices are not labeled,

though we will occasionally use designations such as v or w for them, and x or y for ar-

bitrary vertices. A rooted n-taxon tree is a pair (T, r), where r is any choice of a vertex in

T , either internal or a leaf. Our usage thus requires that if a root r is internal to the tree,

it has valence 3 rather than the more common assumption of valence 2. In the context of

the general Markov model, where roots are essentially arbitrarily chosen, we lose little

generality by this and gain some simplifications.

We denote undirected edges between vertices x and y by x ↔ y and directed edges

by x → y. The edges of a rooted tree will generally be directed away from the root.

Two taxa ai and aj are said to be neighbors in a tree T if the leaves they label are

adjacent to a common vertex, that is, if for some vertex v, there exist edges ai ↔ v and

aj ↔ v.

Throughout, κ denotes a fixed positive integer, which is interpreted as the num-

ber of bases, or letters, from which sequences are composed. Thus κ = 4 is appropriate

for describing DNA sequences.

Definition 2.1. For a rooted tree (T, r), parameters Mr = (pr;Mxy) for the general Markov

model with κ bases is a collection of a row vector pr ∈ C
κ and matrices Mxy ∈ Mκ×κ(C)

for each edge x → y in T directed away from r, with the properties that pr1 = 1 and

Mxy1 = 1,where 1 = (1, 1, . . . , 1)T . The vector pr is referred to as the root distribution and

each Mxy as a Markov matrix. If all the entries of pr and Mxy are real and nonnegative,

then the parameters M are said to be stochastic.

Given stochastic parameters Mr for a tree (T, r), we interpret the root distribution

vector pr as having entries giving the frequencies of various bases in a sequence at r.

The Markov matrices Mxy have entries giving conditional probabilities of various base

substitutions along the edge x → y. This leads to polynomial expressions (in terms of

the scalar entries in the parameters) for the expected frequencies of various patterns of
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bases at the leaves of T . These can be organized into an n-dimensional κ × · · · × κ array

E(T,Mr) = Ea1···an(Mr) = E(Mr), where the (i1, i2, . . . , in) entry is the expected frequency

of the pattern with base ik at taxon ak. Thus E(Mr) gives the joint distribution of bases

at the leaves of T .

Even when the parameters are not stochastic, we use E(Mr) to denote the array

obtained from Mr by the same polynomial expressions as described above and as in [1].

Definition 2.2. Suppose T is an n-taxon tree. If K ⊆ {a1, a2, . . . , an} is a k-element subset

of the taxa on T , K is referred to as a k-tet. For k = 3, 4, the terms triad and quartet,

respectively, are used. Associated to a k-tet K is the k-taxon tree TK induced from T with

leaves labeled by K. The vertices of TK are a subset of the vertices of T , while the edges of

TK correspond to paths of length ≥ 1 in T .

Definition 2.3. If for a path x0 → x1 → · · · → xm in T , matrices Mxixi+1
have been defined,

then by Mx0xm is meant the product Mx0x1
Mx1x2

· · ·Mxm−1xm .

Note that the last definition allows us to pass naturally from a set of parameters

Mr for (T, r) to an induced set of parameters Mr,K for (TK, r) as long as TK has r as one of

its vertices.

Definition 2.4. A pattern frequency array for the taxa {a1, a2, . . . , an} is any n-

dimensional κ × · · · × κ array X = Xa1a2···an ∈ C
κn

. If the entries are real, nonnegative,

and sum to 1, then the array is said to be stochastic.

Note that while E(T,Mr) is an example of a stochastic pattern frequency array

for the taxa {a1, a2, . . . , an}, most stochastic pattern frequency arrays are not of the form

E(T,Mr) for any choice of T and Mr. In fact, gaining a good understanding of what arrays

X are of this form is a central issue.

Definition 2.5. Suppose X is a pattern frequency array for {a1, a2, . . . , an} and K= {ai1
, . . . ,

aik
} is a k-tet, where i1 < i2 < · · · < ik. Then the marginal array of X of dimension k

obtained by summing over the indices ij for aij
/∈ K is denoted by

XK = Xai1
ai2

···aik
= XΣ···Σai1

Σ···Σai2
Σ···Σaik

Σ···Σ. (2.1)

XK is the pattern frequency array for the k-tet K induced from X.

If K is a k-tet with r a common vertex of T and TK, and Mr parameters for (T, r),

then one readily sees that E(Mr)K = E(Mr,K).

In biological circumstances, expected frequency arrays typically have their larg-

est entries on the diagonal. This is because model parameters describe base substitution



Quartets and Parameters 113

processes where most sites are left unchanged. This feature is essential in real data since

most sites must be identical in order to identify related sequences and to align them.

However, if an expected frequency array X has its only nonzero entries on the

diagonal, then for any n-taxon tree (T , r), there is a choice of Mr with X = E(T,Mr): for

all edges, let Mxy = I be the identity matrix; and let pr be composed of the diagonal

entries of X. While this is a trivial case for the purposes of phylogenetic inference, since X

places no restriction on T , we would like arrays used in inference to be somewhat close to

such trivial arrays since this assumes that mutation is rare. Thus, we make the following

definition.

Definition 2.6. An n-dimensional κ × κ × · · · × κ array X is phylogenetically trivial if it is

diagonal, with positive entries on the diagonal that sum to 1.

We will be interested primarily in arrays X that are near diagonal in the sense

that they are close (by the Euclidean metric) to phylogenetically trivial arrays, but that

are not themselves phylogenetically trivial.

3 Coherent, identifiable, and distance-informative parameters

As was proved in [15], when dealing with the general Markov model, the choice of a root

in a tree is largely irrelevant—usually we can move the root and choose new model pa-

rameters without changing the expected pattern frequencies at the leaves. Even with a

root specified, though, the map Mr �→ E(Mr) from model parameters to their expected

pattern frequency array is not injective, but rather is typically (κ!)n−2-to-1 (see [1, 6]).

Finally, for inferring a tree, it is convenient if (complex) parameters are well behaved

under the log-det distance.

All of these issues will appear in our efforts to “piece together” parameters for

quartet trees to obtain parameters for a larger tree. We will use the log-det distance to

ensure that the needed larger tree exists. As not all quartets trees will contain any cho-

sen root for the larger tree, we have to consider different vertices as the root at different

times. In addition, the noninjectivity of the expected frequency map will mean that we

have to adjust quartet parameters to ensure that they “fit together.”

We therefore define the notions of coherent, identifiable, and distance-informa-

tive parameters to encapsulate the mild technical conditions we need to overcome these

obstacles.

Definition 3.1. Suppose T is an unrooted n-taxon tree. Then coherent parameters for the

general Markov model on T are a collection M = (pz;Mxy) containing the following:
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(1) for each vertex z of T , a row vector pz with all nonzero entries and pz1 = 1,

(2) for each directed edge x → y in T , a κ × κ complex matrix Mxy with Mxy1 = 1

such that for every edge x ↔ y of T , the following conditions hold:

(i) py = pxMxy,

(ii) Myx = D−1
y MT

xyDx, where Dx = diag(px).

In addition, if all Mxy are nonsingular, the parameters are identifiable. If for all pairs

u, v of internal vertices,

∣∣det
(
D1/2

u MuvD−1/2
v

)∣∣ �= 1, (3.1)

the parameters are distance informative. Parameters that are coherent, identifiable, and

distance-informative are referred to as c.i.d. parameters.

Notice that if coherent model parameters M for an n-taxon tree T are given, then

in a natural way,M induces coherent model parameters MK on any k-tet tree TK. The base

distributions at vertices in TK are inherited from M. Moreover, if a directed edge x → y

of TK corresponds to a path x = x0 → x1 → · · · → xm = y in T , then we have Mxy =

Mx0x1
Mx1x2

· · ·Mxm−1xm in MK. It is straightforward to see that this defines coherent

parameters for TK. Moreover, c.i.d. parameters on T induce c.i.d. parameters on TK.

Notice also that if c.i.d. parameters M for T are given, and r is any choice of a

vertex of T as a root, then we can induce parameters Mr for the rooted tree (T, r) by taking

from M the vector pr together with Mxy for each edge x → y in T directed away from r.

These Markov parameters will have the special features that

(1) no entry of pr is zero,

(2) if Mr is used to compute the base distribution px = prMrx at any node x of T ,

then px will have all nonzero entries,

(3) each Mxy is nonsingular,

(4) for any pair u, v of internal nodes, | det(D−1/2
u Euv(Mr)D

−1/2
v )| �= 1, where

Euv(Mr) denotes the expected frequency array of bases at u and v.

Conversely, we obtain the following lemma.

Lemma 3.2. If parameters Mr for a rooted tree (T, r) satisfy conditions (1) and (2) above,

then there exist unique coherent parameters M on T which induce Mr. If, in addition,

condition (3) or (4) is satisfied, M will be identifiable or distance informative, respec-

tively. �

Proof. Let y be any vertex in T and r = x0 → x1 → · · · → xm = y the path from the root

r to y in (T, r). Define the base distribution at y by py = prMry = prMx0x1
· · ·Mxm−1xm ,

so py has nonzero entries and py1 = 1. For each directed edge x → y in (T, r), define
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Myx = D−1
y MT

xyDx, so Myx1 = 1. Also,

pyMyx = pyD−1
y MT

xyDx = (1, . . . , 1)MT
xyDx = (1, . . . , 1)Dx = px. (3.2)

Uniqueness of M is clear.

If condition (3) holds, Myx will be nonsingular, so M is identifiable. Finally, if

condition (4) holds, then since for any pair u, v of internal vertices,

∣∣det
(
D1/2

u MuvD−1/2
v

)∣∣ = ∣∣det
(
D−1/2

u Euv

(
Mr

)
D−1/2

v

)∣∣ �= 1, (3.3)

M will be distance informative. �

Remark 3.3. If Mr is a stochastic set of model parameters, as in any biologically mean-

ingful model, then condition (2) is implied by conditions (1) and (3). In this situation,

since all the Mxy are invertible, no column of any Mxy is identically zero. Since the base

distribution pr has positive entries, and each column of Mry has nonnegative entries

with at least one entry positive, then py = prMry has positive real entries.

Also, for stochastic parameters, condition (4) is equivalent to a requirement that

D−1
u Euv(Mr) = Muv not be a permutation matrix, or equivalently, that its determinant

not be±1. In [14], it is shown that if det(D−1
u Euv(Mr)) �=±1, then |det(D−1/2

u Euv(Mr)D
−1/2
v )|

< 1, while if D−1
u Euv(Mr) = P is a permutation, then | det(D−1/2

u Euv(Mr)D
−1/2
v )| =

| det(D1/2
u PD

−1/2
v )| = det(DuD−1

v )1/2, but since pv = puP, this last quantity is 1.

Proposition 3.4. Let coherent parameters M for T be given. For any choice of a vertex r as

a root for T , let Mr be the parameters for (T, r) induced from M. Then E(Mr), the expected

frequency array of patterns at the leaves of T , is independent of the choice of r. �

Proof. This is a straightforward modification of [15, Theorem 2]. �

We therefore denote by E(M) the common values of E(Mr) for any choice of a

root r. One then checks that E(M)K = E(MK).

As noted in [1, 6], there is ambiguity in identifying parameters M for a tree from

an array E(M) of expected pattern frequencies at the leaves of a tree. Since the expected

pattern frequency array does not track what base occurs at a site at any internal node—

these represent “hidden variables” in our model—certain permutations of the rows and

columns of the Markov matrix parameters in M may be applied without affecting the

entries of E(M) (see [1, Proposition 3] for details, or [6]). Indeed, the identification of pa-

rameters is based on the calculation of the eigenvectors and eigenvalues of certain ma-

trices, yet there is no natural order on the eigenvectors. To address this ambiguity, we

start with the following definition.
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Definition 3.5. Let (T, r) be a rooted n-taxon tree with leaves a1, . . . , an and internal nodes

v1, . . . , vn−2, and suppose Mr = (pr;Mxy) is some choice of model parameters. Let σ =

(Pv1
, . . . , Pvn−2

) be a choice of κ × κ permutation matrices, one for each internal vertex of

T . Define Pai
= I, the identity matrix, for each leaf ai.

Then the model parameters Mσ
r = (prP

T
r ;PxMxyPT

y) are said to be a permutation

of Mr at the internal nodes of T .

Notice further that if M are coherent parameters for T , then it is also possible to

define a permutation Mσ of M. Specifically, we have the following definition.

Definition 3.6. Let T be an n-taxon tree and M and M ′ coherent model parameters for

T . Then M ′ is a permutation of M if for some choice of vertex r of T as a root, M ′
r is a

permutation of Mr.

The choice of root r in the definition is unimportant; if the condition holds for one

choice, it holds for all. Indeed, a permutation Mσ of coherent parameters M can be ob-

tained by the association of a permutation matrix to each internal node of T and carrying

out the appropriate matrix algebra. Also, for c.i.d. parameters M, Mσ is also a collection

of c.i.d. parameters.

One readily sees that E(Mr) = E(Mσ
r ) for any σ, and thus E(M) = E(Mσ). Since in

the definition above, there is a permutation matrix for each of the internal nodes of the

tree T , this means there are up to (κ!)n−2 permutations of M, each producing the same

expected pattern frequency array.

Given c.i.d. parameters for a tree T , then to each edge x ↔ y of T , we can associate

the number

dLD(x, y) = − log
∣∣det

(
D1/2

x MxyD−1/2
y

)∣∣ ∈ R � {0}, (3.4)

which we view as a generalized edge length. For a path ai = x0 → · · · → xn = aj between

taxa, we are led to the tree distance

dLD

(
ai, aj

)
=

n∑
l=1

dLD

(
xl−1, xl

)
= − log

∣∣det
(
D1/2

ai
Maiaj

D−1/2
aj

)∣∣
= − log

∣∣det
(
Dai

Maiaj

)∣∣+ 1

2
log

∣∣det
(
Dai

Daj

)∣∣
= − log

∣∣det
(
Eaiaj

(M)
)∣∣+ 1

2
log

∣∣∣∣∣
κ∏

m,n=1

pai
(m)paj

(n)

∣∣∣∣∣,
(3.5)
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the formula for the usual log-det distance. Note, however, that for nonstochastic param-

eters, our edge and path distances need not be positive, though for paths between inter-

nal vertices, they must be nonzero. If c.i.d. parameters are stochastic, then, by [14] as

discussed earlier, these distances are all positive.

Proposition 3.7. Let M and M ′ be c.i.d. parameters for n-taxon trees T and T ′. If E(M) =

E(M ′), then T = T ′ and M ′ = Mσ for some choice σ of permutations at the internal nodes

of T . �

Proof. This is essentially proved in [6], though Chang assumes that parameters are sto-

chastic, and rules out permutations at internal nodes by making additional assumptions

on the Markov matrices. To extend the proof to the current setting of complex parame-

ters, using the distance-informative assumption, the log-det distance of equation (3.5)

can be used along with the 4-point condition, as formulated to allow real edge lengths

by Bandelt and Steel [2], to first show that the tree topology is uniquely determined.

The identifiability assumption then allows one to modify the rest of the proof to show

uniqueness of the parameters. A 3-taxon statement in the complex setting appears as

[1, Proposition 4]. �

As we piece together parameters for various trees, it will be convenient to use the

following terminology.

Definition 3.8. Suppose T , T ′ are n-, n ′-taxon trees with coherent parameters M, M ′, re-

spectively, and that K is the set of taxa common to T and T ′. Then (T,M) and (T ′,M ′) are

said to be compatible when TK=T ′
K and Mσ

K = M ′
K for some collection σ of permutations

at the internal nodes of T .

Note that by Proposition 3.7, if K is the set of common taxa for T and T ′, then for

c.i.d. parameters, (T,M) and (T ′,M ′) are compatible if and only if E(M)K = E(M ′)K.

4 Quartets and compatible parameter recovery

In this section, we give a set of conditions sufficient for building c.i.d. parameters for a

tree from those for smaller trees.

We will use the following terminology.

Definition 4.1. A pattern frequency array X for taxa {a1, . . . , an} has property (Pk) if for

every k-tet K of taxa, there exist a k-taxon tree TK and c.i.d. parameters MK for TK such

that XK = E(MK).



118 E. S. Allman and J. A. Rhodes

By Proposition 3.7, both TK and MK, whose existence (Pk) implies, are uniquely

determined by X.

Notice that (Pk) implies (Pj) for j < k, for if c.i.d. parameters MK exist for a k-tet

K, then they induce c.i.d. parameters MJ for any J ⊂ K so that XJ = (XK)J = E(MK)J =

E(MJ).

As stated, checking whether an array X has property (Pk) for some k is not easy.

In Section 5, we will return to this issue, but we first focus on the implications of (P4).

Proposition 4.2. Suppose a pattern frequency array X has property (P4). Then there is a

unique n-taxon tree T which induces all the quartet trees TQ whose existence (P4) as-

serts. �

Proof. It has already been pointed out that, for each Q, TQ is uniquely determined. Defin-

ing edge lengths on TQ by the formula of equation (3.4), then total distances between taxa

on TQ are in agreement with log-det distances computed from X, as discussed above.

Thus for all quartets, the log-det distance satisfies the 4-point condition of [2], which

allows real distances, and so by Theorem 1 of that paper, there exists a unique tree T

inducing all the TQ. �

We strengthen this to the following theorem.

Theorem 4.3. Let X be an n-dimensional pattern frequency array with property (P4).

Then there exist a unique n-taxon tree T and c.i.d. parameters M for T , unique up to per-

mutations at internal nodes, such that for all quartets Q, (T,M) is compatible with the

(TQ,MQ) whose existence (P4) asserts.

Furthermore, M is stochastic if and only if all quartet parameters MQ, whose

existence (P4) asserts, are stochastic. �

This can be rephrased as the following corollary.

Corollary 4.4. Let X be an n-dimensional pattern frequency array with property (P4).

Then there exists a unique pattern frequency array X ′ such that X ′ = E(M) for c.i.d. pa-

rameters M for an n-taxon tree T and X ′
Q = XQ for all quartets Q. �

This corollary, combined with the results of Section 6, shows the strengths and

weaknesses of quartet information for verifying model fit.

Proof of Theorem 4.3. Note that property (P4), together with Proposition 3.7, tells us not

only that property (P3) holds, but also that the parameters, whose existence (P3) asserts,

are unique up to permutations at the internal node. Since we will use this fact repeatedly,

we refer to it simply as (P3!).
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Denote the n taxa by a1, . . . , an. By Proposition 4.2, there exists a unique tree T

that induces each of the quartet trees TQ. We use induction on n to build c.i.d. parameters

for T compatible with those for the quartets.

For the case n = 4, we need only observe that by Proposition 3.7, the parameters

whose existence are asserted by (P4) are unique up to permutations at the internal nodes.

Thus we proceed to the inductive step, considering an n-taxon tree T , n ≥ 5. Note

that for any k-tet K, 4 ≤ k ≤ n − 1, the marginal array XK inherits property (P4) from X.

We assume that the vertices of T are labeled in such a way that a1 and a2 are

neighbors, as are an−1 and an. Since any n-taxon tree with n > 3 has at least two pairs

of neighbors, we lose no generality.

Consider the (n − 1)-tets K1 = {a2, a3, . . . , an} and K2 = {a1, a2, . . . , an−1}. Let

NK1
and NK2

denote the c.i.d. parameters that the inductive hypothesis assures us exist

for the trees TK1
and TK2

; so E(NKi
)Q = XQ for all Q ⊆ Ki. Both K1 and K2 contain the

(n − 2)-tet K1 ∩ K2 = {a2, a3, . . . , an−1} and the inductive hypothesis assures us of c.i.d.

parameters on TK1∩K2
, unique up to permutations at internal nodes. Replacing NKi

by

Nσ
Ki

if necessary, we may assume that for any edge x → y in TK1∩K2
, the parameter Mxy in

NKi
is equal to that from NK1∩K2

. Thus we may assume that the parameters NK1
and NK2

agree with one another on edges and paths they have in common.

To define parameters for T , take a2 as the root. Then, since n > 4, each directed

edge x → y in (T, a2) appears in one or both of (TK1
, a2), (TK2

, a2). Let Mxy be the corre-

sponding matrix parameter in either NK1,a2
or NK2,a2

, since if a parameter is specified

in both, it is the same. Let the root distribution vector pa2
be that which also appears in

both NK1,a2
and NK2,a2

. Finally, with Ma2
this collection of parameters for T , let M be the

corresponding c.i.d. parameters.

We will show that M is compatible with all quartet parameters, whose existence

(P4) implies. Obviously, M is compatible with the (n − 1)-tet parameters NK1
and NK2

,

which, by induction, are in turn compatible with any quartet parameters for Q ⊂ K1 or

Q ⊂ K2. Thus there is nothing to show except for quartets of the form Q = {a1, ai, aj, an}.

Now suppose Q = {a1, ai, aj, an} is a quartet containing both a1 and an, and let

M̃Q = (p̃z; M̃xy) be the c.i.d. parameters for TQ which (P4) ensures exist. We must con-

sider two cases, depending on whether a1 and an are neighbors in TQ. For both, we tem-

porarily designate ai as the root.

If a1 and an are not neighbors in TQ, without loss of generality, assume that a1

and ai are neighbors joined at v, and aj and an are neighbors joined at w. Then since both

TQ and TK2
contain the triad {a1, ai, aj}, (P3!) implies that we can, by applying a permuta-

tion at v to M̃Q, assume that M̃aiv = Maiv, M̃va1
= Mva1

, and M̃vaj
= Mvaj

. Similar rea-

soning with TK1
, after possibly applying a permutation at w to M̃Q, gives M̃aiw = Maiw,
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M̃waj
= Mwaj

, and M̃wan = Mwan . Moreover, because M̃aiw = M̃aivM̃vw, Maiw =

MaivMvw, and M̃aiv = Maiv is invertible, it follows that M̃vw = Mvw. Thus, M̃Q is com-

patible with M.

If a1 and an are neighbors in TQ, let v be the vertex where they are joined, and

w the vertex where ai and aj are joined. By (P3!) for the triad {a1, ai, aj} which lies in

Q ∩ K2, by applying a permutation at w to M̃Q if necessary, we may assume that M̃aiw =

Maiw and M̃waj
= Mwaj

. While we want to show that M is compatible with MQ on the

other three edges of TQ, we cannot do so directly by considering only the triads Q ∩ K1

and Q ∩ K2, since that gives only that M̃wa1
= Mwa1

and M̃wan = Mwan , equalities of

products of matrices in M̃Q and M.

Instead, consider the quartet Q ′ = {a1, a2, ai, an} and the coherent model param-

eters M̃Q ′ for TQ ′ that (P4) guarantees. Since a1 and an are not neighbors in TQ ′ , we have

already shown that M̃Q ′ is compatible with M. Thus, applying permutations if necessary,

we may assume that M̃Q ′ = MQ ′ , and therefore denote the matrix parameters in this set

by Mxy. However, Q ∩ Q ′ = {a1, ai, an} and so by (P3!), M̃Q and MQ ′ must agree, after a

permutation of M̃Q at v if necessary, on the triad {a1, ai, an}. Specifically, this means that

M̃aiv = Maiv. So, M̃aiwM̃wv = MaiwMwv and therefore M̃wv = Mwv since M̃aiw = Maiw

is invertible. It remains only to show that M̃va1
= Mva1

and M̃van = Mvan ,which follows

immediately from M̃wa1
= Mwa1

and M̃wan = Mwan now that we have M̃wv = Mwv.

Thus M is compatible with the parameters for all quartets of T . The uniqueness

of M, up to permutation at internal nodes, follows from the fact that M is determined by

all the quartet parameters it induces, and each of these are unique up to permutation at

internal nodes. �

5 Phylogenetic invariants and quartets

Despite its theoretical interest, if Theorem 4.3 is to have any practical use, a means of

checking whether a pattern frequency array X has property (P4) is needed. Of course,

one could consider each quartet in turn, and through a calculation of eigenvectors and

eigenvalues, attempt to compute parameters for the possible quartet trees. However, two

objections to this approach might come to mind.

The first is simply that computing eigenvectors is perhaps more work than is ab-

solutely necessary, though for the size of matrices of interest in biological situations, the

effort does not seem excessive.

The second, more serious, objection is that when working with data, one should

not expect an observed pattern frequency array X to exactly have property (P4). One

would instead like to test whether X is in some sense close to an array with property
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(P4). As one approach to this issue, we will develop polynomial conditions that can imply

(P4).

Recall that if (T, r) is an n-taxon tree, then a phylogenetic invariant for the gen-

eral Markov model on (T, r) is a polynomial p(X) = p(Xa1a2···an) in κn variables which

vanishes for X = E(Mr) for any choice of stochastic parameters Mr on the rooted tree. As

discussed in [1], this notion is independent of the choice of root r, or whether it is phrased

for complex parameters rather than just stochastic ones. One “obvious” invariant for the

general Markov model is the trivial one,

p0(X) = 1 −

κ∑
i1,i2,...,in=1

X(i1, i2, . . . , in), (5.1)

which merely states that the sum of all expected pattern frequencies must be 1.

If K is a k-tet of the taxa labeling an n-taxon tree T , then any invariant for TK gives

rise to an invariant for T as follows: if p(XK), a polynomial in κk variables, vanishes for

all XK = E(MK), then p̃(X) = p ◦ µK(X), where µK : X → XK is the marginalization map,

will vanish for all X = E(M). More informally, p̃(X) is obtained from p(XK) by replacing

any variable in p(XK) with the sum of κn−k variables, one for each possible choice of base

appearing at the n − k taxa not in K. Note that the trivial invariant for TK gives rise to the

trivial invariant for T via the above map.

Several constructions of invariants for the general Markov model were intro-

duced in [1]. Of particular note was that method for finding invariants referred to as com-

mutation relations. The invariants constructed by this method were particularly valu-

able since, under some additional technical assumptions, one could even deduce that an

array X satisfying them was of the form X = E(M) for a tree T . These will therefore play a

role in finding polynomial conditions to imply (P4).

For the 4-taxon tree T0 with neighbor pairs of taxa a, b and c, d, we explicitly give

the invariants we will need. Defining several matrices as marginal and cross-sectional

arrays of X by

XiΣcd(k, l) =

κ∑
j=1

Xabcd(i, j, k, l), XΣΣcd(k, l) =

κ∑
i=1

XiΣcd,

Xabij(k, l) = Xabcd(k, l, i, j), XabΣΣ =

κ∑
i,j=1

Xabij,

(5.2)



122 E. S. Allman and J. A. Rhodes

then as shown in [1], for all choices of 1 ≤ i, j, k, l ≤ κ, the entries of the matrices

XiΣcdCof
(
XΣΣcd

)T
XjΣcd − XjΣcdCof

(
XΣΣcd

)T
XiΣcd,

XabijCof
(
XabΣΣ

)T
Xabkl − XabklCof

(
XabΣΣ

)T
Xabij

(5.3)

are phylogenetic invariants for T0. Let S ′(T0) denote the set of all these invariants, to-

gether with the trivial invariant for T0. All of its elements, except the trivial invariant,

have degree κ + 1.

In [1], a set of invariants S ′(T) is defined more generally for any n-taxon tree via

induction on n; since we will not use those invariants here, we omit the full definition.

Recall that a set of invariants for T is said to be parameter strong on a set O if

for any X ∈ O on which all the invariants vanish, we have X = E(Mr) for some choice of

parameters Mr. The main ingredient for the proof of Theorem 5.4 is the following result,

used only in the case of n = 4 taxa for T = T0.

Theorem 5.1 [1, Theorem 13]. Let T be an n-taxon tree with taxa a1, a2, . . . , an. There ex-

ists an open set O ⊆ Cκn

which contains all phylogenetically trivial arrays and on which

S ′(T) is parameter strong, regardless of which leaf is taken as the root. Moreover, for a

fixed choice of root, if X ∈ O and X = Ea1···an(Mr) = Ea1···an(M ′
r), then M ′

r = Mσ
r for some

choice σ of permutations at the internal nodes of T0. �

We need a slight strengthening of this, giving coherent identifiable parameters.

Proposition 5.2. Let T be an n-taxon tree with taxa a1, a2, . . . , an. There exists an open

set O ⊆ C
κn

which contains all phylogenetically trivial arrays and on which S ′(T) is co-

herent identifiable parameter strong, that is, if all polynomials in S ′(T) vanish at X ∈ O,

then X = Ea1···an(M) for a collection M of coherent, identifiable parameters on T . More-

over, M is unique up to permutations at the internal nodes of T . �

Proof. A careful reading of the proofs of [1, Theorems 11 and 13] shows we need only to

prove that coherent, identifiable parameters may be recovered for a 3-taxon tree. If TR is

the 3-taxon tree for the triad R = {a, b, c} with internal node f and rooted at a, then the

proof of [1, Theorem 11] shows that pa, pb, pc, pf have all nonzero entries and Maf, Mfb

are invertible, though there is no guarantee that Mfc is invertible. Let O1 ⊆ C
κ3

be the set

whose existence is guaranteed by [1,Theorem 11]. Let O2 ⊆ C
κ3

be the open set defined by

det(Xac) �= 0 and let O = O1 ∩O2. Then if X ∈ O satisfies all the specified triad invariants,

since Xac = DaMafMfc and Xac is invertible, so is Mfc. �

To ensure that parameters for T0 are also distance informative, we place poly-

nomial inequality restrictions on X: given coherent parameters for T0, if u, v denote the
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internal nodes, then det(D1/2
u MuvD

−1/2
v ) �= ±1 is equivalent to dLD(u, v) �= 0, which in

turn is equivalent to

dLD(a, c) + dLD(b, d) − dLD(a, b) − dLD(c, d) �= 0,

− log
∣∣det Eac(M)

∣∣− log
∣∣det Ebd(M)

∣∣+ log
∣∣det Eab(M)

∣∣+ log
∣∣det Ecd(M)

∣∣ �= 0,

(5.4)

or

det
(
Eac(M)Ebd(M)

) �= ±(det
(
Eab(M)Ecd(M)

))
. (5.5)

Letting D = {det(XacXbd) ± det(XabXcd)}, we thus have the following lemma.

Lemma 5.3. If X = E(M) for coherent parameters M on T0, and neither polynomial in D

vanishes at X, then M is distance informative. �

Of course, if X is phylogenetically trivial, then all 2-dimensional marginal arrays

of X are identical, and so an element of D does vanish on X, as one should have expected.

Now if Q = {ai, aj, ak, al} is any quartet, there are three quartet trees with these

taxa as labels, which we denote by T i
Q, i = 1, 2, 3. For each i, choosing an identification of

the pairs of neighbors in T i
Q with a, b and c, d in T0, we obtain from S ′(T0) a set of invari-

ants S(T i
Q) for T i

Q, and from D a set D(T i
Q). We note that there is some arbitrary choice in

this definition, in the choice of which neighbor pair is identified with a, b. Nonetheless,

we assume that such choices have been made so that our sets are well defined.

We now formulate a polynomial condition that implies property (P4).

Theorem 5.4. There exists an open set O ⊆ C
κn

which contains all phylogenetically triv-

ial arrays with the following property: if X ∈ O is an n-taxon pattern frequency array and

for each quartet Q of the taxa, there is an i such that all polynomials in S(T i
Q) vanish at

XQ while no polynomial in D(T i
Q) vanishes at XQ, then X has property (P4). �

Proof. For each of the 3
(

n
4

)
possible quartet trees T i

Q, let Oi
Q ⊆ C

κ4

be the set whose

existence is guaranteed by Proposition 5.2. Then for each Q, OQ = ∩3
i=1Oi

Q contains all

phylogenetically trivial 4-dimensional arrays.

Let µ = ⊕µQ : Cκn → ⊕QCκ4

, the sum being taken over all quartets Q so that

µ(X) = ⊕QXQ. Let O = µ−1(⊕QOQ). Then O is an open set containing all phylogenetic

trivial arrays.

Furthermore, if X ∈ O and Q is a quartet such that for some i, all polynomials in

S(T i
Q) vanish at XQ and no polynomial in D(T i

Q) vanishes at XQ, then by Proposition 5.2

and Lemma 5.3, there exist c.i.d. parameters MQ for T i
Q with XQ = E(MQ). �
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Two points concerning this result are worth noting: first, the open set O is not

explicitly given, and second, the parameters M may be complex rather than stochastic.

In fact, an explicit O could be given by tracking through the various proofs, though it

probably would be much smaller than is necessary. Currently, polynomial conditions on

X that will assure parameter values are stochastic are not known.

It would, of course, be straightforward to generalize the work of this section to

give polynomial conditions implying property (Pk) for other values of k.

6 Frequency arrays agreeing on k-tets

Suppose E = E(T,M,M) is the n-dimensional κ × κ × · · · × κ array of expected pattern

frequencies at the leaves for some rooted tree T , model of mutation M, and parameter

choice M. Here M might be any model at all; it could be the general Markov model we deal

with elsewhere in this paper, a more restricted one, one allowing rate variation across

sites, or even dependencies between sites, insertions, and deletions. We merely need that

the model and parameter choices determine expected pattern frequencies at the leaves

somehow.

For fixed k, with 0 ≤ k ≤ n, we are interested in identifying all other arrays F with

FK = EK for all k-tets K. Sequence data described by such an F would be indistinguishable

from sequence data described by E as long as comparison of sequences from at most k

taxa at a time is allowed. Thus to any k-tet method, F and E are identical.

More generally, if X and Y are n-dimensional arrays, then their k-dimensional

marginal arrays will be identical if and only if the array Z = X − Y, obtained by compo-

nentwise subtraction, has the property that all its k-dimensional marginal arrays are

identically zero.

Proposition 6.1. For 0 ≤ k ≤ n and L any field, let Vn
k denote the set of n-dimensional

κ×κ×· · ·×κ arrays with entries in L having the property that all k-dimensional marginal

arrays are identically zero. Then the dimension of Vn
k as a vector space over L is

dim Vn
k =

n∑
i=k+1

(
n

i

)
(κ − 1)i

= κn −

k∑
j=0

(
n

j

)
(κ − 1)j. (6.1)

�

Proof. This may be proved directly by construction of a basis, or by appealing to the

more general result of Theorem 2.6 of Hoşten and Sullivant [13] on arrays with certain

marginalizations vanishing. �
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Corollary 6.2. For fixed E, k, the set of all F such that FK = EK for all k-tets K is E + Vn
k .

This set has dimension dim(Vn
k ) ∼ κn as n → ∞. �

Remark 6.3. An illustrative case for biological applications concerns applying a quartet

method to DNA sequence data for 5 taxa, so k = 4, κ = 4, and n = 5. The proposition then

says dim V5
4 = 35. Thus for each 5-dimensional κ× κ× · · · × κ array in the 45-dimensional

space of such arrays, there are 35 degrees of freedom in choosing other 5-dimensional

arrays that behave identically under a quartet method.

Note also that any array of the form E(M) for stochastic parameters M will have

nonnegative entries. If the entries are in fact positive (as is true for most choices of M for

many models), then for Z ∈ Vn
m sufficiently close to the origin, E(M) + Z will also have

all positive entries. Thus even considering the necessity of nonnegativity in biologically

meaningful data fails to eliminate these degrees of freedom.

7 Triads and incompatible parameters

As Sections 4 and 5 showed that quartet information is powerful for ensuring that an ar-

ray can be associated with parameters compatible with all quartets, one might ask if a

similar result holds for triads. Specifically, one could ask the following question: given

any 4-dimensional array X, all of whose triad marginal arrays arose as joint distribution

arrays for pattern frequencies for some parameter choices in the 3-taxon general Markov

model, is there a choice of parameters M for a 4-taxon tree that produces a pattern fre-

quency array E(M) with the same triad marginal arrays as X? Note that while there are

3 topologically distinct 4-taxon trees, included as part of this question is the determi-

nation of the correct topology. A counterexample to this will illustrate the weakness of

triad information alone.

To construct the counterexample, we use the observation in [1] that if κ = 2, then

the ideal of phylogenetic invariants for the 3-taxon tree is generated by the stochastic

invariant. Thus any 2 × 2 × 2 array whose entries sum to 1 is on the phylogenetic variety,

and is therefore likely to arise from model parameters.

One way to find the desired counterexample is to pick a reasonably random 2×2×
2×2 array whose entries sum to 1. By the preceding paragraph, each of the triad marginal

arrays is likely to arise from a parameter choice. These parameters can be computed (as

outlined in [6] or [1]), and then they are likely to be incompatible with one another. How-

ever, while this scheme readily produces arrays with the desired properties, the triad

parameters are typically complex. In order to illustrate that the triad parameters can all

be stochastic, yet no quartet parameters exist, we give a specific example.
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For the 4-taxon tree with neighbor pairs a, b joined at u, and c, d joined at v,

consider the Jukes-Cantor parameters pa = (0.5, 0.5) and M =
(

0.9 0.1
0.1 0.9

)
. Let M be the

Markov matrix on all edges of the tree except v → d, where M2 is used, and Eabcd the

resulting expected frequency array. Let Fabcd be the expected frequency array for Jukes-

Cantor parameters with M on all edges except a → u, where M2 is used. Then let X =

(0.5)Eabcd + (0.5)Fabcd, so X is actually an expected frequency array for a model in which

sites fall into two equidistributed classes, with slower or faster mutation occurring on

certain branches of the tree, depending on the class.

A short computation of the triad arrays Xabc = XabcΣ and Xabd = XabΣd shows

Xab1Σ =

(
0.3186 0.0466

0.0594 0.0754

)
, Xab2Σ =

(
0.0754 0.0594

0.0466 0.3186

)
,

XabΣ1 =

(
0.3058 0.0466

0.0594 0.0882

)
, XabΣ2 =

(
0.0882 0.0594

0.0466 0.3058

)
.

(7.1)

By computing appropriate eigenvectors, one can deduce that Xabc =E(M ′), where

M ′ is composed of pa = (0.5, 0.5),

Mau =

(
0.86 0.14

0.14 0.86

)
, Mub = M, Muc = M2. (7.2)

Similarly, Xabd = E(M ′′), where M ′′ is composed of pa = (0.5, 0.5),

Mau ≈
(

0.85777 0.14223

0.14223 0.85777

)
, Mub ≈

(
0.90249 0.09751

0.09751 0.90249

)
,

Mud ≈
(

0.78622 0.21378

0.21378 0.78622

)
.

(7.3)

Although these last parameter values are approximate, one can rigorously verify that

they are stochastic. Clearly these two sets of parameters are not compatible with each

other, so there can be no 4-taxon parameters compatible with them both. Also note that

parameters for the remaining two triads will also be stochastic, as the symmetry of the

construction of X ensures that, except for labeling, they will be the same as those already

given.
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Notice, finally, that this example for κ = 2 is readily modified to give examples for

larger κ; simply embed it “on the diagonal” of a larger array which is otherwise zero.

8 Geometric viewpoint

This section is primarily expository, reinterpreting earlier results in this paper from a

more geometric viewpoint. Although algebraic geometry provides a very natural setting

for discussions of phylogenetic invariants and related issues, terminology from that field

has not been heavily used in the phylogeny literature. (See [10, 11] for exceptions.) There-

fore the texts [7, 12] are suggested for further background. We also draw attention to the

interesting works [9, 16]; although phylogenetic inference is not mentioned as an appli-

cation in those works, the overlap of methods and goals are worth noting.

For a fixed rooted n-taxon tree (T, r) under the general Markov model, the model

parameters Mr include a root distribution vector and Markov matrices for each edge di-

rected away from the root. Equivalently, since T has (2n−3) edges, the stochastic param-

eter space P can be viewed as a subset of [0, 1]N, where N = (κ − 1) + (2n − 3)κ(κ − 1).

The expected pattern frequencies at the terminal nodes arising from a stochastic param-

eter choice can be viewed as an element of [0, 1]M ⊂ R
M ⊂ C

M, where M = κn. For the

general Markov model, there are polynomials giving the map from parameters to pattern

frequencies Φ0 : P → [0, 1]M. This map of course extends naturally to a polynomial map

Φ : C
N → C

M.

One would like to fully understand Φ0(P), the image of the stochastic parameter

space under Φ0. A more tractable, yet still difficult, problem would be to understand fully

Φ(CN). From the viewpoint of algebraic geometry, Φ is a parameterization of a dense

subset of an algebraic variety, and it is natural to seek an implicit description of it, that

is, one can ask for the ideal of polynomials which vanish on Φ(CN). This phylogenetic

ideal AT is the kernel of the map C[X1, . . . , XM] → C[P1, . . . , PN] defined by the substitu-

tion (X1, . . . , XM) = Φ(P1, . . . , PN), and hence is prime. For the general Markov model, AT

is independent of the choice of root for T .

The polynomials in the phylogenetic ideal are of course usually termed phylo-

genetic invariants in the phylogeny literature. An explicit set of polynomials proven to

generate the ideal is not currently known for the general Markov model. (However, see

[18] for recent results on group-based models.)

The phylogenetic variety V(AT ) is the set in C
M on which all polynomials in the

phylogenetic ideal vanish. It is the smallest algebraic variety that contains Φ(CN) (or

even Φ0(P)), but for κ ≥ 2, n ≥ 3 is strictly larger than Φ(CN). Since the phylogenetic

ideal is prime, the phylogenetic variety is irreducible.
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At least one case of a phylogenetic variety for the general Markov model appears

as a construction in classical algebraic geometry, as is made clear by an observation in

[9]. For a 3-taxon tree, consider a fixed base in a sequence at the central vertex. Then the

probabilities of its mutation along an edge leading to a leaf can be specified by an ele-

ment of the projective space P
κ−1, and the probabilities of it,mutating to produce various

patterns at the leaves, is thus given by an element of the Segre product Pκ−1×Pκ−1×Pκ−1.

Since there are κ possible bases at the central node, taking a sum of κ points on this Segre

variety, weighted by the probabilities of those bases occurring, gives the joint distribu-

tion of bases at the leaves. But geometrically, this is just a higher secant variety. Thus a

projective version of this phylogenetic variety (dropping the trivial invariant) is that it

is the κ-secant variety of the Segre product of 3 copies of Pκ−1. Although there are few

classical results on the generators of the associated ideal, determining them remains a

focus of research.

While explicit generators of the full phylogenetic ideal are not known, [1] pro-

vided new constructions of many polynomials in the ideal, and gave some indication that

these capture much of the ideal. More precisely, notions of sets of invariants that were

strong and parameter strong on subsets of CM were introduced, and explicit sets of in-

variants were shown to have these properties on a Euclidean open set O containing all

phylogenetically trivial arrays.

While any ideal generated by phylogenetic invariants defines a variety V with

V ⊇ V(AT ), for a variety generated by a strong set of invariants on a set O, one has

V ∩ O = V
(
AT

) ∩ O. (8.1)

If O is a Euclidean open set and V ∩ O �= ∅, then equation (8.1) implies that

V = V
(
AT

) ∪ V ′, (8.2)

where V ′ is some variety not containing V(AT ).

Thus, the results of [1] give an explicit set of polynomials for which the associ-

ated variety includes V(AT ) as one of its irreducible components with (possibly) a finite

number of additional ones. In the case κ ≤ 4, n = 3, any additional components must lie

within another explicitly known variety defined by certain determinant conditions.

Given a quartet such as Q = {a1, a2, a3, a4} of taxa from the tree T , the associ-

ated marginalization map µQ : C
M → C

κ4

is (up to a scalar factor) just an orthogonal

projection of C
M onto a certain subspace. One readily sees that µQ(V(AT )) ⊆ V(ATQ

).



Quartets and Parameters 129

We view a quartet method of phylogenetic inference as one that, rather than tak-

ing as its input a data point X of pattern frequencies in C
M, uses only the images µQ(X)

for some or all quartets Q. In this light, Section 6 simply characterizes the kernel of the

map µ = ⊕QµQ : C
M → ⊕QC

κ4

, which described the loss of information inherent in

quartet methods.

One can also see that µ is injective when restricted to an explicitly determinable

Zariski open subset of V(AT ). To this end, consider the maps

C
N Φ−−→ V

(
AT

) µ−−→
∏
Q

V
(
ATQ

)
, (8.3)

and construct the desired subset as follows: if X ∈ V(AT ), then, assuming certain deter-

minants are nonzero, one can attempt to find parameters P ∈ C
N with X = Φ(P) by the

computation of simultaneous eigenvectors and eigenvalues of certain matrices defined

from X as in [6]. By [1], these matrices must commute since X is on the phylogenetic vari-

ety, and so P can be found if even one of the matrices has distinct eigenvalues. Since the

conditions that the eigenvalues of a matrix be distinct can be expressed as the nonvan-

ishing of a polynomial in the matrix entries, this means there is a Zariski open subset O ′

of V(AT ) such that if X ∈ O ′, then X = Φ(P) for some P.

Now the proof of Proposition 3.7 tells us that on Φ−1(O ′), a Zariski open subset

of CN, the map Φ fails to be injective only because of the issue of permutation of param-

eters. Moreover, the method of proof shows that the same statement holds true for µ ◦Φ.

(In fact, it would hold even if quartets were replaced by triads.) Taken together, these

facts imply that µ is injective on O ′.

So far in this discussion, we have fixed an n-taxon tree T . However, the full phy-

logenetic inference problem in our setting begins with only the taxa specified. Given

X ∈ C
M, we would hope to use only µ(X) to determine if a tree T exists for which

X ∈ V(AT ).

Now for any quartet Q, there are three possible quartet topologies T i
Q, i = 1, 2, 3,

and so a necessary condition for T to exist is that for all Q, there exists an i with µQ(X) ∈
V(ATi

Q
). This condition is not sufficient, but from Theorem 5.4, Corollary 4.4, and Section

6, we obtain the following theorem.

Theorem 8.1. For each quartet Q in a collection of taxa, fix a quartet tree TQ. Then there

is a Euclidean open set O ⊂ Cκn

containing all phylogenetically trivial arrays and Zariski

open sets OQ ⊂ C
κ4

such that if X ∈ O and µ(X) ∈ ∏
Q(V(ATQ

) ∩ OQ), then there are a

unique tree T and a unique point X ′ ∈ V(AT ) such that µ(X ′)=µ(X). Moreover, µ−1(µ(X)) =

X ′ + Vn
4 . �
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Of course, if the quartet trees TQ in this statement are not all induced from some

n-taxon tree T , then the stated conditions on X cannot be satisfied since the conclusion

is impossible in that case.

A similar statement in which the Euclidean open set O is replaced by an explicit

Zariski open set is also possible since O was introduced to ensure that certain matrices

are diagonalizable, and that can also be done by requiring that their eigenvalues be dis-

tinct as above. However, the resulting Zariski open set would not contain Φ(P) for many

biologically reasonable values of parameters P. Nonetheless, modifications to this idea,

where one requires that certain linear combinations of the matrices have distinct eigen-

values, can remedy that flaw.

Note that the Zariski open sets OQ in Theorem 8.1 only exclude points for which

the quartet topology is not distinguishable by the log-det distance, and thus these sets

have a quite natural role.

Since it focuses solely on the algebraic varieties, the formulation of our results

in Theorem 8.1 hides any reference to the parameter space that really underlies much of

the proofs. This is not fully desirable, however, since the parameters are not just a tool

for the proof, but have biological meaning.
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