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Abstract

Changing base composition during the evolution of biological sequences can mislead some of
the phylogenetic inference techniques in current use. However, detecting whether such a process has
occurred may be difficult, since convergent evolution may lead to similar base frequencies emerging
from different lineages.

To study this situation, algebraic models of biological sequence evolution are introduced in which
the base composition is fixed throughout evolution. Basic properties of the associated algebraic
varieties are investigated, including the construction of some phylogenetic invariants.
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1. Introduction

Models of molecular evolution, such as for DNA sequences, typically assume that
evolution occurs along a bifurcating tree, proceeding from a root representing the common
ancestral sequence, toward the leaves representing the descendent sequences. At each site
in the sequence, bases mutate according to a probabilistic process that depends upon the
edge of the tree. Usually only the sequences at the leaves of the tree can be observed,
while sequences at internal nodes correspond to hidden variables in this graphical model.
A fundamental problem of sequence-based phylogenetics is how to infer the tree topology
from observed sequences, assuming some reasonable model.

In the works ofCavender and Felsenste{h987 and Lake (1987, the connections
between this problem and algebraic geometry first emerged in the phylogenetics literature.
Under many standard models of molecular evolution, for a fixed tree topology the joint
distributions of bases in the leaf sequences are described by polynomial equations in the
parameters of the model, thus parameterizing a variety associated to the tree. The defining
polynomials of this variety, calleghylogenetic invariantsare polynomials that vanish
on any joint distribution arising from the tree and model, regardless of parameter values.
Finding phylogenetic invariants for various models has been of interest both for providing
theoretical understanding, and in hopes that methods of phylogenetic inference that do not
require parameter estimation may be developed Fetsensteirf2003.

For certain models, much progress has been made in determining invariants. Key
advances for group-based models such as the Kimura 3-parameter one, were made in
Evans and Spegd 993 andSteel et al(1993, which built on the Hadamard conjugation
introduced inHendy and Penny1993. Recently,Sturmfels and Sullivan2005 further
exploited the Hadamard conjugation to recognize that these varieties are toric, completing
the determination of all invariants in this case. For the general Markov model,
Allman and Rhode$2003, found new constructions of invariants, though the complete
determination of the ideal is still open.

In this paper, we consider models that lie between group-based models and the
general Markov model. Specifically, we assume that a fixed vector describes the relative
frequencies of the bases in sequencevatynode of the tree, so that the base composition
of sequences remains stable throughout evolution.

Our motivation for this assumption is a biological one. Many of the models currently
assumed in performing inference with real data make an assumption of a stable base
composition (e.g., all group-based models, the general time-reversible model). However,
there are data sets in which base composition seems to have changed during evolution, as
reflected in comparisons of the sequences at the leaves. Although the extent to which this
issue is problematic in real data sets is controversial, a number of authors have pointed
out that changing base composition may mislead some methods of inference, especially if
it results in convergent mutations in different parts of the tree.L.®e&hart et al (1999,

Conant and Lewi$2001), Rosenberg and Kum#2003 and their references.

In Kumar and Gadagkd2001]) a ‘disparity index’ was introduced as a simple statistical
test that might indicate inhomogeneity of the mutation process along the different edges of
the tree. This index is based on a pairwise comparison of base compositions of sequences at
the leaves. It is, however, possible that all leaf sequences have the same base composition,
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while an internal node sequence has a different one. Indeed, this is exactly the issue with
convergent mutations; base composition may appear to be the same in observed sequences,
yet it differed in the common ancestral sequence. If a model is chosen only through com-
paring the base compositions of sequences at the leaves, it may be an inappropriate one.
Better understanding the constraints placed on the joint distribution of bases in
sequences from various taxa by an assumption of a stable base distribution is therefore
desirable. To begin investigating this issue,J9action 2we introduce three models of
molecular evolution that include an assumption of stable distribution. When the number
of states in the model is = 2, the three models are the same, and its structure allows us to
give a more in-depth analysis than for genetarhis is the subject dbection 3where we
give a rational map inverting the parameterization, and find the full ideal of phylogenetic
invariants for the 3-taxon tree. Bection 4 the case of generalis considered. Basic facts
about the associated phylogenetic varieties, such as their dimension and irreducibility/non-
irreducibility, are investigated. Although our knowledge of phylogenetic invariants is
incomplete, we give constructions of some for these models.

2. Themodels

Let T denote an undirected bifurcating tree, withleaves labeled by the taxa
ai, a, ..., an. If r is some vertex inT, either internal or terminal, we usk to denote
the tree rooted at. We viewT, as a directed graph, with all edges directed away from
forming a seEdgd T, ). ThusT, represents a hypothetical evolutionary history of the taxa
in their descent from a common ancestor aFor simplicity, we refer tol, as arooted
n-taxon tree

We model the evolution along; of sequences composed from an alphdkét =
{1,2,...,«} of states (e.g.« = 4 for the bases of DNA). Aoot distribution vector
pr = (P1, P2, ..., Po), With pi € [0,1], X; pi = 1, describes the frequency of states
in an ancestral sequence. With each Edge T, ) we associate a x x Markov matrixMe
(with entries in[0O, 1], each row summing to 1) whosg j)-entry specifies the conditional
probability of staté at the initial vertex mutating to stafeat the final vertex of the edge.
Togetherp; and {Me}ecEdgeT,) COMprise the parameters of the model. If no additional
requirements are placed gn or the Mg, then we have described the general Markov
model (GM) of sequence evolution, studieddtman and Rhode§2003.

Letting Xgwm.«, T, denote the parameter space for thstate GM model of;, we can
view Xgm...7, as a subset dD, 1]M for M = « + «2E with E = 2n — 3, the number of
edges ofl . We have a map

¢ = demaT : XomeT, — (0,1 c C",

so thatg (x) gives the joint distribution of states in aligned sequences at the leaves arising
from the parameter choioce Specifically,p(X) = P = (Pj;j,...jn), 8Kk X --- X k tensor
with entries

Pitjz...in = Z Pi, l_[ Me(ivviw)s

1€Z(j1,]25-50n) ecEdgeT,),
e=(v—>w)
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whereZ(j1, j2. ..., jn) = {(iv) [ v € Vert(Ty), i, € [k],ia = jk} C [k]*"~2. Note thatp
is a polynomial map, viewed as a function of the entriep,0fnd Mg, and extends to a
polynomial mapCM — C*<" which we also denote by.

In this paper we are interested in submodels of the GM model, in which we have stable
state frequencies at all vertices in the tree. We introduce three such models, defined by
imposing additional restrictions on parameters of the GM model. After formally defining
the models, we will motivate their assumptions and names.

e Stable Base Distribution Model (SBD): b) has no zero entries, and ) is fixed by
all Mg; that is,pr Me = pr for all edge=.

e Simultaneous Diagonalization Model (SD): In addition to the assumptions of SBD, 3)
with D; = diag(py ), all matrices in

{Me | e € EdgeTy)} U {D*M{ Dy | e e EdgeTy)}

commute with one another.
o Algebraic Time Reversible Model (ATR): In addition to the assumptions of SD, 4) for
all edges, Me = D7 IM/] Dy.

We will also need:

Definition 1. For any modelM formed from thex-state GM model by imposing
additional assumptions on the parameters, and for any rastadon treeT;, we let
XM k.7, denote the parameter spacefdfon T,. Then the algebraic variely (M, «, Tr)
is the Zariski closure itt<" of ¢ (X uq,.T,)-

We now expand upon the model definitions. First, assumingathlaés no zero entries,
the matricesD; *MJ D, are also Markov matrices fixing,. They arise naturally as
follows: Consider a 2-taxon tree consisting of a single ezfgem vertexr to vertexs, with
model parametens andMe. Then the joint distribution of states in aligned sequences at
ands arising from these parameter choices is given by the entriBg Me. Assuming that
Me fixespy, so thatp, is also the state distribution of a sequencs, dlhe identity

Dr Me = (Dr (D IMJ Dy )T

shows that the model parametgks Me on the 1-edge tree rooted malead to the same

joint distribution as the model parametess D;7*MJ D, on the 1-edge tree rooted at

s. More generally, parameters for the SBD, SD, or ATR modellpproduce the same

joint distribution as the set of parametersTyfor any other vertes, simply by defining

ps = pr, and for those edges whose directions have reversed in changing the root location,
replacingMe by D;*MJ Dy . In particular, we see:

Proposition 2. ¢(Xaq,,.7,) and V(M. «, Ty) are independent of the choice of r for
M=SBD, SD, and ATR. Thus, for these model§M/, «, T) is well defined without
reference tor.

We note that independence of root location is a property also shared by the
varieties associated with group-based models and the GM m&ieel(et al. 1994
Allman and Rhode2003.
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Second, the requirement for the SD and ATR model that the specified collection
of matrices commute is, in fact, equivalent to an assumption that those matrices are
simultaneously diagonalizable. To see this, first note that the commutation assumption is
equivalent to the commutation of the collection

[D}/Zl\/leorl/2 lee Edge(Tr)] U [Drl/ZMeT DM?|ee Edge(Tr)] .
But this implies in particular that each matriSz}rl/ZMeDr_l/2 is normal, and hence
diagonalizable. Commutativity then implies the existence of simultaneous eigenvectors
for this collection, and hence for the original collection. Conversely, if the matrices are
simultaneously diagonalizable, they certainly commute.

Third, the ATR model is related to the general time-reversible model (GTR) often used
in phylogenetic studies. The GTR assumes that for each&dde = exp(Rt), wherete
is a scalar parameter aftlis a rate matrix (with rows summing to 0) common to all edges
with the properties thab, R is symmetric angh; R = 0 (Felsenstein2003. A collection
of Markov matrices arising from GTR parameters thus satisfies the hypotheses of the ATR
model. However, the common rate matrix assumption of the GTR imposes a relationship
among the logarithms of the eigenvalues of the Markov matiiégeg/hich the ATR does
not, and thus the ATR is more amenable to algebraic analysis.

Finally, we note that the group-based models, such as the Kimura 3-parameter one
(KST), can be viewed as the ATR together with additional assumptions on the eigenvectors
of the Me. For instance, KST requires the eigenvectors be the columns w#aHadamard
matrix, with (1, 1, 1, 1) the stable state distribution.

We summarize the relationships of the various models by

Group-basedATR € SD C SBD c GM.

-

GTR

The models on the main row all have algebraic definitions. Of course, the ideals associated
with these models and their varieties are related by a reversed chain of inclusions. For
k > 3, the inclusions are all strict, though fer= 2 equalities hold.

We have placed the GTR off the main row in this diagram since i 3 it is not
within the class of models with strictly algebraic definitions. Note also that for certain rate
matrices a GTR model may be a submodel of a group-based one.

3. The 2-state model

Forx = 2, the SBD, SD, and ATR models are all the same. To see this, and fix notation
for future use, consider the SBD model, with root distribution veptoe= (p,1 — p) =
(p, 9). Since each matrik. has left eigenvectqs; and right eigenvectad, 1), both with
eigenvalue 1, we readily find we can write
1-meq meq
Me = M(me) = ,

e = M{me) ( mep 1-— mep>
thus associating a single scalar parametgwith each edge. We also see tihag satisfies
the hypotheses of the ATR model as well. (In fact,#or 2, the ATR model and the GTR
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model also coincide.) The form ®fle allows us to identify parameters for artaxon tree
with a point(p; {me}) € R?"—2,

We first consider a 3-taxon trele, rooted at its central node, with three edggsey,
andes leading fronr to leavesas, ap, andag. Labeling the states 0 and 1, and using these
as indices to refer to matrix entries corresponding to the states, the joint distribution of
states at a site in sequences at the leaves is now describedbg & 2 tensorP = (pijk),
where

Pijk = PM1(0, 1)M2(0, j)M3(0, k) + qMu(1,i)M2(1, j)M3(L, k).

Viewing P as a polynomial function o, my, mp, mz, we thus have a map : C* —
C8, and readily see that the Zariski closure of the image sfV (SBD, «, T).

For notational ease, we follow the convention that replacing an index by the symbol
‘+' indicates marginalization over that index. For instangg,, = » , pijk, While

Pit+ =Dk Pijk-
Proposition 3. The following rational map provides an explicit inverse to the
parameterization of the magp:

P = Po++,

Y ik DDk Py 4 Pa— )+ Pa—k++
(P1++ — Po+)d

where d = det(p,ij), d2 = det(pi4j), and & = det(pjj ;).

Proof. Define a 2x 2 x 2 diagonal tensob with D(0,0,0) = p, D(1,1,1) = g, and all
other entries zero. We then have

1
pik = Y_ D@, mmMi(d,i)Mz(m, j)Ms(n, k), @

I,m,n=0

m=1- , =123,

expressing® as the result of an action of an element®E; x GLy x GLz on D. Also
observe that each matri; has as right eigenvectot$, 1) and(—q, p), with eigenvalues
1 and 1— my;, respectively. Thus multiplying the tensBr whose entries are polynomials
in p, my, my, andms, by the vectov = (vo, v1) = (—q, p) along each of its indices,
yields

1
do= ) Pijkvivjvk (2)
i,j,k=0

1 1
= > Y DA, m M, i)viMa(m, jHv; Ma(n, Kyvk.
i,j,k=01,m,n=0
Interchanging summations, and using thét an eigenvector of each of ti, yields

1
do= Y (1—my)(l—m(—mz)D(,m nuvvmn

I,m,n=0

=1 —-myd—-m)(1—-mz)pg(p—q). (3
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Multiplying similarly, with two copies ofv and one of1, 1), yields

1
gi= > Pijkvjok = (1—my)(l—my)pa,
i} k=0
1
Q= Z Pijkvivk = (1 —my)(1 —mg)pq, (4)
i,j k=0

1
g= Y Pijkvivj = (1 —my(—my)pg.
i,j.k=0

Now sincep = po++, if we express the entries ofas linear polynomials in thejk,
we may view theg; as polynomials in theijk as well. Then from Egs2f and @) we see
thatqo is of degree 4, whilg, g2, andgs are each of degree 3.

A calculation shows all four of these polynomials have a factes ef Zil,j,k=o Pijk
which of course evaluates to 1 &) so we may replace eaghwith §; = gi /s, If desired.
We also note that explicit expressions for the quad@tes ordinary matrix determinants
can be given:

g1 = det(p+ij), G2 = det(pi4j), s = det(pij +).
Egs. B) and @) now lead directly to formulas for the;,

%
(vo + v1)gi

which yield the stated map.O

mj = fori =1,2,3,

The explicit invertibility of the parameterization map for the 3-taxon tree readily extends
to n-taxon trees.

Thoerem 4. Suppose Tis a rooted n-taxon tree With(p; {Me}ecedget,)) € C?"2
definingpr = (p, 1 — p), Me = M(me) and

P = (Pisip...in) = ¢(Pr; {Me}ecEdgaT))-

Then the polynomial map : (p; {Me}ecedgaT;)) — P is inverted by a rational map
explicitly given by the following formulas:

(1) p= Pot+-+-

(2) For each terminal edgege assume without loss of generality that & (v — aj).
Choose two other taxapaaz such that the path fromyao ag in T passes through.
Then

Mgy, =

_ Zijk (=D KDk gt Pyt PA— )t Pt
(P14-+ — Po+-+) dEUPij+..4) '

(3) For each internal edgee = (v — w), chose four taxa which, without loss of
generality, we assume are,ay, az, a4, such that the path joiningiao a in T passes
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throughw, but not throughw; and the path joining ato a4 passes through, but not
v. Then

(Zi,-k (=D KDk Pyt Pyt p(l—k)+~~~+) det(Pitkt+)

(Zi,—k (=D HIHKD ikt PA—i) ot PA— )4t p(l—k)+<~+) det(pij +..+)

Proof. The formula forp is clear. For the remaining formulas, Byoposition 2the root
location may be changed without changing the variety. Moreover, while moving the root
may change a direction of an edgehe matrixMe is unchanged.

For a terminal edgeyp as described above, the 3-dimensional ten§gk+..+) =
¢ (p; M1, M2, M3) for a 3-taxon tre€l,, whereM; = ]_[eepatm’a{_) Me with Path(v, a;)
the set of edges in the path joiningto &. In particular,M; = Me,, SO applying the
formula of Proposition ¥or m; yields the desired formula.

Similarly, for an internal edgey as described above, start with the 3-dimensional tensor
(Pijk+--+) = ¢1/(P; M1, M2, M3) for the 3-taxon tre€l;. Then, sinceM(mM(m') =
M(m”) is equivalenttql—m)(1—m’) = 1—m’, by applying the formula dProposition 3
we find

1—[ (1—me) = ik (=D KD DA PA— )t PA—K) 4ot
ecPath(v,az) ¢ (P14t — PO++) dEUPGj 4...4) '

Likewise, considering the 3-dimensional tenépkjk +...+), we find

l—[ (41— me) = D ik (DT D ik P et PA )4t PAK) 4t
¢ (P14-+ — Po+-+) dBUPitktt) ‘

ecPath(w,a3)

Since] [ecpathy.ag (1 — Me) = (1 — Mey) [ [ec pathiw.ag (1 — Me), this yields the given
formula. O

Now, to determine phylogenetic invariants for the SBD model witk= 2, we first
consider the 3-taxon trék. We seek all polynomials in thgjx that vanish orp(C*), and
thus defineV (SBD 2, T).
As we are considering a submodel of GM, we obtain the stochastic invariant, which
definesV(GM, 2, T):
fo=1- pii+.

Several other invariants for the SBD model are easily found. The distribution of states
in a sequence &, is given by the vectop; where

P1 = (Pi++)s P2 = (P+i+)s P3 = (Pyti)-

Since each leaf sequence must have the same state compositionpyeget= p1—ps =
0, obtaining two linear invariants

f1 = Po10+ Po11— P1oo— P10l f2 = Poo1+ Poi1— P1oo— P10

whose span includes that arising frgm— p3 = 0. These are the invariants underlying the
disparity index oiKumar and Gadagk&2001).
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From Egs. 8) and @) we can also see that
h=g? G102 2 5
= Qgvov1 + 010203(vo + v1) (5)

is an invariant of degree 8. However, white¢ (fq, f1, f2), the ideal(fo, f1, f2, h) is
not the full ideal of invariants. Using Macaulay &iayson and Stillman2002 to find
the kernel of the ring map associated wgttquickly yields a single invariant of degree
6 with 258 terms, which together witliy, f1, and fo generates the full ideal defining
V(SBD 2, T).

In fact, this invariant can be explained through the hyperdetermina@sidfand et al.
(19949. For a 2x 2 x 2 tensor such aB, the hyperdeterminant is given explicitly as

Det(P) = (PooPi11+ PhoaPiio+ PoroPior+ Po11Pi00)
— 2(PoooPoo1P110P111 + PoooPo10P101P111+ PoooPo11P100P111
+ Poo1P010P101P110 + Poo1Po11P110P100+ Po10P011P101P100)
+ 4(PoooPo11P101P110 + Poo1Po10P100P11D.

Now reasoning from Eq.1} and using the invariance properties of &t under the
SLy x SLy x SLy action, one finds that, in terms of model parameters,

Det(P) = p?q?(1 — mp)3(1 — mp)2(1 — mg)?.

Thus 18203 — pqDet(P) = 0, and s0818283 + vivo Det(P), viewed as a degree 6
polynomial in thepjjk, is an invariant. Expressing this explicitly in terms of thg, we
have the invariant

f3 = det(p+ij) det(pi+j) detpij+) — Po++ P1++ Det(pijk).

A computation with Macaulay 2 now yields the following:

Thoerem 5. The ideal of phylogenetic invariants vanishing onSBD 2, T) for the
3-taxon tree ig fo, f1, f2, f3).

We thank a reviewer for pointing out that thex2 x 2 hyperdeterminantwas introduced
into a phylogenetic context iSBumner and Jarvi2004, where it is called théangle That
paper considers the 2-state GM model on a 3-taxon tree rooted along an edge, and proposes
the hyperdeterminant as a generalized ‘distance.’

For ann-taxon tree, determining the full ideal of invariants for the 2-state SBD model
remains open. Of course, this model inherits the invariants of the GM model, which have
been conjectured iPachter and Sturmfel®2004 to be generated by ‘edge invariants’
arising from rank conditions on 2-dimensional flattenings of the tensor. This issue for
GM will be dealt with inAllman and Rhode$2004. Additional invariants for SBD arise
from applying the invariants ocfheorem 5o all 3-dimensional marginalizations of the
dimensional tensaoP. One might suspect that these generate the full ideal, but even for the
4-taxon tree we have been unable to confirm this computationally.
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4, The k-statemodels, arbitrary «

Proposition 6. Let T be an n-taxon tree, with E E(n) = 2n— 3 the number of its edges.
Denoting the dimension of the variety W1, «, T) by d(M, «, T),
d(SBD«, T) = (k — 1) + (k — 1)%E,
k(k — 1)
2

The varieties VSBD «, T) and V(ATR «, T) are irreducible, but (SD, «, T) is the
union ofLK—erlJ distinct irreducible components, one of which iSATR «, T).

d(SD.x, T) = d(ATR «, T) =

+ (k — DE.

Proof. For fixed« and T, choose a root for T. For each modeM that we consider
here, the parameter spagev(, 1. C Xewm T, IS @ semialgebraic subset BM with
M = « + «2E, as all our model assumptions are polynomial equalities or inequalities
placing restrictions on the entries pf and theMe.

For each(M, «, Tr), we will find a complex quasi-projective variedy of dimension
d = d(M, «, T) and a generically finite map : X — CM, such thatX pq .7, C ¥ (X)
andy ~1(X...1,) = X. These conditions imply (X) = X7, SO applying the map
® = deM... T, cM - (CKn, we find

¢ oY (X) = d(Xpe1) =V (M, &, T).

Since the results diliman and Rhode&003 show that is generically finite, the general
fiber (¢ o ¥)~1(P) is of dimension zero. Using a standard result on the dimension of fibers
of regular maps (sedarris 1992 for instance), we conclude that the dimensionXaind
V (M, k, T) are the same.

We begin with the SBD model, sb= (« — 1) + (x — 1)2E. Let

k=1
> xi# 1},
i=1

and define the magr as follows:y(X) = (p, {Me}) wherep; = x; fori =1,...,« — 1,
and the upper left« — 1) x (k — 1) blocks of eachMe are given by successive entries
in x. Use the conditions tha}; pi = 1, >; Me(i, j) = 1, andpMe = p to give
rational formulas for the remaining entries pfand Me in terms ofx. Clearly ¢ is 1-
1 andXsgpy, 1, C ¥ (X). Moreover,xp‘l(xsgg,{;r) is dense inX since it contains a
Euclidean-open subset of the real points<gfwhich is Zariski dense iiX.

For the ATR model, withd = <2 4 (« — 1)E, let

X:!xe(Cd

X={(QuIQeO0uC). Q= (@). g1 #0. ueCkE]

Here O, (C) is the variety of complex orthogonal x « matrices, which has dimension
clerd) . Definey by: ¥(Q.u) = (p, {Me})) wherep = (af;. 6. .-, 9%), and, with
D = diagg11, Q21 - - -, Ge1),

Me = D7'Qdiag(l, Xj+1, Xj 42, - -, Xj+x-1) Q" D,
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wherej = (k — 1)(i — 1). Thaty is generically finite is clear, and thXiztr.. 7. € ¥ (X)

follows from the discussion i8ection 2 Also, the sew—l(XATRK,Tr) is dense inX since

it contains a Euclidean-open subset of the real poins,afhich is Zariski dense iiX.
Finally, for the SD model, recallJacobson1979 that a family of real commuting

normal matrices; can be simultaneously expressedfas= QB QT , with Q € O, (R),

and theB; real block diagonal matrices with the same block structure, where each diagonal

block is either 1x 1 or 2x 2 of the form( 3, 2). The block structures we need to consider

will haven 1 x 1 blocks, the first of which is 1, followed iy 2 x 2 blocks, wheren > 1,

m > 0, andn 4+ 2m = «. Proceeding similarly to the case of the ATR model, for each of

theseL"T“J possible block structurds, we let Xz denote a copy oK as defined for ATR,

and define a mags : Xz — CM similar to the ATR map, where the entriestigive the

independent block entries By andMg = D~*QB QT D. Letting X be the disjoint union

of the X, we obtain a mag : X — CM. The rest of the argument is similar to that for

the ATR model. O

For each of the SBD, SD, and ATRstate models on a treg, we can construct a
few phylogenetic invariants, though we are far from a full understanding of the ideals and
varieties. Since any submodel inherits all invariants of a supermodeG &> SD D
AT R we consider the models in that order. In addition, since these are all submodels of
GM, all GM invariants onT, such as those d&llman and Rhode§2003 2004, are also
invariants of these models.
SBD model: We first consider the 3-taxon tréde, rooted at the central node and reason
similarly to in Section 3If (pijk) = ¢ (pr; M1, M2, M3), then we have

Pi++ = Pti+ = Pt+is

giving 2(« — 1) independent linear invariants expressing equality of state distributions at
the leaves. We can also construct an invariant from the hyperdeterminai;ebn

Kk X k X k tensors. Lettingn = m(x) denote the degree of this polynomial (®93) = 36
andm(4) = 272), then as before we find

Det(pijx) = (det(M1) detMy) det M3) det(D; ))™*.
Similarly,

det(pjj +) = det(My) det(My) det(Dy),

det(pi4j) = det(M7) det(M3) det(Dr),

det(p.ij) = det(My) det(M3) det(Dy),

SO

m/(20)
(det(pij +) det(pij) det(pyij )™ ) — (]_[ |0i++> Det( pijk)
i

is an invariant for the SBD model, since #dividesm, as can be shown from formulas in
Gel'fand et al(1999.

To see that this is not an invariant for the GM model, we check that it does not vanish for
some GM parameters. Indeed, if the parameters are chosen so the ernpriesdfp; ++



E.S. Allman, J.A. Rhodes / Journal of Symbolic Computation 41 (2006) 138—-150 149

are positive, theM; are non-singular, and dé&) # [[; pi++. then the invariant will be
non-zero.

A similar construction replacing Det with any relative invariartf GL, x GL, x GL,
acting onC* @ C* @ C* produces a phylogenetic invariant, providedoes not vanish on
all diagonal tensors. l does vanish on diagonal tensors, tireis already an invariant of
the GM model.

To obtainn-taxon invariants we can of course compose 3-taxon invariants with any
marginalization map ofi-dimensional tensors to 3-dimensional ones.

SD model: Note that for any choice of two tax@, ax on T, if P = ¢ (pr, {Me}), where

(pr, {Me}) € Xspy,T,, the 2-dimensional marginalizaticﬁ’ljk of P obtained by summing
over indices corresponding to all other taxa will be of the f@pM, whereM is a product
of matrices in the collection

{Me | e c EdgeT)} U {D*MI Dy | e € EdgeT)},

and Dy = diagpr) = diag(Pi+..+s P24+-ts - - -» Pet4). Thus all matrices in the
collection

[D7PXj1<j<k<nju{D/XP™"T|1<j<k=<n}

will commute. For each pair chosen from this set, we get a collection of polynomials of
degreec + 1 from the statement of commutativity: for instance,

(D) HPI*(Dy) TR = (D) TP (Dy) TRk,
gives invariants from the entries of
P (detDy)(Dy)"HP™ — P'™(det(Dy)(Dr) ) PIX.

That some of these are not invariants of the SBD model when2 can be verified, most
easily for a 2-taxon tree by a generic choice of SBD parameters.

ATR model: We consider first a 2-taxon tree, with € ¢ (XaT Rk, T,). ThenP = Dy Mg,
so the conditiorMe = D;M/ D; impliesP = PT. The entries of this matrix equation
then give linear invariants, which are not invariants of the SD modad fer2, since there
exist parameters for the SD model wile # D MJ D;. Composing these invariants
with 2-dimensional marginalization maps gives linear invariants far-gaxon tree.
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