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Abstract

Changing base composition during the evolution of biological sequences can mislead some of
the phylogenetic inference techniques in current use. However, detecting whether such a process has
occurred may be difficult, since convergent evolution may lead to similar base frequencies emerging
from different lineages.

To study this situation, algebraic models of biological sequence evolution are introduced in which
the base composition is fixed throughout evolution. Basic properties of the associated algebraic
varieties are investigated, including the construction of some phylogenetic invariants.
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1. Introduction

Models of molecular evolution, such as for DNA sequences, typically assume that
evolution occurs along a bifurcating tree, proceeding from a root representing the common
ancestral sequence, toward the leaves representing the descendent sequences. At each site
in the sequence, bases mutate according to a probabilistic process that depends upon the
edge of the tree. Usually only the sequences at the leaves of the tree can be observed,
while sequences at internal nodes correspond to hidden variables in this graphical model.
A fundamental problem of sequence-based phylogenetics is how to infer the tree topology
from observed sequences, assuming some reasonable model.

In the works ofCavender and Felsenstein(1987) and Lake (1987), the connections
between this problem and algebraic geometry first emerged in the phylogenetics literature.
Under many standard models of molecular evolution, for a fixed tree topology the joint
distributions of bases in the leaf sequences are described by polynomial equations in the
parameters of the model, thus parameterizing a variety associated to the tree. The defining
polynomials of this variety, calledphylogenetic invariants, are polynomials that vanish
on any joint distribution arising from the tree and model, regardless of parameter values.
Finding phylogenetic invariants for various models has been of interest both for providing
theoretical understanding, and in hopes that methods of phylogenetic inference that do not
require parameter estimation may be developed. SeeFelsenstein(2003).

For certain models, much progress has been made in determining invariants. Key
advances for group-based models such as the Kimura 3-parameter one, were made in
Evans and Speed(1993) andSteel et al.(1993), which built on the Hadamard conjugation
introduced inHendy and Penny(1993). Recently,Sturmfels and Sullivant(2005) further
exploited the Hadamard conjugation to recognize that these varieties are toric, completing
the determination of all invariants in this case. For the general Markov model,
Allman and Rhodes(2003), found new constructions of invariants, though the complete
determination of the ideal is still open.

In this paper, we consider models that lie between group-based models and the
general Markov model. Specifically, we assume that a fixed vector describes the relative
frequencies of the bases in sequences ateverynode of the tree, so that the base composition
of sequences remains stable throughout evolution.

Our motivation for this assumption is a biological one. Many of the models currently
assumed in performing inference with real data make an assumption of a stable base
composition (e.g., all group-based models, the general time-reversible model). However,
there are data sets in which base composition seems to have changed during evolution, as
reflected in comparisons of the sequences at the leaves. Although the extent to which this
issue is problematic in real data sets is controversial, a number of authors have pointed
out that changing base composition may mislead some methods of inference, especially if
it results in convergent mutations in different parts of the tree. SeeLockhart et al.(1994),
Conant and Lewis(2001), Rosenberg and Kumar(2003) and their references.

In Kumar and Gadagkar(2001) a ‘disparity index’ was introduced as a simple statistical
test that might indicate inhomogeneity of the mutation process along the different edges of
the tree. This index is based on a pairwise comparison of base compositions of sequences at
the leaves. It is, however, possible that all leaf sequences have the same base composition,
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while an internal node sequence has a different one. Indeed, this is exactly the issue with
convergent mutations; base composition may appear to be the same in observed sequences,
yet it differed in the common ancestral sequence. If a model is chosen only through com-
paring the base compositions of sequences at the leaves, it may be an inappropriate one.

Better understanding the constraints placed on the joint distribution of bases in
sequences from various taxa by an assumption of a stable base distribution is therefore
desirable. To begin investigating this issue, inSection 2we introduce three models of
molecular evolution that include an assumption of stable distribution. When the number
of states in the model isκ = 2, the three models are the same, and its structure allows us to
give a more in-depth analysis than for generalκ . This is the subject ofSection 3, where we
give a rational map inverting the parameterization, and find the full ideal of phylogenetic
invariants for the 3-taxon tree. InSection 4, the case of generalκ is considered. Basic facts
about the associated phylogenetic varieties, such as their dimension and irreducibility/non-
irreducibility, are investigated. Although our knowledge of phylogenetic invariants is
incomplete, we give constructions of some for these models.

2. The models

Let T denote an undirected bifurcating tree, withn leaves labeled by the taxa
a1,a2, . . . ,an. If r is some vertex inT , either internal or terminal, we useTr to denote
the tree rooted atr . We viewTr as a directed graph, with all edges directed away fromr
forming a setEdge(Tr ). ThusTr represents a hypothetical evolutionary history of the taxa
in their descent from a common ancestor atr . For simplicity, we refer toTr as arooted
n-taxon tree.

We model the evolution alongTr of sequences composed from an alphabet[κ] =
{1,2, . . . , κ} of states (e.g.,κ = 4 for the bases of DNA). Aroot distribution vector
pr = (p1, p2, . . . , pκ), with pi ∈ [0,1], ∑i pi = 1, describes the frequency of states
in an ancestral sequence. With eache ∈ Edge(Tr ) we associate aκ × κ Markov matrixMe

(with entries in[0,1], each row summing to 1) whose(i , j )-entry specifies the conditional
probability of statei at the initial vertex mutating to statej at the final vertex of the edge.
Togetherpr and {Me}e∈Edge(Tr ) comprise the parameters of the model. If no additional
requirements are placed onpr or the Me, then we have described the general Markov
model (GM) of sequence evolution, studied inAllman and Rhodes(2003).

Letting XGM,κ,Tr denote the parameter space for theκ-state GM model onTr , we can
view XGM,κ,Tr as a subset of[0,1]M for M = κ + κ2E with E = 2n − 3, the number of
edges ofT . We have a map

φ = φGM,κ,Tr : XGM,κ,Tr → [0,1]κn ⊂ C
κn
,

so thatφ(x) gives the joint distribution of states in aligned sequences at the leaves arising
from the parameter choicex. Specifically,φ(x) = P = (pj1 j2... jn), a κ × · · · × κ tensor
with entries

pj1 j2... jn =
∑

i∈I( j1, j2,..., jn)

pir

∏
e∈Edge(Tr ),
e=(v→w)

Me(iv, iw),
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whereI( j1, j2, . . . , jn) = {
(iv) | v ∈ Vert(Tr ), iv ∈ [κ], i ak = jk

} ⊂ [κ]2n−2. Note thatφ
is a polynomial map, viewed as a function of the entries ofpr and Me, and extends to a
polynomial mapCM → Cκ

n
which we also denote byφ.

In this paper we are interested in submodels of the GM model, in which we have stable
state frequencies at all vertices in the tree. We introduce three such models, defined by
imposing additional restrictions on parameters of the GM model. After formally defining
the models, we will motivate their assumptions and names.

• Stable Base Distribution Model (SBD): 1)pr has no zero entries, and 2)pr is fixed by
all Me; that is,pr Me = pr for all edgese.

• Simultaneous Diagonalization Model (SD): In addition to the assumptions of SBD, 3)
with Dr = diag(pr ), all matrices in{

Me | e ∈ Edge(Tr )
} ∪ {D−1

r MT
e Dr | e ∈ Edge(Tr )

}
commute with one another.

• Algebraic Time Reversible Model (ATR): In addition to the assumptions of SD, 4) for
all edgese, Me = D−1

r MT
e Dr .

We will also need:

Definition 1. For any modelM formed from theκ-state GM model by imposing
additional assumptions on the parameters, and for any rootedn-taxon treeTr , we let
XM,κ,Tr denote the parameter space ofM on Tr . Then the algebraic varietyV(M, κ, Tr )

is the Zariski closure inCκ
n

of φ(XM,κ,Tr ).

We now expand upon the model definitions. First, assuming thatpr has no zero entries,
the matricesD−1

r MT
e Dr are also Markov matrices fixingpr . They arise naturally as

follows: Consider a 2-taxon tree consisting of a single edgee from vertexr to vertexs, with
model parameterspr andMe. Then the joint distribution of states in aligned sequences atr
ands arising from these parameter choices is given by the entries inDr Me. Assuming that
Me fixespr , so thatpr is also the state distribution of a sequence ats, the identity

Dr Me = (Dr (D
−1
r MT

e Dr ))
T

shows that the model parameterspr ,Me on the 1-edge tree rooted atr lead to the same
joint distribution as the model parameterspr , D−1

r MT
e Dr on the 1-edge tree rooted at

s. More generally, parameters for the SBD, SD, or ATR model onTr produce the same
joint distribution as the set of parameters onTs for any other vertexs, simply by defining
ps = pr , and for those edges whose directions have reversed in changing the root location,
replacingMe by D−1

r MT
e Dr . In particular, we see:

Proposition 2. φ(XM,κ,Tr ) and V(M, κ, Tr ) are independent of the choice of r for
M=SBD, SD, and ATR. Thus, for these models, V(M, κ, T) is well defined without
reference to r .

We note that independence of root location is a property also shared by the
varieties associated with group-based models and the GM model (Steel et al., 1994;
Allman and Rhodes, 2003).
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Second, the requirement for the SD and ATR model that the specified collection
of matrices commute is, in fact, equivalent to an assumption that those matrices are
simultaneously diagonalizable. To see this, first note that the commutation assumption is
equivalent to the commutation of the collection{

D1/2
r MeD−1/2

r | e ∈ Edge(Tr )
}

∪
{

D−1/2
r MT

e D1/2
r | e ∈ Edge(Tr )

}
.

But this implies in particular that each matrixD1/2
r MeD−1/2

r is normal, and hence
diagonalizable. Commutativity then implies the existence of simultaneous eigenvectors
for this collection, and hence for the original collection. Conversely, if the matrices are
simultaneously diagonalizable, they certainly commute.

Third, the ATR model is related to the general time-reversible model (GTR) often used
in phylogenetic studies. The GTR assumes that for each edgee, Me = exp(Rte), wherete
is a scalar parameter andR is a rate matrix (with rows summing to 0) common to all edges
with the properties thatDr R is symmetric andpr R = 0 (Felsenstein, 2003). A collection
of Markov matrices arising from GTR parameters thus satisfies the hypotheses of the ATR
model. However, the common rate matrix assumption of the GTR imposes a relationship
among the logarithms of the eigenvalues of the Markov matricesMe which the ATR does
not, and thus the ATR is more amenable to algebraic analysis.

Finally, we note that the group-based models, such as the Kimura 3-parameter one
(KST), can be viewed as the ATR together with additional assumptions on the eigenvectors
of theMe. For instance, KST requires the eigenvectors be the columns of a 4×4 Hadamard
matrix, with(1,1,1,1) the stable state distribution.

We summarize the relationships of the various models by
Group-based⊂ATR ⊆ SD ⊆ SBD ⊂ GM.

⊆
GTR

The models on the main row all have algebraic definitions. Of course, the ideals associated
with these models and their varieties are related by a reversed chain of inclusions. For
κ ≥ 3, the inclusions are all strict, though forκ = 2 equalities hold.

We have placed the GTR off the main row in this diagram since ifκ ≥ 3 it is not
within the class of models with strictly algebraic definitions. Note also that for certain rate
matrices a GTR model may be a submodel of a group-based one.

3. The 2-state model

Forκ = 2, the SBD, SD, and ATR models are all the same. To see this, and fix notation
for future use, consider the SBD model, with root distribution vectorpr = (p,1 − p) =
(p,q). Since each matrixMe has left eigenvectorpr and right eigenvector(1,1), both with
eigenvalue 1, we readily find we can write

Me = M(me) =
(

1 − meq meq
mep 1 − mep

)
,

thus associating a single scalar parameterme with each edge. We also see thatMe satisfies
the hypotheses of the ATR model as well. (In fact, forκ = 2, the ATR model and the GTR
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model also coincide.) The form ofMe allows us to identify parameters for ann-taxon tree
with a point(p; {me}) ∈ R2n−2.

We first consider a 3-taxon treeTr , rooted at its central node, with three edgese1, e2,
ande3 leading fromr to leavesa1, a2, anda3. Labeling the states 0 and 1, and using these
as indices to refer to matrix entries corresponding to the states, the joint distribution of
states at a site in sequences at the leaves is now described by a 2×2×2 tensorP = (pi jk ),
where

pi jk = pM1(0, i )M2(0, j )M3(0, k)+ qM1(1, i )M2(1, j )M3(1, k).

Viewing P as a polynomial function ofp,m1,m2,m3, we thus have a mapϕ : C4 →
C8, and readily see that the Zariski closure of the image ofϕ is V(SB D, κ, T).

For notational ease, we follow the convention that replacing an index by the symbol
‘+’ indicates marginalization over that index. For instance,pi j + = ∑

k pi jk , while
pi++ = ∑

j ,k pi jk .

Proposition 3. The following rational map provides an explicit inverse to the
parameterization of the mapϕ:

p = p0++,

ml = 1 −
∑

i j k (−1)i+ j +k pi jk p(1−i )++ p(1− j )++ p(1−k)++
(p1++ − p0++)dl

, l = 1,2,3,

where d1 = det(p+i j ), d2 = det(pi+ j ), and d3 = det(pi j +).

Proof. Define a 2× 2 × 2 diagonal tensorD with D(0,0,0) = p, D(1,1,1) = q, and all
other entries zero. We then have

pi jk =
1∑

l ,m,n=0

D(l ,m,n)M1(l , i )M2(m, j )M3(n, k), (1)

expressingP as the result of an action of an element ofGL2 × GL2 × GL2 on D. Also
observe that each matrixMi has as right eigenvectors(1,1) and(−q, p), with eigenvalues
1 and 1− mi , respectively. Thus multiplying the tensorP, whose entries are polynomials
in p, m1, m2, andm3, by the vectorv = (v0, v1) = (−q, p) along each of its indices,
yields

g0 =
1∑

i, j ,k=0

pi jkvi v j vk (2)

=
1∑

i, j ,k=0

1∑
l ,m,n=0

D(l ,m,n)M1(l , i )vi M2(m, j )v j M3(n, k)vk.

Interchanging summations, and using thatv is an eigenvector of each of theMi , yields

g0 =
1∑

l ,m,n=0

(1 − m1)(1 − m2)(1 − m3)D(l ,m,n)vl vmvn

= (1 − m1)(1 − m2)(1 − m3)pq(p − q). (3)
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Multiplying similarly, with two copies ofv and one of(1,1), yields

g1 =
1∑

i, j ,k=0

pi jkv j vk = (1 − m2)(1 − m3)pq,

g2 =
1∑

i, j ,k=0

pi jkvi vk = (1 − m1)(1 − m3)pq, (4)

g3 =
1∑

i, j ,k=0

pi jkvi v j = (1 − m1)(1 − m2)pq.

Now sincep = p0++, if we express the entries ofv as linear polynomials in thepi jk ,
we may view thegi as polynomials in thepi jk as well. Then from Eqs. (2) and (4) we see
thatg0 is of degree 4, whileg1, g2, andg3 are each of degree 3.

A calculation shows all four of these polynomials have a factor ofs = ∑1
i, j ,k=0 pi jk ,

which of course evaluates to 1 onV , so we may replace eachgi with g̃i = gi /s, if desired.
We also note that explicit expressions for the quadraticg̃i as ordinary matrix determinants
can be given:

g̃1 = det(p+i j ), g̃2 = det(pi+ j ), g̃3 = det(pi j +).

Eqs. (3) and (4) now lead directly to formulas for themi ,

mi = 1 − g0

(v0 + v1)gi
, for i = 1,2,3,

which yield the stated map.�

The explicit invertibility of the parameterization map for the 3-taxon tree readily extends
to n-taxon trees.

Thoerem 4. Suppose Tr is a rooted n-taxon tree with(p; {me}e∈Edge(Tr )) ∈ C2n−2

definingpr = (p,1 − p), Me = M(me) and

P = (pi1i2...in) = φ(pr ; {Me}e∈Edge(Tr )).

Then the polynomial mapϕ : (p; {me}e∈Edge(Tr )) �→ P is inverted by a rational map
explicitly given by the following formulas:

(1) p = p0++···+.
(2) For each terminal edge e0, assume without loss of generality that e0 = (v → a1).

Choose two other taxa a2,a3 such that the path from a2 to a3 in T passes throughv.
Then

me0 = 1 −
∑

i j k (−1)i+ j +k pi jk+···+ p(1−i )+···+ p(1− j )+···+ p(1−k)+···+
(p1+···+ − p0+···+) det(p+i j +···+)

.

(3) For each internal edge e0 = (v → w), chose four taxa which, without loss of
generality, we assume are a1,a2,a3,a4, such that the path joining a1 to a2 in T passes
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throughv, but not throughw; and the path joining a3 to a4 passes throughw, but not
v. Then

me0 = 1 −
(∑

i j k (−1)i+ j +k pi jk+···+ p(1−i )+···+ p(1− j )+···+ p(1−k)+···+
)

det(p+i+k+···+)(∑
i j k (−1)i+ j +k p+i j k+···+ p(1−i )+···+ p(1− j )+···+ p(1−k)+···+

)
det(pi j +···+)

.

Proof. The formula forp is clear. For the remaining formulas, byProposition 2the root
location may be changed without changing the variety. Moreover, while moving the root
may change a direction of an edgee, the matrixMe is unchanged.

For a terminal edgee0 as described above, the 3-dimensional tensor(pi jk+···+) =
φ(p; M1,M2,M3) for a 3-taxon treeT ′

v, whereMi = ∏
e∈Path(v,ai )

Me with Path(v,ai )

the set of edges in the path joiningv to ai . In particular,M1 = Me0, so applying the
formula ofProposition 3for m1 yields the desired formula.

Similarly, for an internal edgee0 as described above, start with the 3-dimensional tensor
(pi jk+···+) = φT ′(p; M1,M2,M3) for the 3-taxon treeT ′

v. Then, sinceM(m)M(m′) =
M(m′′) is equivalent to(1−m)(1−m′) = 1−m′′, by applying the formula ofProposition 3,
we find ∏

e∈Path(v,a3)

(1 − me) =
∑

i j k (−1)i+ j +k pi jk+···+ p(1−i )+···+ p(1− j )+···+ p(1−k)+···+
(p1+···+ − p0+···+) det(pi j +···+)

.

Likewise, considering the 3-dimensional tensor(p+i j k+···+), we find

∏
e∈Path(w,a3)

(1 − me) =
∑

i j k (−1)i+ j +k p+i j k+···+ p(1−i )+···+ p(1− j )+···+ p(1−k)+···+
(p1+···+ − p0+···+) det(p+i+k+···+)

.

Since
∏

e∈Path(v,a3)
(1 − me) = (1 − me0)

∏
e∈Path(w,a3)

(1 − me), this yields the given
formula. �

Now, to determine phylogenetic invariants for the SBD model withκ = 2, we first
consider the 3-taxon treeT . We seek all polynomials in thepi jk that vanish onϕ(C4), and
thus defineV(SBD,2, T).

As we are considering a submodel of GM, we obtain the stochastic invariant, which
definesV(GM,2, T):

f0 = 1 − p+++.

Several other invariants for the SBD model are easily found. The distribution of states
in a sequence atai is given by the vectorpi where

p1 = (pi++), p2 = (p+i+), p3 = (p++i ).

Since each leaf sequence must have the same state composition, we setp1−p2 = p1−p3 =
0, obtaining two linear invariants

f1 = p010+ p011− p100− p101, f2 = p001+ p011− p100− p110,

whose span includes that arising fromp2 − p3 = 0. These are the invariants underlying the
disparity index ofKumar and Gadagkar(2001).
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From Eqs. (3) and (4) we can also see that

h = g̃2
0v0v1 + g̃1g̃2g̃3(v0 + v1)

2 (5)

is an invariant of degree 8. However, whileh /∈ ( f0, f1, f2), the ideal( f0, f1, f2,h) is
not the full ideal of invariants. Using Macaulay 2 (Grayson and Stillman, 2002) to find
the kernel of the ring map associated withϕ quickly yields a single invariant of degree
6 with 258 terms, which together withf0, f1, and f2 generates the full ideal defining
V(SB D,2, T).

In fact, this invariant can be explained through the hyperdeterminants ofGel’fand et al.
(1994). For a 2× 2 × 2 tensor such asP, the hyperdeterminant is given explicitly as

Det(P) = (p2
000p2

111+ p2
001p2

110+ p2
010p2

101+ p2
011p2

100)

− 2(p000p001p110p111+ p000p010p101p111+ p000p011p100p111

+ p001p010p101p110+ p001p011p110p100+ p010p011p101p100)

+ 4(p000p011p101p110+ p001p010p100p111).

Now reasoning from Eq. (1) and using the invariance properties of Det(P) under the
SL2 × SL2 × SL2 action, one finds that, in terms of model parameters,

Det(P) = p2q2(1 − m1)
2(1 − m2)

2(1 − m3)
2.

Thus g̃1g̃2g̃3 − pqDet(P) = 0, and sog̃1g̃2g̃3 + v1v0 Det(P), viewed as a degree 6
polynomial in thepi jk , is an invariant. Expressing this explicitly in terms of thepi jk , we
have the invariant

f3 = det(p+i j ) det(pi+ j ) det(pi j +)− p0++ p1++ Det(pi jk ).

A computation with Macaulay 2 now yields the following:

Thoerem 5. The ideal of phylogenetic invariants vanishing on V(SBD,2, T) for the
3-taxon tree is( f0, f1, f2, f3).

We thank a reviewer for pointing out that the 2×2×2 hyperdeterminant was introduced
into a phylogenetic context inSumner and Jarvis(2004), where it is called thetangle. That
paper considers the 2-state GM model on a 3-taxon tree rooted along an edge, and proposes
the hyperdeterminant as a generalized ‘distance.’

For ann-taxon tree, determining the full ideal of invariants for the 2-state SBD model
remains open. Of course, this model inherits the invariants of the GM model, which have
been conjectured inPachter and Sturmfels(2004) to be generated by ‘edge invariants’
arising from rank conditions on 2-dimensional flattenings of the tensor. This issue for
GM will be dealt with inAllman and Rhodes(2004). Additional invariants for SBD arise
from applying the invariants ofTheorem 5to all 3-dimensional marginalizations of then-
dimensional tensorP. One might suspect that these generate the full ideal, but even for the
4-taxon tree we have been unable to confirm this computationally.
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4. The κ-state models, arbitrary κ

Proposition 6. Let T be an n-taxon tree, with E= E(n) = 2n−3 the number of its edges.
Denoting the dimension of the variety V(M, κ, T) by d(M, κ, T),

d(SBD, κ, T) = (κ − 1)+ (κ − 1)2E,

d(SD, κ, T) = d(ATR, κ, T) = κ(κ − 1)

2
+ (κ − 1)E.

The varieties V(SBD, κ, T) and V(ATR, κ, T) are irreducible, but V(SD, κ, T) is the
union of� κ+1

2 � distinct irreducible components, one of which is V(ATR, κ, T).

Proof. For fixedκ and T , choose a rootr for T . For each modelM that we consider
here, the parameter spaceXM,κ,Tr ⊂ XGM,κ,Tr is a semialgebraic subset ofRM with
M = κ + κ2E, as all our model assumptions are polynomial equalities or inequalities
placing restrictions on the entries ofpr and theMe.

For each(M, κ, Tr ), we will find a complex quasi-projective varietyX of dimension
d = d(M, κ, T) and a generically finite mapψ : X → CM , such thatXM,κ,Tr ⊂ ψ(X)

andψ−1(XM,κ,Tr ) = X. These conditions implyψ(X) = XM,κ,Tr , so applying the map
φ = φGM,κ,Tr : CM → Cκ

n
, we find

φ ◦ ψ(X) = φ(XM,κ,Tr ) = V(M, κ, T).

Since the results ofAllman and Rhodes(2003) show thatφ is generically finite, the general
fiber(φ ◦ψ)−1(P) is of dimension zero. Using a standard result on the dimension of fibers
of regular maps (seeHarris, 1992, for instance), we conclude that the dimensions ofX and
V(M, κ, T) are the same.

We begin with the SBD model, sod = (κ − 1)+ (κ − 1)2E. Let

X =
{

x ∈ C
d

∣∣∣∣∣ κ−1∑
i=1

xi �= 1

}
,

and define the mapψ as follows:ψ(x) = (p, {Me}) wherepi = xi for i = 1, . . . , κ − 1,
and the upper left(κ − 1) × (κ − 1) blocks of eachMe are given by successive entries
in x. Use the conditions that

∑
i pi = 1,

∑
j Me(i , j ) = 1, andpMe = p to give

rational formulas for the remaining entries ofp and Me in terms ofx. Clearlyψ is 1–
1 andXS B D,κ,Tr ⊂ ψ(X). Moreover,ψ−1(XS B D,κ,Tr ) is dense inX since it contains a
Euclidean-open subset of the real points ofX, which is Zariski dense inX.

For the ATR model, withd = κ(κ−1)
2 + (κ − 1)E, let

X =
{
(Q,u) | Q ∈ Oκ (C), Q = (qi j ), qi1 �= 0, u ∈ C

(κ−1)E
}
.

Here Oκ (C) is the variety of complex orthogonalκ × κ matrices, which has dimension
κ(κ−1)

2 . Defineψ by: ψ(Q,u) = (p, {Me}) wherep = (q2
11,q

2
21, . . . ,q

2
κ1), and, with

D = diag(q11,q21 . . . ,qκ1),

Mei = D−1Q diag(1, x j +1, x j +2, . . . , x j +κ−1)Q
T D,



148 E.S. Allman, J.A. Rhodes / Journal of Symbolic Computation 41 (2006) 138–150

where j = (κ − 1)(i − 1). Thatψ is generically finite is clear, and thatXATR,κ,Tr ⊆ ψ(X)
follows from the discussion inSection 2. Also, the setψ−1(XATR,κ,Tr ) is dense inX since
it contains a Euclidean-open subset of the real points ofX, which is Zariski dense inX.

Finally, for the SD model, recall (Jacobson, 1975) that a family of real commuting
normal matricesAi can be simultaneously expressed asAi = QBi QT , with Q ∈ Oκ (R),
and theBi real block diagonal matrices with the same block structure, where each diagonal
block is either 1× 1 or 2× 2 of the form

(
a b−b a

)
. The block structures we need to consider

will haven 1× 1 blocks, the first of which is 1, followed bym 2× 2 blocks, wheren ≥ 1,
m ≥ 0, andn + 2m = κ . Proceeding similarly to the case of the ATR model, for each of
these� κ+1

2 � possible block structuresB, we letXB denote a copy ofX as defined for ATR,
and define a mapψB : XB → CM similar to the ATR map, where the entries inu give the
independent block entries inBi andMei = D−1QBi QT D. Letting X be the disjoint union
of the XB, we obtain a mapψ : X → CM . The rest of the argument is similar to that for
the ATR model. �

For each of the SBD, SD, and ATRκ-state models on a treeT , we can construct a
few phylogenetic invariants, though we are far from a full understanding of the ideals and
varieties. Since any submodel inherits all invariants of a supermodel, andSB D ⊇ SD ⊇
AT R, we consider the models in that order. In addition, since these are all submodels of
GM, all GM invariants onT , such as those ofAllman and Rhodes(2003, 2004), are also
invariants of these models.
SBD model: We first consider the 3-taxon treeTr , rooted at the central node and reason
similarly to inSection 3. If (pi jk ) = φ(pr ; M1,M2,M3), then we have

pi++ = p+i+ = p++i ,

giving 2(κ − 1) independent linear invariants expressing equality of state distributions at
the leaves. We can also construct an invariant from the hyperdeterminant Det(pi jk ) on
κ × κ × κ tensors. Lettingm = m(κ) denote the degree of this polynomial (som(3) = 36
andm(4) = 272), then as before we find

Det(pi jk ) = (det(M1) det(M2) det(M3) det(Dr ))
m/κ .

Similarly,

det(pi j +) = det(M1) det(M2) det(Dr ),

det(pi+ j ) = det(M1) det(M3) det(Dr ),

det(p+i j ) = det(M2) det(M3) det(Dr ),

so

(det(pi j +) det(pi+ j ) det(p+i j ))
m/(2κ) −

(∏
i

pi++

)m/(2κ)

Det(pi jk )

is an invariant for the SBD model, since 2κ dividesm, as can be shown from formulas in
Gel’fand et al.(1994).

To see that this is not an invariant for the GM model, we check that it does not vanish for
some GM parameters. Indeed, if the parameters are chosen so the entries ofpr and pi++
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are positive, theMi are non-singular, and det(Dr ) �= ∏
i pi++, then the invariant will be

non-zero.
A similar construction replacing Det with any relative invarianth of GLκ×GLκ×GLκ

acting onCκ ⊗ Cκ ⊗ Cκ produces a phylogenetic invariant, providedh does not vanish on
all diagonal tensors. Ifh does vanish on diagonal tensors, thenh is already an invariant of
the GM model.

To obtainn-taxon invariants we can of course compose 3-taxon invariants with any
marginalization map ofn-dimensional tensors to 3-dimensional ones.
SD model: Note that for any choice of two taxaaj ,ak on T , if P = φ(pr , {Me}), where
(pr , {Me}) ∈ XS D,κ,Tr , the 2-dimensional marginalizatioñP jk of P obtained by summing
over indices corresponding to all other taxa will be of the formDr M, whereM is a product
of matrices in the collection{

Me | e ∈ Edge(Tr )
} ∪ {D−1

r MT
e Dr | e ∈ Edge(Tr )

}
,

and Dr = diag(pr ) = diag(p1+···+, p2+···+, . . . , pκ+···+). Thus all matrices in the
collection{

D−1
r P̃ jk | 1 ≤ j < k ≤ n

} ∪ {D−1
r (P̃ jk)T | 1 ≤ j < k ≤ n

}
will commute. For each pair chosen from this set, we get a collection of polynomials of
degreeκ + 1 from the statement of commutativity: for instance,

(Dr )
−1P̃ jk(Dr )

−1P̃lm = (Dr )
−1P̃lm(Dr )

−1P̃ jk,

gives invariants from the entries of

P̃ jk(det(Dr )(Dr )
−1)P̃lm − P̃lm(det(Dr )(Dr )

−1)P̃ jk .

That some of these are not invariants of the SBD model whenκ > 2 can be verified, most
easily for a 2-taxon tree by a generic choice of SBD parameters.
ATR model: We consider first a 2-taxon tree, withP ∈ φ(XAT R,κ,Tr ). ThenP = Dr Me,
so the conditionMe = D−1

r MT
e Dr implies P = PT . The entries of this matrix equation

then give linear invariants, which are not invariants of the SD model forκ > 2, since there
exist parameters for the SD model withMe �= D−1

r MT
e Dr . Composing these invariants

with 2-dimensional marginalization maps gives linear invariants for ann-taxon tree.
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