Available online at www.sciencedirect.com

sclzucs@nlnzc'rﬂ Mathematical
Biosciences

Mathematical Biosciences 186 (2003) 113-144

www.elsevier.com/locate/mbs

Phylogenetic invariants for the general Markov model
of sequence mutation

Elizabeth S. Allman **, John A. Rhodes °

& Department of Mathematics and Statistics, University of Southern Maine, 96 Falmouth Street, Portland,
ME, 04104, USA
b Department of Mathematics, Bates College, 3 Andrews Road, Lewiston, MA 04240, USA

Received 5 November 2002; received in revised form 1 August 2003; accepted 26 August 2003

Abstract

A phylogenetic invariant for a model of biological sequence evolution along a phylogenetic tree is a
polynomial that vanishes on the expected frequencies of base patterns at the terminal taxa. While the use of
these invariants for phylogenetic inference has long been of interest, explicitly constructing such invariants
has been problematic.

We construct invariants for the general Markov model of k-base sequence evolution on an n-taxon tree,
for any x and n. The method depends primarily on the observation that certain matrices defined in terms of
expected pattern frequencies must commute, and yields many invariants of degree x + 1, regardless of the
value of n. We define strong and parameter-strong sets of invariants, and prove several theorems indicating
that the set of invariants produced here has these properties on certain sets of possible pattern frequencies.
Thus our invariants may be sufficient for phylogenetic applications.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In [1], Cavender and Felsenstein and, in an independent work [2], Lake introduced an approach
to phylogenetic tree construction from biological sequence data called phylogenetic invariants. We
briefly and informally describe this method as applied to DNA sequences.
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Given a topological tree relating » terminal taxa and a particular parameterized model of
molecular evolution along this tree, one can compute the expected pattern frequencies of each of
the 4" patterns of various bases at the terminal taxa, in terms of the parameters of the model. For
simple yet natural models, these expected pattern frequencies will be polynomials in the model
parameters.

A phylogenetic invariant for the topological tree and parameterized model is another poly-
nomial, in 4" variables, which becomes zero when the expected pattern frequencies are substituted
for the variables, regardless of the values of the model parameters. If such phylogenetic invariants
can be found, then one might use them to choose topological trees (and/or models of evolution)
consistent with sequence data as follows: From aligned DNA sequences, compute the observed
frequencies of patterns. Assuming these observed frequencies are good estimators of the expected
frequencies for some choice of model parameters, they should cause the phylogenetic invariants to
vanish, or at least be small. The optimal topological tree is chosen as the one for which the
invariants come the closest to vanishing on the observed frequency data. Thus one has a model-
based method of choosing topological trees which, unlike current maximum likelihood ap-
proaches, does not require the full estimation of all model parameters.

For such a scheme to be useful, however, many issues require better understanding. First, one
must have a practical, efficient way of producing phylogenetic invariants. One might also hope to
learn which of the invariants distinguish among different topological trees (i.e., are topologically
informative), and which give no such information. Then, in order to apply invariants to real data,
one must decide what it means for an invariant to be ‘close to vanishing’ on observed frequencies.
A statistical understanding of the behavior of these polynomials on noisy data is highly desirable.
Moreover, as there are infinitely many invariants, choosing a finite set of generators with good
statistical properties is necessary. Finally, robustness of the method under violation of model
assumptions is critical to applications, since models of sequence evolution are only approxima-
tions of reality. While much work remains to implement such a plan, the approach has intrigued a
number of researchers. (See [3] for a survey and further references.)

A recent work of Chor et al. [4] makes use of phylogenetic invariants (for a two-state symmetric
model) in another way. Though the focus of their paper is the construction of examples of
observed pattern frequencies that lead to non-unique maximum likelihood trees, the approach
illustrates the potential usefulness of invariants in maximum likelihood calculations. One can
maximize the likelihood as a function of expected pattern frequencies, subject to the constraints
that these expected frequencies satisfy the phylogenetic invariants, rather than searching directly
for parameter values to maximize the likelihood function.

In this paper, we address only the question of finding phylogenetic invariants. Several previous
approaches to this question exist. In the work of Cavender and Felsenstein [1] clever arguments
based on the 4-point condition with log-det metric, and on statistical independence of evolu-
tionary processes along different parts of a tree are used to produce invariants for the Jukes—
Cantor 2-base model with 4 terminal taxa.

In later work of Ferretti and Sankoff [5-7] invariants are found empirically for a variety of
models by looking for algebraic relationships among expected frequencies for particular pa-
rameter values, and then proving these empirically-found polynomials to be true invariants. A
weakness of this method is that while ‘all’ invariants of a given low degree can be found, one has
little understanding of what ‘new’ invariants of higher degree might remain unknown.
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Evans and Speed [8] were able to make a significant leap for the Kimura 3-parameter model, by
introducing the use of harmonic analysis on a certain abelian group that reflects the structure of
this model. While this method finds all invariants, it seems to depend strongly on the particular
model structure, so that it is limited in its ability to be generalized. A related approach to in-
variants for the Kimura 3-parameter model was found by Steel et al. in [9], building on the work
of Hendy and Penny [10]. See also [11].

For the general Markov model, Steel gave a single invariant in [12] from consideration of the 4-
point condition with log-det metric. Further work of Semple and Steel [13] gave many additional
invariants for this model: each subtree relating either 3 or 4 terminal taxa gave rise to invariants
expressible as the entries in certain matrix equations. However, since all these invariants are
deduced through considering frequencies of patterns at only two terminal taxa at a time, one
might suspect other invariants exist that were not found. Another construction of a large number
of invariants is reported by Hagedorn in [14].

The language of algebraic geometry is of course the natural one for discussing polyno-
mial phylogenetic invariants. That Grobner basis techniques from computational algebraic
geometry could in principal produce all invariants has been pointed out several times,
including in [15,16]. However, the number of variables involved in such computations
seems to place them well beyond the reach of current technology, except in the simplest model
situations.

In this paper we present several methods of finding phylogenetic invariants for the general
Markov model of base substitution along any topological tree. We place no restrictions on either
the number # of terminal taxa the tree relates, nor on the number x of bases from which sequences
are made. Our approach requires nothing more than linear algebra, and even for large n allows
one to easily produce many invariants that do not simply arise from subtrees relating fewer taxa.
While the invariants found previously in [12,13] are included among those constructed here, many
new invariants are produced also.

Two of our constructions, one based on the commutation of certain matrix expressions in the
expected pattern frequencies and one based on the symmetry of other matrix expressions, yield
invariants of degree k + 1 for sequences composed of k bases. (Note that in [14] Hagedorn reports
that this is the lowest degree at which one should expect to find non-trivial invariants.) Other
constructions yield invariants of degree 2x. In all cases there is no dependency of the degree on the
number of taxa. Furthermore, the nature of the constructions allow one to associate invariants to
branching features of the tree, so that one can design invariants to test for certain phylogenetic
relationships.

The work of Chang [17] contains one of our key insights, on the diagonalizations of certain
matrix expressions in the expected pattern frequencies. However that work was directed at
proving that model parameters could be recovered, and did not exploit these diagonalizations for
finding invariants. The fact that simultaneously diagonalizable matrices must commute lies at the
heart of our approach.

As anyone who has explicitly calculated invariants knows, one can quickly be overwhelmed by
staring at polynomials in a large number of variables with many terms. The invariants we find,
however, have the rather welcome feature that they are expressible by equating entries in certain
matrix products. Not only is this psychologically pleasant, it also allows for simple implemen-
tations in software.
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While we are not able to prove that we have found all phylogenetic invariants for the general
Markov model, we prove several theorems that give some assurance that a ‘sufficiently large’ set of
invariants is in hand. The proofs of these theorems focus attention on what are perhaps the most
interesting of our invariants, which are those (x + 1)-degree ones deduced from the commutation
of certain matrix expressions, as mentioned before. Indeed, the other invariants we construct play
no role in our sufficiency proofs.

In the 3-taxon case with x <4 bases, we show (Theorem 5 and its corollaries) that we have a
large enough set of polynomials that, provided a certain non-singularity condition is met, the
vanishing of our invariants at a point implies the vanishing of any invariant, including those we
might have failed to find. We also show (Theorems 11, 13), that in the n-taxon case with any
number x of bases, any point for which our invariants vanish that is ‘nearly-diagonal’ arises from
model parameters, and thus will also result in the vanishing of any invariant, including those we
might have failed to find.

Since in biological applications one expects the relevant points to both satisfy the specified non-
singularity condition and to be nearly-diagonal, these results indicate that our invariants should
be a large enough set for use in phylogenetic applications.

We close with several concrete examples showing possible pitfalls in the use of invariants for
phylogenetic inference. There are arrays which satisfy all invariants for the general Markov
model, yet do not arise as the pattern frequency arrays for any choice of model parameters. Lest
this be interpreted too negatively, we point out that the use of the log-det distance and the four-
point condition to infer a 4-taxon phylogeny can be interpreted as the use of a single, specific
invariant for phylogenetic inference. Therefore, despite these examples, there is strong evidence
that in practice invariants may be valuable.

2. Phylogenetic models and invariants

We denote by x the number of letters (or bases) in the alphabet from which sequences are
constructed, and use 1,2, 3,...,x to denote the letters. Thus for DNA sequences k = 4, and we
might identify the bases 4, C, G and T with the numbers 1-4.

Since much of the analysis in this paper focuses on considering only 3 terminal taxa, one of
which is assumed to be the root of the tree, we first describe our model in that situation.

2.1. The general Markov model: three taxa

Let a, b, and ¢ denote three terminal taxa, or leaves. There is only one unrooted bifurcating
3-leaf tree topology which can describe their phylogeny, as shown in Fig. 1.

The general Markov model of mutation we consider includes the following assumptions. All
mutations are assumed to be base substitutions. Along each edge of the tree proceeding away
from the root, substitutions occur at each site in a sequence, independent of other sites, but
following an identical process that depends only on the edge (the i.i.d. assumption). Furthermore,
substitution probabilities along various edges of the tree depend only on the immediate ancestor
sequence (the Markov assumption).
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Fig. 1. The 3-taxon tree.

Let f denote the central vertex of the 3-leaf tree, as in Fig. 1. Assume taxon a is the root of
the tree. (This assumption will be discussed further in Section 3 below.)
We specify a root distribution vector at a, as a row vector

P, = (pa(l)?pa(2)7 e 7pa(K))7

with p,(i) = 0 for all i and >_, p,(i) = 1. We interpret p,(i) as the probability of base i occurring
at a site in a sequence at taxon a.

For each directed edge @ — f, f — b and f — c of the tree leading away from the root, a k¥ X K
Markov matrix M,,, My, M. is given. That is, the entries of each matrix are non-negative, and
each row sums to 1. The entries of these matrices are interpreted as probabilities of various base
substitutions occurring at any particular site in the sequence. For instance, M, (i, j), the i, j entry
of M,,, is the conditional probability that if base i appears at vertex a at a particular site, then base
j will appear at vertex f at that site.

The vector p, and the matrices M,;, My,, My, constitute the parameters of our model, which
we denote by

M = Py, Moy, My, My,).

Since p, has k — 1 degrees of freedom, and each of the matrices has x(x — 1), there are a total of
(3k + 1)(k — 1) scalar parameters. To be more specific, we specify the scalar parameters as the
first k — 1 entries of p, and the non-diagonal entries of the Markov matrices. Then the remaining
entries are given by formulas

) = 1= S om0, My f) = 1= 3 M, 7o),

i#j

be(j’j) =1- Zbe(Jv l)a Mfc(])]) =1- ZMfc(jv l)
i#j i#j

In particular, all entries of p,, M,;, My, and M, are (linear) polynomials in our chosen scalar
parameters.

Because we take an algebraic approach in this work, at times we will need to allow the scalar
parameters to be any complex numbers. Note that then the entries of p,, M,;, Mp,, and M, are also
allowed to be any complex numbers, as long as each row sums to 1. In such situations we refer
to complex parameters. When the additional criteria that all entries of p,, M,r, My, and M. be
non-negative real numbers holds, we refer to the parameters as being stochastic.
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2.2. Expected frequencies of patterns

From a choice of parameters
M = (pm af)MﬂanC)

we can compute the expected frequency of any pattern in sequences whose mutation is described
by our model. Let E,./(i, ], k, [) denote the expected frequency of the pattern with i at a, j at b, k
at ¢, and /[ at f. Then E,., is a four-dimensional array, the expected frequency array, with entries

Eaper (is ), ;1) = () May (i )My (1, /)My (1, k).

Note that the entries of E,,., are monomials in the entries of p, and M,,, My, M., and hence are
polynomials in the scalar parameters of the model described above.

We will also need notation for various subarrays of E,.,, as well as for the marginal arrays
found by summing over various indices. For instance, we let E,,., be the three-dimensional array
defined by

EaZc‘f(iaju k) - abcd( 2 _]a k)v
while E,.s is the three-dimensional array defined by

ach l]> ZEabcf l]ak Z

More generally, replacmg one or more of the subscripts a, b, ¢, f with a number indicates the
subarray whose entries are those entries of E,,., with the given numbers occuring in the corre-
sponding indices, while replacing one or more of a, b, ¢, f with a X indicates the marginal array
obtained by summing over the corresponding index.

With this notation, E!,,, = p,, since both are simply the vectors of expected frequencies at a of
various bases 1,2,...,«x, regardless of what appears at b, ¢ and f. For another example, E ;5 is
the frequency matrix of patterns with various bases at @ and b, but with 2 at ¢ and any base at f.

Since the three-dimensional array E,,.s will play a particularly important role, we also denote it
by E... It is the expected frequency array of patterns at the leaves (and thus its entries can be
estimated from sequence data for the terminal taxa alone). The same notational conventions on
replacing a, b or ¢ by numbers or 2’s will be used for subarrays and marginal arrays of E,,.. When
we need to be explicit about choices of model parameters we write E,.(.#) with

(pg? avafb’MfC)

Note all the entries in all of the subarrays and marginal arrays associated to E,.,(.#) and

Ep. () will be polynomials (of degree at most 4) in the scalar parameters specifying ..

2.3. Trees relating n taxa

Our notation naturally generalizes to trees and models relating more than 3 terminal taxa.

We adopt the phrase n-taxon tree as shorthand for an unrooted topological bifurcating tree
with n leaves labeled by the taxa. There are thus three 4-taxon trees relating taxa a, b, ¢, and d, as
shown in Fig. 2.

Consider the 4-taxon tree 77. Assuming we root 7| at a, with internal vertices labeled as shown,
our model parameters will be .# = (p,, Mye, Moy, Mop, M., My,), Where p, is again the root distri-
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Fig. 2. The 4-taxon trees.

bution vector, and the various M,, are Markov matrices for each edge in the tree directed away
from the root.

Since a bifurcating tree with » leaves has 2n — 3 edges, we specify a mutation model by indi-
cating a topological tree with n labeled leaves, a root distribution vector at leaf a, and 2n — 3
Markov matrices assigned to the edges directed away from a. As above, this gives
(k— 1)+ x(k — 1)(2n — 3) scalar parameters. While strictly speaking one should call the tree
topology a model parameter, we find it more convenient in this paper to reserve the word ‘pa-
rameter’ for numerical quantities.

In the 4-leaf case with tree 7;, one has a six-dimensional array E,..r of expected pattern
frequencies at all vertices, where

Eupeaer (1, ], k, 1,myn) = (1) Mae (i, m)Mep(m, j)M.r(m, n)My.(n, k)My(n, ).

The four-dimensional array E,. of expected pattern frequencies at the leaves is defined by
Eupca = Eapcass Where

Eabcdz):(iaja k7 l) = Z ZEahcdef(iyj7 k7 laman)'
m=1 n=1

Of course the parameters .# and the array E,..(-#) reflect the labeled topological tree specified,
as one sees upon imitating our development for either of the other labeled 4-taxon trees 75 and 73.

The n-taxon case is similar. Obvious modifications describe model parameters for trees rooted
at internal vertices.

2.4. Phylogenetic invariants and varieties

Returning to the 3-leaf case for concreteness, let X, denote a k¥ x K X Kk array of indeterminants,
and C[X,s] = C[Xq11,. .. X the polynomial ring in its x* indeterminant entries, with complex
coefficients. Then a phylogenetic invariant for the 3-leaf general Markov model is a polynomial
p € C[X,p] such that p = 0 under the substitution X, < E..(-#) of the polynomial expressions
(in terms of the scalar parameters) for the expected pattern frequencies at the leaves.

If two polynomials p; and p, vanish under this substitution, then so does any C[X,;.]-lin-
ear combination of p; and p,. Thus the set of all phylogenetic invariants for the 3-leaf gen-
eral Markov model forms an ideal in C[X,;.]. We denote this phylogenetic invariant ideal by
A, where T is the tree of Fig. 1, the only bifurcating topological tree that can relate 3 terminal taxa.

Similarly, for the 4-leaf case, and the tree 7 of Fig. 2, one has an ideal Uy € C[X,.] of all
polynomials that vanish identically under the substitution X 4.y <— Eupeq(-#). Since there are three
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possible 4-taxon trees, we in fact have three such 4-taxon ideals, which we might denote Uy, Ay,
and Ar,. Any polynomial p such that p € 2y, but p & Ay, for some i, j is topologically-informative,
since it will vanish on all expected frequencies arising from tree 7, but not vanish on most of those
arising from tree j.

For the n-taxon case we similarly have an ideal of phylogenetic invariants for each n-taxon tree,
and a concept of topologically-informative invariants.

For each topological tree, one would like to be able to explicitly give the ideal of phylogenetic
invariants for the general Markov model. Since these ideals are finitely generated (by the Hilbert
basis theorem) this would mean to give an explicit list of generators of the ideal. Even in the 3-leaf
case, where there is only one topology and thus no topologically-informative invariants, deter-
mining generators of the phylogenetic invariant ideal might be valuable for measuring the fit of
the general Markov model to data.

Finding phylogenetic invariants can be viewed as a problem in computational algebraic geometry.
In principle, Grobner basis methods can be used to find generators of the ideal 2; from the
polynomial entries of the expected frequency arrays. However, the computation seems to be beyond
current capabilities, due to the large number of variables involved in the elimination process.
Nonetheless, we will find it convenient to use some of the language of algebraic geometry.

For any ideal a € C|xy, .. .,x,], the affine algebraic variety associated to a is

V(a) ={x e C"|p(x) =0 for all p € a}.

For an n-taxon tree 7 with phylogenetic invariant ideal 2y, the phylogenetic variety associated to
T'is V() C C*'. For any choice .# of model parameters for the chosen topological tree, whether
stochastic or complex, the array E(.#) of expected frequencies of patterns at the terminal taxa will
produce a point in V(7). However, V(27) will typically contain many other points as well (see
Section 9 for examples).

Foratree 7, let m denote the number of scalar parameters in the general Markovmodel on 7. Then
we can view complex parameters as points in C”, and the stochastic parameters as points in a subset
of [0,1]" € R™. Several times we will use the observation that if p(X) is a polynomial that vanishes
under the substitution X « E(.#) for all choices of .# in a non-empty open subset of either C” or
R™, then p € Ar. This is a consequence of viewing p(E(.#)) as a polynomial in the scalar pa-
rameters, and the fact that a multivariable polynomial which vanishes on a non-empty open set
in C" or R" must be identically zero.

In particular, we can characterize the phylogenetic variety V' (2[7) as the smallest algebraic
variety containing all points of the form E(.#) when .# is allowed to range over any non-empty
open subset of either C" or R™.

3. Alternative root locations

Although we assume throughout most of this paper that our trees are rooted at leaf a, this
assumption is in fact not essential for studying phylogenetic invariants of the general Markov
model. More specifically, the phylogenetic invariant ideal associated to an n-taxon tree is inde-
pendent of any choice of root location, whether at a leaf, at an internal node of valence 3, or at
a node of valence 2 inserted along some edge. This follows from the following proposition, which
is a slight variation on Theorem 2 of [18], with a similar proof.
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Proposition 1. Suppose an n-taxon tree T is given. Let r be some choice of root for T (which may be
a leaf, an internal node of valance 3, or along some edge). Let stochastic parameters
My = {p,, M, ...} for the general Markov model on the rooted tree T, be given.

Suppose further that all entries of p, are positive, and no column of any of the M,, is zero. Then for
any other choice of a root s for T at either a leaf or an internal node of valance 3, there is a uniquely
determined choice of general Markov model parameters M ; with the same properties producing the
same expected frequency array as M, at the leaves and internal nodes of valence 3.

Since the proposition equates the expected frequency array at leaves and internal nodes of
valance 3 for different roots under certain conditions, it certainly implies the equality of the
expected frequency array at the leaves alone. This implies a result on phylogenetic invariants:

Corollary 2. Let T be an n-taxon tree and let a be one of the taxa labeling the leaves. Then the
phylogenetic invariant ideal Ny for the general Markov model on T rooted at a is identical to the
phylogenetic invariant ideal Wy, for the general Markov model on T rooted at r, where r is any other
leaf, internal node of valance 3, or new node inserted on an edge of T.

Proof. To see 2A; C Az, suppose p(X) € Wr. Let E(#) be the expected frequency array at the
leaves for the model rooted at a with parameters .#, and E(.#,) the expected frequency array
at the leaves for the model rooted at » with parameters .#,.

Let m, denote the number of scalar parameters associated to .#,. The real scalar parameters for
M, resulting in p, having positive entries, all M,, € .#, having non-zero columns, and .#, being
stochastic form a non-empty open set in R™. By Proposition 1, we see that for all .#, in this set,
E(M,) = E(M) for some .#. Thus E(.4,) € V(Ur), and so p(E(#,)) =0 on this open set in
parameter space. We conclude p € Uy

We similarly see A7, C Ay if the root r is at either a leaf or an internal node of valence 3 of T.

If, however r lies on an edge of T, say the edge from f to ¢, we need one additional observation
to complete the argument. Let E(.#,) denote the expected frequency array at the leaves for the
tree rooted at f, with parameters .#,. By Proposition 1 again, if m is the number of scalar pa-
rameters in .#, we know that for any ./ in a certain non-empty open set in R” there is an .#, such
that E(#)=E(My). But if M;={p;,My,...}, then E(4M;)=E(M,.) where .= {p,
M,s, M, ...} is defined by letting p, = Py My =1, and M,. = M, and retaining for .#, all
Markov matrices in .4 associated to edges other than f — c. Thus for all .# in some open set in
the parameter space of the model rooted at a, E(.#) € V() and we can proceed as above. [

This corollary justifies our assumption throughout the rest of this paper that trees be rooted at
a leaf.
4. Recovering parameters from E,;

Our basic viewpoint leading to the construction of invariants focuses first on the tree relating 3

terminal taxa. It is intimately tied to the question of when and how one can recover the pa-
rameters ./ from a numerical array E,,.(.#), which was addressed by Chang in [17]. In order to
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both motivate our approach, and provide insight into our construction, we summarize some of
the ideas and issues raised in that paper, in the context of a 3-taxon tree.

Of course, considering more than three taxa is important for most real applications. Gener-
alizations to four and more taxa will be discussed in subsequent sections.

4.1. Obstacles to recovering parameters

Suppose for the 3-taxon tree numerical parameters .# = (p,, M.s, M, My.) are given, thus
determining an array E,,. = E..(.#). Several simple observations indicate .# can not always be
recovered from E,,., at least without imposing additional conditions or assumptions.

If some of the Markov matrix parameters are singular, then there may be infinitely many
choices of parameters giving the same array E,.. To illustrate this, consider an extreme example
where all entries of both M, and M. are 1/x. Then we find

LR
Eae(i, j, k Zpa DMy (1, ))Me(1 k) = Zpa =5p,(0).

Thus the array Eabc is independent of the choice of Maf. More subtle examples of arrays E,.
arising from infinitely many choices of parameters can be constructed in which two of the Markov
matrices are non-singular.

There is another issue preventing the unique recovery of .# from E,.. Informally, one can
insert a permutation of the bases at the internal node of the tree without affecting any of the
expected frequencies in E,..

To be more specific, let o be a permutation of the set {1,2,...,«x}. Then there is an associated
permutation matrix P with the property that for any row vector v = (vy, 0y, ...,0,), we have
vP = ( (1)s Vg(2)y - - - ,D(,(K)).

Then if M is any matrix with x columns, MP has the same columns as M, but reordered by o.
Similarly for a matrix M with x rows, PTM has the same rows as M, but reordered by o.

Proposition 3. Suppose o is a permutation of {1,2,3 ...k} with associated permutation matrix P.
For any choice of model parameters M = (p,,, af,Mﬂ,,Mﬂ) let

M= (pa’MafP’PTMﬂMPTMfc)'
Then Ep (M) = Eype(M).

Proof
Eunclt0)(i, Zpa )My (1, )My (1K)
= zpu My (i, 0(1))Mp(a (1), )M (o (1), k)

= Zpa MapP) (i, 1)(P"Mp)(1,j)(P"M;.) (1, k)

- abc(f% )(lvjvk)' U
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Of course for an n-taxon tree with parameters .#, for any choice of a permutation for each
of the n — 2 internal nodes one can define a similar action of the permutations on .# to produce
new parameters .#' with E(./") = E(M).

Remark 1. For biological applications, we expect our Markov matrices to have their largest
entries along the main diagonal, since most sites should not mutate along an edge, or we would
not have been able to align sequences. This means both that the Markov matrices are non-
singular, since they are fairly close to the identity matrix, and that we can single out a single
biologically-reasonable ordering of the columns of M,,. Thus the issues of non-uniqueness
of parameters raised here are primarily of theoretical importance.

4.2. Recovering parameters

We turn now to the deduction of parameters .# from the array E,..
Consider the expected frequency array E,;, where k is a particular base at ¢. Then we can
express its entries as

Eai(i,j) = Easc(i, j. k Zpa s DMy (1, j)Mye(1, k).

Letting
Cres = diag(My(1,k), Mz (2,k), ..., Mz (x,k))

denote the diagonal matrix formed from the kth column of M., and D, = diag(p,), this becomes

Eupke = DMy Cre M. (1)
Similarly,
Euws(i, ) Zpa S DMp(1,j),
SO
Eups = DMy My,. (2)

Assuming D,, M,;, and My, are non-singular, then
(Eab2)7 Eabk — M Cfcﬁkab-

Now the expression on the right side of this equation is simply a diagonalization of a matrix. That
is, the rows of My, are the left eigenvectors of (Eabz)flEabk, and the diagonal entries of Cj.; are
the corresponding eigenvalues.

As long as the eigenvalues are distinct, the eigenvectors of a diagonalizable matrix are uniquely
determined up to scalar multiples. Since M, is a Markov matrix, its rows must each sum to 1, so
the particular scalar multiple is thus uniquely determined. Therefore the collection of rows of My,
can be found from the eigenvectors; only the order in which those rows appear is not deducible
from (Eabz)flEabk. This, however, is precisely the issue described in Proposition 3. More formally,
we obtain the following partial converse of that proposition, which is essentially Lemma 4.1 of
[17], and whose proof we therefore omit.
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Proposition 4. Let

M= (pa7Mt{f'7M/babe> and 'ﬂ/ - (pil’M(;f"M;h’M;c)'

Suppose that M,; and My, are non-singular, no pair of rows of M. are identical, and p, has all
non-zero entries. Then E. (M) = Eup.(M) implies that M’ = M° for some permutation o.

Note the proposition indicates that, provided all Markov parameters are non-singular, there
are only finitely many parameter choices leading to the same expected frequency array.

The argument behind this last proposition in fact provides a constructive way of recovering
parameters .# from an array E,.(.#). Provided E,ys is non-singular, one simply computes the
matrices (Eabg)flEab,» from E,., and then using standard algorithms computes their common ei-
genvectors, scaling appropriately to give choices of Markov matrix parameters. If x <4, one could
in principle even find exact formulas for the eigenvectors, since the characteristic equation which
must be solved is polynomial of degree k. For any k, one can compute the eigenvectors numerically.

5. Phylogenetic invariants for 3 taxa

As the last section has shown, if X,s. = E,.(#), then the matrices X ;L X,,; must have a full set
of common eigenvectors. Since matrices with common eigenvectors commute, this observation
leads to the construction of phylogenetic invariants.

5.1. Commutation relations
We work initially under the assumption that any matrix whose inverse we need actually exists.

After using this to deduce invariants, we will show the invariants found in this way are valid even
if the assumption is not met.

First, for i, =1,2,...,k, define matrices
Yc;i — (Xabi)(XabZ)717 (3)
Yy = (Xuie) (Xase) ™ (4)

If Xpe = Eupe( M), then from equations like (1) and (2) we deduce that
Yei = (DaMay) Crei( DuMiy) ™
-1
Yyj = (DaMay) Cpoj(DaMay)
Thus these matrices are simultaneously diagonalizable, and hence commute:
Yc;iYc:j = Yc:ch;ia (5)
Yc;in:j = Yb;jYC%i' (6)
We first focus on Eq. (5) in the case where i # j. Expressing it in terms of X, yields
Xabi a;alYXab/Xa;)lY - ng/ a;JlZXllbiXa_l),lZ :
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Multiplying on the right by X5, yields
Xabi(XabZ)_lXabj = Xabj(XabZ)_lXab[' (7)

Now the inverse of a non-singular matrix 4 can be expressed as

—1 1 T
A~ = det(d) Cof(4)",
where Cof(4) denotes the matrix of cofactors of 4. For a k x x matrix 4, this is another k X K
matrix whose entries are explicitly known polynomials in the entries of 4, found by taking
*determinants of (k — 1) x (k — 1) submatrices. As such, each entry of the cofactor matrix is a
polynomial of degree k — 1 in the entries of 4, with (x — 1)! terms.
Multiplying Eq. (7) by det(X,,x) gives

XabiCOf(XabZ)TXab_/ = XabjCOf(XabZ)TXubi- (8)

This is an identity of matrices, yielding x? scalar identities from the various entries. Furthermore,
each side of the equation has entries that are polynomials of degree x + 1 in the entries of X, so
each identity, after possible cancelation, is of degree at most x + 1. While all x? identities obtained
this way may not be independent of one another, we do at least have a collection of invariants that
must be satisfied if X, is of the form E,.(.#) and X5 is non-singular.

Writing each of these identities in the form

p(Xabc) = p(XlllaXllb . 7chz<) = O7
we have a set of polynomial invariants
yc%l}j = {pn(Xabc) "’l =1,..., KZ}_

We get such a set for each choice of the pair i # j, and there are x(x — 1)/2 such pairs. This leads
to a set of invariants

Fe =S s
ij

Similar arguments yield sets ., and %, of invariants arising from

ijcCOf (Xzbc)TXibc = Xip.Cof (XZbc)T)(jbca

XajcCOf(XaZc) TXaic = XaicCOf(XaZc ) TXajc .

Each of the sets &, 9, and ¥, has at most x*(x — 1)/2 elements, each of which is a poly-
nomial of degree at most x + 1.

Returning to Eq. (6) to obtain additional invariants, we express it in terms of X;. and multiply
it by det(X,,x) det(X,z.) to get

XajcCOf(XaZc)TXabiCOf(XabZ)T = XabiCOf(Xab):)TXajcCOf(XaZc)T- (9)
The entries of this matrix identity give x” scalar invariants, each of which is of degree at most 2x.
We denote the set of these invariants by ¥ ;. There are x? such sets as i, j range over 1,2, ...k,

which we combine to form a set of cardinality at most x*:
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ybc = bec;ji-
ij

We can also construct sets ¥, and .%,,, based on the formulas
X Cof (Xupz) XiseCof (Xzpe) " = XipeCof (Xzne)' X, Cof (Xups),

abj abj

X! Cof (X,5.) X Cof (Xzpe) = X;p Cof (Xspe )X

ajc

,COf(Xazc),

ajc
which can be derived similarly. Alternately, one may obtain these equations from Eq. (9) by
interchanging the roles of a, b, and ¢, being careful to transpose matrices when necessary.

5.2. Symmetry relations

Another source of invariants is the fact that certain expressions defined in terms of the expected
frequency array must produce symmetric matrices. For example, since

Xabi = DaMafoc;iMﬂ)a
Xswe = M diag(p, Mo )My,

Xaje = DMy CppyMye,
we see that
dei (XZTbc)_lXT

aje

= DyMysCre diag(p,Mas ) CpiM,, Dy
is symmetric. Thus invariants arise from the equation
X Cof (Xype) XTI, = X,jeCof (Xyp) X7 (10)

ajc
Interchanging the roles of a, b, ¢ also yields

AXibcCOf(XaZC)TXab/ = XaTbjCOf(XaZC))QZc’

X3, Cof (Xapy)" Xoje = X, Cof (Xopx) Xipe.
Since an equation stating that a matrix is symmetric yields x(x —1)/2 non-trivial scalar
equalities, these symmetry conditions yield at most 3x(x — 1)/2 invariants, all of degree at most
k + 1. However, one can show that these invariants are a subset of those arising from commu-
tation relations.
Finally, we have the trivial invariant that the entries of X, being frequencies of all possible
patterns, must sum to 1, so let

Fo={Xim+Xin+-+Xea — 1}
In total, we have found a set of invariants
S =S UL ULy UL USL oy US pe UL e

As one would expect, explicit computations for specific values of x show these are usually non-
trivial. Of course we should also expect many of these invariants to be consequences of others,
so that they are not independent. For instance, identities such as
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=

Yc;[ =1
i=1
can be used to explicitly produce some dependencies.
Actually, we have not yet given a complete argument as to why the elements of .% are invar-
iants. Our derivation of % above from commutation and symmetry relations required assump-
tions that X,;s, X,s. and X5, all be invertible, or equivalently that

det(Xus) #0, det(Xose) £ 0,  det(Xsp) # 0.

However, we can certainly find a non-empty open set of parameters on which these conditions
hold (for instance, a neighborhood of {(1/x,...,1/x),I,1,1}). But since any polynomial van-
ishing on E(.#) for all .# in such an open set must lie in A, this shows . C 7.

Remark 2. We could obtain many other invariants, by varying the steps above slightly and
temporarily assuming different matrices are invertible. For instance, in Eq. (3) we may replace
Xz by any linear combination of the X,;s and in Eq. (4) we may replace X,z by any linear
combination of the X,;s and then reason similarly under the assumption that these linear com-
binations are non-singular. We do not explicitly list the invariants so produced here for three
reasons. First, there are no essentially new ideas in producing them. Second, all our results on the
inferential power of the invariants we have found will use only some of the invariants already
explicitly listed. Third, if one were to use these invariants on sequence data, one might choose to
implement the invariants in a form using inverses rather than cofactors. Since one can expect
matrices such as X,z to be far from singular while the individual X,;s should be more nearly
singular, the numerical computation of the inverse of X5 should be better behaved.

Nonetheless, using a symbolic computation package it is straightforward to produce an explicit
list of all invariants discussed here. For example, one finds that for x = 4, the invariants of degree
5 so produced form a 1728-dimensional vector space. By a partially-computational argument of
Hagedorn [14], or a representation-theoretic argument of Landsberg and Manivel [19], this must
be the full space of degree 5 invariants.

5.3. Additional invariants through saturation and radical

The invariants obtained through the commutation relations can, in principle, be refined
through two additional steps. Though explicit computations of these steps seems beyond current
capabilities of Grobner basis packages, they still provide useful theoretical understanding.

Let 3 = (%) be the ideal generated by ¥ in the polynomial ring C[X,.], so I C Az.

Let d,(Xue), dp(Xape), and d.(X,s.) be polynomials in the entries of X, defined by

da (Xabc> - det(XZbc>7 db (Xabc) - det(XaZc); dc (Xabc) - det(XabZ>
and consider the set of polynomials
T =9U {1 - tda(Xabc)a 1 - udb(Xahc)7 1 - Udc(Xabc)}a

where ¢, u, and v are 3 new ingeterminants. In the ring C[X,p., t,u,v], 7 generates an ideal T, and
defines a variety ¥ (T) in C* . The projection of this variety onto C* is precisely the subset
of V(3) comprised of those points at which none of d,,dy,d. vanish. The ideal
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I =T NCXu
is called the saturation of 3 with respect to d,, dy, d.. The variety V(3J) contains all the points of
V(3) at which all these determinants are non-zero, and is, in fact, the smallest variety to do so.
Clearly 3 C 3, but it is also the case that 3 C ;. To see this we argue as before that there is a
non-empty open set of parameters .# for which these polynomials will vanish on E,.(.#) (for
instance, a neighborhood of {(1/x,...,1/k),1,1,1}). But since any polynomial vanishing on
E() for all ./ in such an open set must lie in 27, this shows J C Ay.

Remark 3. In principle, computing a Grobner basis for T using a monomial term ordering of ‘fuv-
elimination type’ (that is, any monomial ordering in which monomials involving any of ¢, u, or v
are greater than all monomials in C[X,.]) would allow one to find a basis for the elimination ideal
3 =T N ClXpe)-

Unfortunately a Grobner basis calculation even for 3, much less for ¥, when x = 4 seems
beyond the capability of current standard software packages. To see the difficulty, note that we
are dealing with polynomials in 64 + 3 variables, and the polynomials arising from Egs. (8) and
(10) and their analogs are homogeneous of degree 5 and have hundreds of terms. Those arising
from Eq. (9) are more complex. However this elimination problem involves far fewer variables
than that involved in the direct calculation of all invariants by Grobner methods as outlined,
for example, in [16].

Example. For « = 2, things are simple. One readily sees that Eq. (8) yields only the zero poly-
nomial, and thus %, and similarly ., and .¥,, contain only the zero invariant. In fact, one can
see this without even doing a calculation since

Yc;l +}]c;2:la

so the commutation of the Y, is guaranteed. Eqs. (9) and (10) are more opaque, but a calculation
shows they also yield only the zero polynomial. Thus ., &4, %, and &, also only contain
zero, and & = &,. That is, 3 is generated by the trivial invariant. One then deduces that 3 = 3.

Of course, in this case our model has 7 scalar parameters, while £(.#) is a point in C*, so we
would have expected Ay = (F), as a Grobner basis calculation can confirm.

If the saturation 3 could be found for larger x, one additional step could, in principal, produce
a potentially larger ideal of invariants. By the Strong Nullstellensatz, the full ideal of all poly-
nomials vanishing on V(3J) is the radical \/—S', and of course V3 C Ay.

We summarize our results so far by the chain of inclusions

JC3cC \/§ C Az,
which implies
V(3) 2 V(3I) = V(\/§> O V(AL).

For any x we have an explicit list of generators of 3, but do not know if we have explicit gen-
erators for any of the other ideals.
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6. Sufficiency of the invariants arising from commutation relations: 3 taxa

While our method is able to produce a large set S of explicit invariants which generate an ideal
3, due to current computational limits we have not be able to explictly find J or \/g . Moreover,
at this point one might speculate that a large gap still lies between V' 3 and 2[;. One may thus
reasonably ask what we have gained over the direct, yet infeasible, Grobner basis calculation of
generators of 2y described in [16]. Is there a sense in which we have found ‘enough’ invariants?

We address this question in two ways. In this section we give a result for the 3-taxon case with
Kk < 4. Later in Section 8, after discussing constructing invariants for n-taxon trees, we shall give
a different result that has no restriction on x or n.

We will need some terminology which will be used in the n-taxon case also.

Definition. Let 7' be an n-taxon tree relating taxa ay,ay, ..., a, with phylogenetic invariant ideal
A;. Suppose Z C C* and # C C[X,,4,.4,]- Then we say Z is a strong set of invariants on & for
the tree 7 if it has the properties

A C AUp,
V(%) N2 CV(Ar).

Thus a set of invariants # being strong on & means that any point in & satisfying the invariants
in Z satisfies all possible invariants for the tree. As long as we only consider points in &, a strong
set of invariants has as much distinguishing power as all of 2.

For any set &, there is value in identifying small sets of invariants that are strong on 2. With
this in mind, we focus on the 3-taxon case and let

S =S UL C L.

Thus % contains the trivial invariant and only certain of the (x + 1)-degree invariants arising
from commutation relations.

Theorem 5. Suppose k < 4 in the 3-taxon case. Let O denote the open set that is the complement of
V({d.)). Then 9" is a strong set of invariants on O.

Before giving the proof of this theorem, we focus on its implications.
Since an ordering of the taxa a, b, c is arbitrary, one can consider more invariants to get a set
of strong invariants on a larger set.
Corollary 6. Suppose k <4 in the 3-taxon case. Let 2 denote the open set that is the complement of
V({dadp, de)) = V({da)) NV ({db)) NV ({d))
andlet " = Sy U L, ULy US,.. Then ¥" is a strong set of invariants on 2, and thus & is a strong

set of invariants on 2.

Proof. If X ;. € 2, then at least one of the d,,d;,d, is non-zero at X,.. Permuting the taxa if
necessary, we may assume d.(X,.) # 0. Then Theorem 5 applies to show X, € V(7).
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Since " C &, & is strong on any set on which %" is strong. [J

Let 3 = (&), J its saturation with respect to the polynomial d,, and V' J' the radical of the
saturation. Then

/ ~/ ~ ~ ~
Jc3 FC3, V3 g\/g.

We can now show that if we were able to find explicit generators for 3’ and 3, these sets would
be quite powerful.

Corollary 7. For k<4 in the 3-taxon case,

S/:\/EZQIT

and V(%’) =V(3) =V(Uz). Thus 3 and 3 are strong sets of invariants on all of c~.

Proof. With @ as in Theorem 5, we have that
V(IYno Cvy).

But V(3J') is the smallest variety containing V' (J') N ¢, so

V(3) C ().

Since I’

- 3 C Ay, we also have
V(3)2V(3) 2 V(A

Thus these three varieties must be equal, and so the corresponding radical ideals are equal. [

Example. For « = 2, we have observed that J = (Z), from which it follows that V3= (Z0).
Therefore Ay = (), and all invariants of the 3-taxon tree are multiples of the trivial invariant.

Our proof of Theorem 5 will depend on the irreducibility of certain varieties of commuting
matrices.

Proposition 8. Let € (n, m) denote the ane variety of commuting n-tuples of m x m matrices over C.
Then for k <4, €(k — 1, k) is irreducible.

This is proved for k = 4 by Guralnick and Sethuraman in [20]; the easier case of ¥ = 3 is shown
by Guralnick in [21], with references given there to earlier proofs. This last paper also shows that
for x > 4 the variety is not irreducible.

Lemma 9. For k<4, (x — 1)-tuples of « x k simultaneously diagonalizable matrices are Zariski
dense in €(k — 1, k).

Proof. Consider the smaller set of (x — 1)-tuples of x x x simultaneously diagonalizable matrices
where the first matrix has « distinct eigenvalues. This is the same as the set of (x — 1)-tuples of



E.S. Allman, J.A. Rhodes | Mathematical Biosciences 186 (2003) 113—144 131

commuting matrices where the first matrix has distinct eigenvalues. Thus it is an open set in
%(x — 1, x), since the distinct eigenvalue condition can be specified as p(x) # 0 for a certain poly-
nomial in the entries of the matrices. But a non-empty open subset of an irreducible set is dense. [

Proof of Theorem 5. Suppose X, € V({4')) N O and p € Ay.

First note that it is enough to show that p(X,,.) = 0 under the additional assumption that X5y
has no zero entries. For if some of the entries of X,s5 are zero, we can find a matrix M arbitrarily
close to 7 (in the Euclidean sense), whose columns add to 1, with MX,xy having no zero entry.
Then defining X,;. by X = MX,, one checks that X, € V({(¥')) N 0O, and so X, is in the
closure of arrays satisfying the additional assumption as well.

Assuming, then, that X5y has no zero entries, for any (k — 1)-tuple of k x x matrices (M, ...,
M, 1), let M,, =1 — > M;, and define an array Y ;. by Yo, = XupsM;. Let p(My, ..., My—1) = p(Yape).

We first show p vanishes on all (x — 1)-tuples of simultaneously diagonalizable matrices.
Writing M; = S~'D;S, it is enough to consider those tuples where S has no row summing to 0, since
these are dense in the full set. But then we may assume S has rows summing to 1. But for such A,
by applying the ideas of Section 4, we see Y, = E(.#). In fact, .4 is composed of p, = X/,
M, = D;'XpxS™', My, = S, and My, with ith column coming from the diagonal of the D,. Thus
ﬁ(Mla . 'Mcfl) :p(E(‘%)) =0.

Now by the preceeding lemma, p must therefore vanish on all (x — 1)-tuples of commuting
matrices. In particular, for the commuting matrices M; = X} X5, we find p(Xu.) =0. O

Remark 4. Since % (m — 1,m) is not irreducible for m > 4, it is not hard to see that Theorem 5
cannot be extended to larger k. Indeed explicit arrays X,,. € V(2r) can be constructed which
satisfy all polynomials in .#”, but not d.. However, whether Corollary 6 can be extended by a
different proof to larger x is not known.

7. Phylogenetic invariants for four or more taxa

In light of the last section, there are two reasonable goals in producing phylogenetic invariants.
First, one might hope to produce as many invariants as possible, keeping in mind that their
statistical behavior on noisy data is currently unknown and thus the more invariants we have to
investigate, the more likely we may be to find ones that behave well. Second, one might hope to
produce as small a set of invariants as possible that, on some set & of possible data, is in some
sense sufficient to stand-in for all invariants (e.g., the notion of a strong set of invariants on 2).

In this section we pursue both goals for the general Markov model on an n-taxon tree. We first
define a large number of invariants through commutation and symmetry relations and other
approaches. We then single out a smaller subset of these which in the next section we will prove
has a sufficiency property.

Consider the case of four taxa a, b, ¢, and d, related according to the tree 7; in Fig. 2. Model
parameters are specified as

M = Py Maey Moy, Moy, My, My}

with the expected frequency of patterns at the terminal taxa given by Epeq = Eupea ().
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Of course a large number of invariants can be found by considering subtrees connecting any
three of the leaves. (By a subtree of T we mean a topological bifurcating tree whose leaves are a
subset of those of 7' and which is obtained from 7 by deleting some leaves, edges and internal
nodes, ‘merging’ edges if necessary.) For instance, the entries in the three-dimensional array E . s
must satisfy all of the invariants discussed earlier in the three taxa case. These polynomials, then,
are simply the ones found earlier, with the sums appearing as entries of X;.s substituted in for the
variables used earlier. Similarly one can substitute the entries of Xs.q, Xu50q, and X zs to obtain
more invariants associated to 3-taxon subtrees.

However, we must expect other invariants not coming from 3-taxon subtrees, as a simple ex-
ample shows. Since the only 3-taxon invariants in the k = 2 case are multiples of the trivial one,
any array X,,.; whose entries sum to 1 will satisfy all the 3-taxon subtree invariants. However,
with only 11 scalar parameters in the x = 2, 4-taxon model, the points of the form E(.#) in C'®
must be on a variety of dimension at most 11. Thus there must be additional invariants. (In fact,
from any 4-taxon invariant not arising from a 3-taxon invariant one could easily construct an
example of a four-dimensional array that satisfies all invariants induced by 3-taxon subtrees, yet
does not satisfy all invariants of the 4-taxon model.)

We will focus on producing invariants for n-taxon trees that do not come from considering
smaller subtrees.

7.1. First construction: (3+)-taxon identities

Our first construction of invariants for n-taxon trees is one that has no analog in the 3-taxon
case. As an example of it, for the 4-taxon tree 7; note that

EaicZ = DaMaeCebAiMefow
EaZcZ = DaMaeMefoca
EaiZd = DaMaeCeb,iMefodv

Eisza = DaMoeMop My, .
Thus
EuesEoyey = EuzaEoyzy
and for each choice of i we obtain x? invariants from the entries of
XaicZCOf(XaZcZ)T det(Xussq) = XaiZdCOf(XaZZd)T det(X,scx). (11)

Note that these invariants are of degree 2k.

In fact, the polynomial identities obtained from Eq. (11) are topologically informative; that is,
identity (11) holds precisely because a and b are neighbors. To see this, suppose we consider the
tree 7> of Fig. 2 in which a and ¢ are neighbors, with parameters .# = {p,, Mye, Moe, Mor, My, My}
Then we find:

Eaic): = DaMae CébA,'Mec )

EaZcZ = DaMaeMeca
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EaiZd = DaMaeMe_f'Cﬂ),iMfdy

EaZZd = DaMaeMefody
where C,; is the diagonal matrix constructed from the ith column of the product M. My,. Thus

EaicZE,;):lcz = (DaMae) Céb‘[ (DaMae) - ;

EaiZdEa_led = (DaMae)MefCﬂ),iMe_fl (DaMae)_l .

Generically at least, C.,; # M,;Cp;M_', as one can choose parameters so the matrix product on
the right is not diagonal. Thus the generic E.,(.#) for tree T, will not satisfy Eq. (11).

Returning to tree 77, there are invariants analogous to those in Eq. (11) again specifying that
a and b are neighbors, but in which the roles of ¢ and b are reversed:

XipexCof (Xzper) det(Xspza) = XipzaCof (Xspza)” det(Xupes),
as well as invariants specifying that ¢ and d are neighbors:
XT 'COf(XaZcz) det(ngcg) = X):TbCiCOf(XZch) det(XaZc):),

aXci
XaTZ[dCOf(XaZZd) det(ng;d) = X;bidCOf(XZbZd) det(XaZZd).

This construction of invariants generalizes to an n-taxon tree T' as follows: Choose three of the
taxa, and denote them by ay, a,, and a3. Let v be the internal node of 7 that is the only internal
node of the 3-taxon subtree relating these a;. Let ay, .. ., a, denote those taxa for which the path
a; — a; in T does not pass through v. (The construction assumes at least one such q; exists, and
thus that n > 4.) Let a,.,...,a, denote the remaining taxa. Then order the indexing of the
expected frequency array so taxa appear in the order ay,a,...,a,.

Now for any 1 <4y, ...,i, <k, similar reasoning to the above yields

Xala2254...imZ“ZCOf(XalaZZ...Z)T det(Xa12a3Z...Z) = Xa12a3[4...imCOf(XaIZagz...Z)T det(XalaZZ...Z)- (12)

Varying the choices of a;, a,, a; yields many more invariants, all of degree 2x. These are also
topologically informative for any n > 4. That at least some of them are topologically informative
is perhaps most easily seen by summing equations of the form (12) over all indices is, . . ., i,, which
reduces them to the invariants (11) for a 4-taxon subtree.

7.2. Second construction: (4+)-taxon identities

A similar source of invariants which did not arise in the 3-taxon case is the 4-point condition,
with the essential idea appearing in [1]. For the 4-taxon tree 77 with parameters .# = {p,, My,
My, My, My, My, }, for convenience define

. -1 . .
Pe = PiMee, Py = PMer, My = diag(p,)” M, diag(p,), D, = diag(p,).
Then
EaZZd = DaMaeMefoda EaZcZ = DaMaeMefoL’a

Espsa = DeMpeMeMyy,  Espes = DpMpeMey My,
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and so

Eqssa (Emdf1 =Eqscs (Ethz)fl- (13)
Thus

XuzsaCof (XZbZd)T det(Xspex) = XuzexCof (Xxpex) ! det(Xspsa) (14)

yields invariants of degree 2x. Variations on this, by interchanging the role of the pair a and b with
¢ and d, or taking the matrix inverse of each side of Eq. (13) are possible also.
Note that by taking the determinant of each side of Eq. (13) and rearranging terms we obtain

det(EaZZd) det(EZbcz) = det(Ea):c):) det(EgbZd). (15)

This is nothing more than an exponentiated form of the 4-point condition applied to the log-det
distance. However the invariants in Eq. (14) are potentially more powerful than the single in-
variant to which Eq. (15) gives rise.

Actually, more careful reasoning shows one can strengthen Eq. (14) to

XaizaCof (Xspza) " det (Xsbes) = XaiesCof (Xzpex) ! det(Xspza). (16)

Notice that summing Eq. (16) over i gives Eq. (14) again.

This construction of invariants generalizes for the n-taxon case as follows: For a tree T choose
any four taxa and denote them by a,, a,, a3, a4 in such a way that in the 4-taxon subtree relating
them a; and a, are neighbors, and so a3 and a4 are also neighbors. Let as, . .., a,, denote those taxa
other than a,, a», a3, a4 for which the path a; — a; first joins the subtree anywhere except along the
subtree edges containing a; and a4. (If no such taxa exist, the construction will still make sense.)

Let a,,1,...,a, denote the remaining taxa. Then order the indexing of the expected frequency
array so taxa appear in the order a;,ay,...,a,.
Now for any 1 <i,is,..., I, <k similar reasoning to the above yields
T
Xayirsagis...ins.. sCOt (Xsay3a,5..5) det(Xzayaizs. 5)
T
= Xoyiras Sis...in 5. sCOf (Xspyayzs.x) det(Xsoyza,5. 5)- (17)

Note that summing Eq. (17) over each of i, is, ..., i, produces Eq. (14) applied to the 4-taxon
subtree.

Interestingly, our first construction of invariants by (3+)-taxon identities can be viewed as a
degenerate case of the 4-point construction, with a; = a;.

Varying the choices of a;, a», a3, a4 yields many more invariants, all of degree 2x. One can show
that these will be topologically informative.

7.3. Third construction: commutation relations

Numerous invariants can be found by considering commutation relations, as in the 3-taxon
case. For instance for the 4-taxon tree 7;, for any 1 <i,j,k, [ <k

Eabij = DaMaePeAcd;ijMeba
Eabkl = DaMaePe,cd;klMeba

EabZZ = DaMaeMdn
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where P, 4, 1s a diagonal matrix whose diagonal entries give the conditional probabilities that
each base at ¢ becomes i at ¢ and j at 4. That is,

Pocaij(k, k) =" Moy (k, m)Mj(m, i)Mya(m, j).
Thus "
EurijE S v Eanit = EapiiE s s Eaviy
and so we have invariants from the entries of
XapijCof (Xavzz) Xaps = XableOf(XabZZ)TXabij~ (18)

This used only that a and b were neighbors, so similar invariants are obtained focusing on ¢ and d.
One can also show that these invariants are topologically informative. Note that invariants in this
class are all of degree x + 1. Thus they are of lower degree than those produced by either of the
other constructions.

This construction, analogous to that of Eq. (8) in the 3-taxon case, generalizes to the n-taxon
tree as follows: For an n-taxon tree 7, choose any two taxa, and denote them by a; and . Let v
be any internal node of T that lies on the path a; — a,. Let a3, .. ., a,, denote those taxa for which
the path a; — a, first joins the path a, — a; at v. Let 4,1, . .., a, denote the remaining taxa. Then
order the indexing of the expected frequency array so taxa appear in the order ay,as,...,a,.

Now for any 1 <is,...,i,<xand 1 < 3,...,j, <K, similar reasoning to the above yields

T T
Xala2i3...im2...ZC0f(Xa]aZZ...Z) Xalazj3..-jmz...z :Xa1azjg...ij...ZCOf(XalaZZ...Z) Xa]azi_;...imz...Z‘ (19)

There is also an analog of the 3-taxon equation (9) for the n-taxon tree: Choose any three taxa and
denote them by ay, a», and a;. Let v be the internal node of 7 that is the only internal node of the
3-taxon subtree relating these «;. Let aq,...,a, denote those taxa except a; for which the path
a; — ay in T first joins the path a; — a; at v. Similarly, let a1, ..., a; denote those taxa except a,
for which the path a; — «a; in T first joins the path a; — a; at v. (Either of these sets may be empty,
but if both are, then the construction reduces to one for a 3-taxon subtree.) Let a;.q, ..., a, denote
the remaining taxa. Then order the indexing of the expected frequency array so taxa appear in
the order aj,ay,...,a,.
Now for any 1 <i3,...,i, <k and 1 <o, jur1,---,J1 <K,

T T
Xalay';...imZ“.ZCOf(Xalaz):MZ) Xaljza32“42/m+1...jIZHZ‘COf(XalZa3Z...Z>
T T
= Xa1j2a3):...2_jn1+1 [[ZZCOf(XGIZa3ZZ) Xala2i3...i,,,}:...ZCOf(XalaZZ...Z) .

Varying the choices of a;,a, and a3 yields many more invariants, all of degree 2x. One can also
show these are topologically informative.

7.4. Fourth construction: symmetry relations

The construction of invariants through symmetry relations for the 3-taxon tree generalizes as
follows to the n-taxon tree: Choose three of the taxa, and denote them by ay, a,, and a3. Let v be
the internal node of 7' that is the only internal node of the 3-taxon subtree relating these a;. Let
ag, . . ., a, denote those taxa for which the path a¢; — a; in T does not pass through v. (If no such
taxa exist, the construction reduces to a 3-taxon subtree construction.) Let a,,.1, . .., a, denote the



136 E.S. Allman, J.A. Rhodes | Mathematical Biosciences 186 (2003) 113-144

remaining taxa. Then order the indexing of the expected frequency array so taxa appear in the
order aj,a, ..., a,.
Now for any 1 <iy, 3,14, .., I, <k, similar reasoning to the 3-taxon case yields

T _ TyT
Xalazi3i4...imZ...ZCOf(XZazasf~~~2)Xa1i2a3i4...im2m2 - Xalizasi4-»»imZ...ZCOf(XZazasiuf) Xa1a2i3i4...i,ﬂ2m2'

Varying the choices of a1, ay, a; yields many more invariants, all of degree « + 1. At least some of
these are topologically informative for n > 4.

Just as in the 3-taxon case, there are variations on the constructions above in which, rather than
inverting the specified matrices, one instead inverts any linear combination of certain matrices
that sum to produce it. The comments in Remark 2 are relevant here as well.

Obviously one can also repeat in the n-taxon case the non-explicit saturation and radical steps
done for 3-taxon invariants, and possibly obtain more invariants as a result.

7.5. A small set of invariants

For further study in the next section, for an n-taxon tree 7 we choose a particular subset %' (7)
of the invariants above. Actually, as there will be some freedom in the definition of &'(T), there
is a family of such &%'(T).

The definition is an inductive one on the number of taxa n.

For the 3-taxon tree T, let &' (T) = %' = ¥y U S, as in Section 6, where c¢ is an arbitrarily
chosen leaf.

Now for an n-taxon tree T, choose any two taxa which are neighbors and denote them a; and
a,. Let T~ denote the (n — 1)-taxon tree obtained by deleting a, and the edge a, < v leading from
it, and replacing the two other edges v <+ a; and v < w that connect to v with a; <> w. Now
S'(T™) is already defined, so let

<¢7 - {Z)/(Xalazu.a,,) ’Z’J(Xalazman) :p(Xalzag,,,a,,) for Some p 6 yl(T_)}'

Let & be all the invariants produced by Eq. (19), for all choices of i, j;, but with the fixed choice
of a; and a,. Finally, let ¥'(T) = " U ¥".

Note #'(T) is composed of the trivial invariant and only certain of the invariants arising from
the commutation relations construction which are of degree x + 1.

8. Sufficiency of invariants arising from commutation relations: near-diagonal arrays

Producing an analog for the n-taxon case of the 3-taxon results in Section 6 would of course be
desirable, though we have not done so. However, while those results identify powerful sets of
invariants on certain sets, they also point out that there are points satisfying the invariants that do
not come from any choice of model parameters, whether stochastic or complex. (See Section 9 for
explicit examples.) In other words, polynomial invariants alone are not capable of distinguishing
points of the form E(.).

In this section we prove a different type of sufficiency result for the invariants constructed in this
paper. In brief, there is an open set on which the invariants can test whether a point is of the form
E(.). Furthermore, this result requires no restriction on n or k.

Again, we need some new terminology.
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Definition. Let 7 be an n-taxon tree rooted at taxon a;. Suppose 2 C C* and # C ClXaay...0,)-
Then we say Z is a parameter-strong set of invariants on & for the tree T if

Xalaz...a,, e V(<‘%>) m @
implies
Xalazma,, = Ealag...a” (eﬂ)

for some choice of complex parameters /.

Informally, # is parameter-strong on % means any point in & at which the elements of #
vanish ‘comes from’ some complex choice of model parameters.

Note that a choice of a terminal taxon as the root of 7' is implicit in the notion of a parameter-
strong set of invariants, since the designation of the root is necessary for defining the parameters.
Indeed, one can construct examples of even two-dimensional arrays X, for which X, is of the
form E,,(.#) if the 2-taxon tree is rooted at a, but not if it is rooted at b.

We immediately see

Proposition 10. If a set R is a parameter-strong set of invariants on &, then it is a strong set of
invariants on <.

Definition. An n-dimensional array X is said to be dlagonal if X(iy,ia,...,i,) = 0 for all n-tuples
(i1,i2,...,1,) except possibly those with i} =i, = --- = i,.

Let 7 be any n-taxon tree. If parameters for the general Markov model on 7 are chosen so
the identity matrix is assigned to each edge and some base distribution vector is chosen for taxon a,
then the corresponding expected pattern frequency array will be diagonal. Conversely, given an n-
dimensional k x - -- x k diagonal array of non-negative numbers that sum to 1, there are stochastic
parameters on 7, with the base distribution vector composed of the diagonal entries and all
Markov matrices the identity, such that the array is the expected pattern frequency array for these
parameters. Informally, diagonal arrays are the expected frequency arrays of models in which no
mutations occur, and thus they fit all topological trees.

This motivates the following definition. Note that we strengthen the contents of the last
paragraph slightly by requiring all bases appear with positive probability.

Definition. An n-dimensional x x k x --- X k array X is phylogenetically trivial if it is diagonal,
with positive entries on the diagonal that sum to 1.

Remark 5. In biological circumstances expected frequency arrays, whether theoretical or esti-
mated from data, are typically close to phylogenetically trivial ones. In the theoretical framework
this is because model parameters describe base substitution processes where most sites are left
unchanged. When working with data, this is because most sites must be identical in order to
identify sequences as related and to align them.

We first focus on the 3-taxon case, with &' = %, U.%, C & the sets of invariants defined
earlier.
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Theorem 11. For the 3-taxon tree, there exists an open set O C C* which contains all phylo-
genetically trivial arrays and on which &' is parameter-strong regardless of which leaf is taken to be
the root. Furthermore, if X, € O, and for a fixed choice of a terminal taxon as the root, X . =
Eue(M) = Eye(M"), then M' = M° for some permutation a.

While we do not identify such a set @ in a quantitative way, the existence of such a set means
that arrays that satisfy the invariants in %’ and are ‘sufficiently-close’ to phylogenetically trivial
ones arise from model parameters, and these parameters are ‘essentially’ unique.

To prove Theorem 11 we need the following technical lemma, whose proof we defer to Ap-
pendix A.

Lemma 12. Fori=1,...,k, let E;; denote the k X K mat;;ix with all entries 0, except the (i,i) entry
which is 1. Then for any open neighborhood 2 C C* of the identity matrix I, there exist
open neighborhoods N; C C* of E;; with the following property: If M; € N;,i=1,... K are com-
muting matrices, then there exists amatrix S € 2 with rows summing to 1 such that SM;S™" is diagonal
for all i. Furthermore, the simultaneous left eigenspaces of the M; are all one-dimensional.

Proof of Theorem 11. Let X', denote any phylogenetically trivial array. It is enough to find a
neighborhood ¢ of XY, on which %" is parameter-strong and the other statements of the theorem
hold.

Let ) > X',. and 2 > [ be open sets with the properties that if X,,. € ¢; and S € 2 then: (1)
X, 1s invertible, (2) X,zy, Xsx. have all non-zero entries, and 3) X1, .S~! has all non-zero entries.
Such sets exist since the first two conditions are met by requiring polynomial inequalities in the
entries of X, hold, while for the third we know X[, .S~! is continuous in S and X,,., and has non-
zero entries at S =1, X, = X°

abc*

For arrays X,,. € 0; N V(J'), we can define the matrices
Zc;i - (XabZ)ilXabi
and the Z.; will commute.

For the chosen 2, let ./ be the open sets whose existence is asserted by Lemma 12. We will now

find an open set ¢ > X}, such that X,,. € ¢ implies each Z.; € ;. To do this, note the map

(2 Xabc'_’ (Zc:h s 7ZC:K)
is continuous on ;. Moreover, ¢(X5,) = (Ei1,...,Ec,). Thus O = @7 1(A] x --- x ;) has the
desired properties.

Now if X, € O N V(T'), then Lemma 12 implies that the Z,,; are simultaneously diagonalizable
by a matrix § € 2 whose rows sum to 1. Using the ideas of Section 4, this allows us to deduce
parameters .# (rooted at a) with X, = E.(#). Since Lemma 12 also implies the eigenspaces
used in the deduction of .# are all one-dimensional, .# is uniquely determined up to the action
of a permutation.

Note also that p, = X/, p. = X{; ., and p, = p,M,'! = X/, .S~" have only non-zero entries. Thus
proceeding as in Section 3, from .# we can deduce parameters .#; (resp., .#.) with root at taxon b
(resp., ¢), unique up to the action of a permutation, so that X,,. = Ep.( M) = Egpe(M.). O

The result also extends to n-taxon trees.
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Theorem 13. For an n-taxon tree T, let &' (T) denote the set of invariants defined in Section 7. Then
there exists an open set O C C* which contains all phylogenetically trivial arrays and on which
S'(T) is parameter-strong, regardless of which leaf is taken as the root. Moreover, for a fixed choice
of root, if Xy 4 €O and Xy, o, = Eu,. a)(M) = Ey,_o,(M"), then M' can be obtained from M
through the action of some choice of permutations at each internal node of T.

Proof. We proceed by induction, with the base case n = 3 being Theorem 11. For future use, let (/;
denote the open set constructed in Theorem 11 for this 3-taxon case.

For T an n-taxon tree with n > 3, let a; and a, be the two neighboring leaves of T that were
used in the inductive definition of &'(T), with v the vertex both are connected to by an edge. Now
the map

?q :Xalaz...an = Agara32..5
is continuous, so 2; = ¢;'(05) is open, and is easily seen to contain all phylogenetically trivial
arrays, since (/3 has that property.

With 7~ the (n — 1)-taxon tree used in the definition of #'(T), let ¢z~ be an open set which the
inductive hypothesis asserts has the properties stated in the theorem. The map

@y - Xalazu.a,, HXalfag...a,,

is continuous, so 2, = ¢,!(0r-) is open and contains all phylogenetically trivial arrays.
Let Or = 2, N 2,. To show &'(T) is parameter-strong on (/7 for parameters rooted at a,
suppose

Xoyoay €EVHS(T))) N OF.

Now summing Eq. (19) over all choices of is,...,i, and js,...,j, shows ¢,(X, 4, 4, ) satisfies
Eq. (8) for each choice of i and j at as. So, since ¢;(X,,4,.4,) satisfies the trivial invariant and lies
in O3, by Theorem 11 we know

[OF] (Xalaz...an) — Ea1a2a3 (%3);

for some .#; = {pal,Malv,MmZ,Mw}}. Moreover, .# 5 is uniquely determined up to the action of a
permutation.

Now Xa:;ZZH.Z exists since ¢, (Xy4,.4,) € 3. Thus since X,, ,, satisfies Eq. (19) for all i, j,, one
sees that all the matrices

-1
K}...in = Xala2i3444in (Xalazlmf)

must commute.

Now the Y;, ; must also commute with all the

3-dn

-1
Yi3 = Xalazig):.“Z(XalaZZ...Z) Y

which are simply sums of Y;, ;. However, since the parameters ./ are unique up to the action of
permutations, we know the Y;, have x one-dimensional simultaneous eigenspaces, and are diag-
onalized by

-1
)71'3 = (DalMa]v)Cva3:i3 (DalMalv) .
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Thus one also has that
-1
Y[ - (DalMalu)Cig..jn (DalMalu) 5
for some diagonal matrices C;_; . Since X, 4,5 s = Dy My Mya,, we find
X, =Dy M, ,Ciy i, My, (20)

By the definition of .%'(T), we know ¢,(X,,4,.,) satisfies all invariants in &’(7~) and also lies
in O7-. Thus by induction we know

(/)Z(Xalazmczn) = Ealag...a,, (<%T’)7

for some .#r- = {p,,, My, ..}, unique up to action of permutations at internal nodes of 7.
Here w is as in the definition of %’(7T~). Also this p, must agree with that in .#3, since both
are given by X, .

Let

-1
My, = MM,

av

3o

1a213...0p 3.udp

Finally, let .#; be comprised of P> Mayo, Moy, Mo, and all parameters in .4 except M,,,,.
With this choice of parameters, we claim X, ,, = E,, _,,(-#r). To establish this, we need only
show
X,
or that
(DalMalv)ilXa

But by Eq. (20) for the left hand side, and the structure of the expected frequency array for the
right hand side, both sides of this equation are diagonal matrices. Thus to prove they are equal, its
enough to show equality upon multiplying on the right by a column vector of 1s. Now the
Markov matrix M,,, has this vector as right eigenvector of eigenvalue 1, so Mv;i does as well. Thus
it is enough to show

= Ea1a2i3min (‘%T)7

1a2i3min

M71 = (Da1Ma1v)71Ea1azi3~.in (“ﬂT)A/[71

14213...ip vay vay *

1 1
-1 . 1 )
(DalMalv) X01d2i3---in . = (DaleL‘) Ealazlé---in('%T) . )
1 1
which is simply
-1 -1
(DalMa]L‘) XaIZi_;...in - (DalMall)) EaIZi_;...in (%T)
But this follows from the fact that
Xa12a3...a,, = Eam;...a,, (%T*) - EaIZa}“a,, (%T>

by the definition of .Z7.

The uniqueness of parameters up to the actions of permutations follows easily from that
property for the 3-taxon and (n — 1)-taxon subtrees used in the argument.

While this proves all the claims assuming parameters are rooted at a, it is straightforward
to modify the arguments for other choices of a leaf to serve as the root. [

Remark 6. For biological understanding, Theorems 11, 13 are of course primarily of interest
when applied to an arrays X of non-negative real numbers. In that case, one can modify the proofs
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above to show the eigenvalues and eigenvectors of the Z.; in Theorem 11 must be real, and so the
parameters .# must be real as well. Unfortunately, that is not sufficient to conclude that the
parameters must be stochastic. See Section 9 for an example.

9. Some cautionary examples

In this section we give examples of specific arrays that illustrate the pitfalls of using phyloge-
netic invariants to attempt to conclude that an array is of the form E(.#) for some choice of .#.
While Theorem 13 tells us that can be valid for arrays sufficiently close to diagonal, in general it
is not correct, and even when it is, we have no assurances that the parameters are stochastic.

Though our examples are contrived, and perhaps not of the sort that would appear in bio-
logical applications, nevertheless they are instructive.

Consider the 2x2x2 array X,;. with

025 ¢ 025 —e
X“’“‘( 0 0.25) X“b2_< 0 0.25)’

for any € # 0. Then since for 3 taxa and x = 2, the phylogenetic invariant ideal is generated by the
trivial invariant, we have that X,,. € V(2[7). However, (Xabz)ilXabi = 2X,;; 1s not diagonalizable,
and thus by Section 4, X, # E.p.(#) for any /.

While in this example X,,. had a negative entry which is obviously not biologically meaningful,
we can eliminate that feature and preserve the essential nature of the example by letting

Yo 025 ¢ 0.75 0.25 X 025 —e¢ 0.75 0.25
@=L 0 025)\025 075) T 0 025)\025 0.75)
Choosing any 1/12 > ¢ > 0 makes all entries of X,;. positive, yet (Xab;)_lXabl is again not diag-
onalizable.

One can construct similar examples with larger «, using larger non-diagonalizable matrices. If,
for instance, these have a single Jordan block, one can relatively easily show that the point X,
so constructed is in the closure of those points of the form E,,.(.#). Thus we can ensure X, lies
in V(A7) even though we do not explicitly know all invariants for x > 3.

One can even extend this example to more taxa by beginning with such a 3-taxon example and
then adding to the tree additional edges (with Markov matrices /, for instance) off of taxon ¢, thus
making ¢ an internal node in the final tree. To see that such an example lies in V' (2(7), we need

only note that it lies in the closure of the set of points of the form E(.#).
We thus obtain

Proposition 14. For n = 3, let T be any n-taxon tree and Wy the ideal of phylogenetic invariants for
the general Markov model on T. Then there exist arrays X, q,. ., 0f non-negative numbers with
Xorar..ay € V(Ur) such that Xy 4, 0, 7 Eayay...ay () for all choices of parameters M, including com-
plex ones. Thus there are no parameter-strong sets of invariants on all of C* .

Even when an array X is of the form E(.#), it is generally not obvious whether the parameters
I are stochastic, or merely complex. Remark 6 indicates that if an array is sufficiently close to a
phylogenetically trivial one, the parameters will at least be real. One might hope that imposing the



142 E.S. Allman, J.A. Rhodes | Mathematical Biosciences 186 (2003) 113-144

additional condition that all entries of X be non-negative would ensure the parameters be sto-
chastic.

Unfortunately, choosing some random examples of positive arrays X,;. near a diagonal one for
k = 2 and solving for the parameters shows these sometimes turn out to involve negative quan-
tities.

To illuminate this issue further, for the 3-taxon case with ¥ =2 and any 1/2 > e > 0 consider
the parameters

1 —e¢ € 1—e¢ €
p, = (0.5,0.5), Maf—Mﬂ,—< . 1_6>, Mfc_<_€2 1+62>

in which one negative entry appears. A calculation of E ;.(.#) shows it to be an array of positive
numbers which of course lies in V' (2[;). Note that as € — 0, E,;.(.#) approaches a phylogeneti-
cally trivial array.

Modifying this example, for more bases and more taxa, as above, shows

Proposition 15. For n = 3, let T be any n-taxon tree and Uy the ideal of phylogenetic invariants
for the general Markov model on T. Then there is no open set O C [0,1]" containing the phylo-
genetically trivial arrays for which

Xalaz...an S V(QIT) N (O
implies

Xalaz...an = Ealazma,,(*ﬂ)7
for a stochastic M .

Note that in passing from considering only the vanishing of phylogenetic invariants to also
considering the biologically natural condition that all entries of an array be non-negative, we have
made an important step from only considering equalities to also considering inequalities. We have
passed from algebraic geometry over C, to algebraic geometry over R. The question of what
additional conditions involving inequalities can help distinguish those points of the form E(.#)
for stochastic .# is an interesting one.

Appendix A

Proof of Lemma 12. The key is to show there are neighborhoods of E;; in which any matrix has
an eigenvector close to the standard basis vector e;.

Each E;; has as its characteristic polynomial p(x) = (x — 1)x*~!. But for any J; >0 (to be
chosen later) there exists a d, > 0 such that if all coefficients of a xth degree polynomial ¢g(x) are
within ¢, of the corresponding coefficients of p(x), then g(x) will have a simple root 1 € C with
|1 — 2| < ¢, while all other roots p of g(x) satisfy |p| < J;. (This can be shown, for instance, by the
argument principle of complex analysis.) There also exists an open set ¢} 3 E,; such that if
M € (', then the characteristic polynomial of M will have its coefficients within d, of those of p(x).
Thus for all §; with 0 < §; < 1/2, there is an open set

O 3 E; (21)
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such that all matrices in (; have exactly one eigenvalue 4 (of algebraic multiplicity 1) satisfying
M, — 1| < 51 .
Now for any matrix M and scalar A for which the expression makes sense, define the vector

1
— V(M }) = o),
V( ) ) Z;l lcjl(cl,lacllv ac.l)

where ¢;, is the (j, 1)-cofactor of Al — M (i.e., (—1)""" times the determinant of the matrix ob-
tained by deleting the jth row and first column of A/ — M). Since the ¢;; are polynomials in 4 and
the entries of M, the vector v is a continuous function of M and A. Furthermore, if 2 is an ei-
genvalue of M, then properties of cofactors imply v(1/ — M) = 0. Thus, provided it is defined, v is
an eigenvector of M with eigenvalue 4. Note also that v(E;;, 1) = e;.

Let € > 0 be such that 2 contains an e-ball around 7/ (using the Euclidean metric). Then by the
continuity of v(M, 1), there are open sets (5 > E;; and (; > 1 such that if M € ¢, and 1 € ¢} then

min(e, 1)
4\/E :

Now choose 1 /2 >0 > 0 in the first paragraph sufficiently small that the J,-ball around 1 is
contained in (3, and let ¢} 5 E;; be the open set whose existence is asserted in (21). Let
Ai = 07N 0. Thus 4} 1s a neighborhood of E;; such that if M € ./; then M has a left eigenvector

v, whose entries sum to 1, of eigenvalue A, with ||v — ;|| < min(e, 1)//k. Furthermore, the A-
eigenspace of M is one-dimensional.

[V(M, 2) — e <

Now suppose we have matrices M; € A, i =1,...,k which commute. For each M,, let v; be the
eigenvector whose existence is asserted in the last paragraph, with /; its eigenvalue.

Since ||v;, —e]| < 1/y/k for i = 1,...,k, the vectors v; for i = 1,...,x must be linearly inde-
pendent. To see this, suppose they are dependent. Then there exists a vector ¢ = (cy, ..., ¢,) with
|lc]| = 1 such that the inner product (c,v;) is zero for all i. Then

lci| = [{e,e)] = [{e, &) — (e, vi)| = [{c, & — vi)| < |le]|[|e; — vil| < \/L%

But since ||c|| = 31, |¢;|°, this implies ||¢|| < 1, which is a contradiction.
Because the M; commute, the v; must in fact be simultaneous eigenvectors of all the M;. For

V,'M‘M = ViMM' = V,'M‘/li,

so v;M; lies in the one-dimensional /;-eigenspace of M;, and hence v,M; = v;4;; for some 4, ;.

Since the M; have a linearly independent set of kK common eigenvectors, they are simultaneously
dlagonahzable Finally, if S is the matrix whose ith row is v;, then S € 2, its rows sum to 1, and it
diagonalizes all the M;. [
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