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Abstract

A phylogenetic invariant for a model of biological sequence evolution along a phylogenetic tree is a
polynomial that vanishes on the expected frequencies of base patterns at the terminal taxa. While the use of

these invariants for phylogenetic inference has long been of interest, explicitly constructing such invariants

has been problematic.

We construct invariants for the general Markov model of j-base sequence evolution on an n-taxon tree,

for any j and n. The method depends primarily on the observation that certain matrices defined in terms of

expected pattern frequencies must commute, and yields many invariants of degree jþ 1, regardless of the

value of n. We define strong and parameter-strong sets of invariants, and prove several theorems indicating

that the set of invariants produced here has these properties on certain sets of possible pattern frequencies.
Thus our invariants may be sufficient for phylogenetic applications.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In [1], Cavender and Felsenstein and, in an independent work [2], Lake introduced an approach
to phylogenetic tree construction from biological sequence data called phylogenetic invariants. We
briefly and informally describe this method as applied to DNA sequences.
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Given a topological tree relating n terminal taxa and a particular parameterized model of
molecular evolution along this tree, one can compute the expected pattern frequencies of each of
the 4n patterns of various bases at the terminal taxa, in terms of the parameters of the model. For
simple yet natural models, these expected pattern frequencies will be polynomials in the model
parameters.

A phylogenetic invariant for the topological tree and parameterized model is another poly-
nomial, in 4n variables, which becomes zero when the expected pattern frequencies are substituted
for the variables, regardless of the values of the model parameters. If such phylogenetic invariants
can be found, then one might use them to choose topological trees (and/or models of evolution)
consistent with sequence data as follows: From aligned DNA sequences, compute the observed
frequencies of patterns. Assuming these observed frequencies are good estimators of the expected
frequencies for some choice of model parameters, they should cause the phylogenetic invariants to
vanish, or at least be small. The optimal topological tree is chosen as the one for which the
invariants come the closest to vanishing on the observed frequency data. Thus one has a model-
based method of choosing topological trees which, unlike current maximum likelihood ap-
proaches, does not require the full estimation of all model parameters.

For such a scheme to be useful, however, many issues require better understanding. First, one
must have a practical, efficient way of producing phylogenetic invariants. One might also hope to
learn which of the invariants distinguish among different topological trees (i.e., are topologically
informative), and which give no such information. Then, in order to apply invariants to real data,
one must decide what it means for an invariant to be �close to vanishing� on observed frequencies.
A statistical understanding of the behavior of these polynomials on noisy data is highly desirable.
Moreover, as there are infinitely many invariants, choosing a finite set of generators with good
statistical properties is necessary. Finally, robustness of the method under violation of model
assumptions is critical to applications, since models of sequence evolution are only approxima-
tions of reality. While much work remains to implement such a plan, the approach has intrigued a
number of researchers. (See [3] for a survey and further references.)

A recent work of Chor et al. [4] makes use of phylogenetic invariants (for a two-state symmetric
model) in another way. Though the focus of their paper is the construction of examples of
observed pattern frequencies that lead to non-unique maximum likelihood trees, the approach
illustrates the potential usefulness of invariants in maximum likelihood calculations. One can
maximize the likelihood as a function of expected pattern frequencies, subject to the constraints
that these expected frequencies satisfy the phylogenetic invariants, rather than searching directly
for parameter values to maximize the likelihood function.

In this paper, we address only the question of finding phylogenetic invariants. Several previous
approaches to this question exist. In the work of Cavender and Felsenstein [1] clever arguments
based on the 4-point condition with log-det metric, and on statistical independence of evolu-
tionary processes along different parts of a tree are used to produce invariants for the Jukes–
Cantor 2-base model with 4 terminal taxa.

In later work of Ferretti and Sankoff [5–7] invariants are found empirically for a variety of
models by looking for algebraic relationships among expected frequencies for particular pa-
rameter values, and then proving these empirically-found polynomials to be true invariants. A
weakness of this method is that while �all� invariants of a given low degree can be found, one has
little understanding of what �new� invariants of higher degree might remain unknown.
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Evans and Speed [8] were able to make a significant leap for the Kimura 3-parameter model, by
introducing the use of harmonic analysis on a certain abelian group that reflects the structure of
this model. While this method finds all invariants, it seems to depend strongly on the particular
model structure, so that it is limited in its ability to be generalized. A related approach to in-
variants for the Kimura 3-parameter model was found by Steel et al. in [9], building on the work
of Hendy and Penny [10]. See also [11].

For the general Markov model, Steel gave a single invariant in [12] from consideration of the 4-
point condition with log-det metric. Further work of Semple and Steel [13] gave many additional
invariants for this model: each subtree relating either 3 or 4 terminal taxa gave rise to invariants
expressible as the entries in certain matrix equations. However, since all these invariants are
deduced through considering frequencies of patterns at only two terminal taxa at a time, one
might suspect other invariants exist that were not found. Another construction of a large number
of invariants is reported by Hagedorn in [14].

The language of algebraic geometry is of course the natural one for discussing polyno-
mial phylogenetic invariants. That Gr€oobner basis techniques from computational algebraic
geometry could in principal produce all invariants has been pointed out several times,
including in [15,16]. However, the number of variables involved in such computations
seems to place them well beyond the reach of current technology, except in the simplest model
situations.

In this paper we present several methods of finding phylogenetic invariants for the general
Markov model of base substitution along any topological tree. We place no restrictions on either
the number n of terminal taxa the tree relates, nor on the number j of bases from which sequences
are made. Our approach requires nothing more than linear algebra, and even for large n allows
one to easily produce many invariants that do not simply arise from subtrees relating fewer taxa.
While the invariants found previously in [12,13] are included among those constructed here, many
new invariants are produced also.

Two of our constructions, one based on the commutation of certain matrix expressions in the
expected pattern frequencies and one based on the symmetry of other matrix expressions, yield
invariants of degree jþ 1 for sequences composed of j bases. (Note that in [14] Hagedorn reports
that this is the lowest degree at which one should expect to find non-trivial invariants.) Other
constructions yield invariants of degree 2j. In all cases there is no dependency of the degree on the
number of taxa. Furthermore, the nature of the constructions allow one to associate invariants to
branching features of the tree, so that one can design invariants to test for certain phylogenetic
relationships.

The work of Chang [17] contains one of our key insights, on the diagonalizations of certain
matrix expressions in the expected pattern frequencies. However that work was directed at
proving that model parameters could be recovered, and did not exploit these diagonalizations for
finding invariants. The fact that simultaneously diagonalizable matrices must commute lies at the
heart of our approach.

As anyone who has explicitly calculated invariants knows, one can quickly be overwhelmed by
staring at polynomials in a large number of variables with many terms. The invariants we find,
however, have the rather welcome feature that they are expressible by equating entries in certain
matrix products. Not only is this psychologically pleasant, it also allows for simple implemen-
tations in software.
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While we are not able to prove that we have found all phylogenetic invariants for the general
Markov model, we prove several theorems that give some assurance that a �sufficiently large� set of
invariants is in hand. The proofs of these theorems focus attention on what are perhaps the most
interesting of our invariants, which are those ðjþ 1Þ-degree ones deduced from the commutation
of certain matrix expressions, as mentioned before. Indeed, the other invariants we construct play
no role in our sufficiency proofs.

In the 3-taxon case with j6 4 bases, we show (Theorem 5 and its corollaries) that we have a
large enough set of polynomials that, provided a certain non-singularity condition is met, the
vanishing of our invariants at a point implies the vanishing of any invariant, including those we
might have failed to find. We also show (Theorems 11, 13), that in the n-taxon case with any
number j of bases, any point for which our invariants vanish that is �nearly-diagonal� arises from
model parameters, and thus will also result in the vanishing of any invariant, including those we
might have failed to find.

Since in biological applications one expects the relevant points to both satisfy the specified non-
singularity condition and to be nearly-diagonal, these results indicate that our invariants should
be a large enough set for use in phylogenetic applications.

We close with several concrete examples showing possible pitfalls in the use of invariants for
phylogenetic inference. There are arrays which satisfy all invariants for the general Markov
model, yet do not arise as the pattern frequency arrays for any choice of model parameters. Lest
this be interpreted too negatively, we point out that the use of the log-det distance and the four-
point condition to infer a 4-taxon phylogeny can be interpreted as the use of a single, specific
invariant for phylogenetic inference. Therefore, despite these examples, there is strong evidence
that in practice invariants may be valuable.
2. Phylogenetic models and invariants

We denote by j the number of letters (or bases) in the alphabet from which sequences are
constructed, and use 1; 2; 3; . . . ;j to denote the letters. Thus for DNA sequences j ¼ 4, and we
might identify the bases A, C, G and T with the numbers 1–4.

Since much of the analysis in this paper focuses on considering only 3 terminal taxa, one of
which is assumed to be the root of the tree, we first describe our model in that situation.
2.1. The general Markov model: three taxa

Let a, b, and c denote three terminal taxa, or leaves. There is only one unrooted bifurcating
3-leaf tree topology which can describe their phylogeny, as shown in Fig. 1.

The general Markov model of mutation we consider includes the following assumptions. All
mutations are assumed to be base substitutions. Along each edge of the tree proceeding away
from the root, substitutions occur at each site in a sequence, independent of other sites, but
following an identical process that depends only on the edge (the i.i.d. assumption). Furthermore,
substitution probabilities along various edges of the tree depend only on the immediate ancestor
sequence (the Markov assumption).



Fig. 1. The 3-taxon tree.
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Let f denote the central vertex of the 3-leaf tree, as in Fig. 1. Assume taxon a is the root of
the tree. (This assumption will be discussed further in Section 3 below.)

We specify a root distribution vector at a, as a row vector
pa ¼ ðpað1Þ; pað2Þ; . . . ; paðjÞÞ;

with paðiÞP 0 for all i and

Pj
i¼1 paðiÞ ¼ 1. We interpret paðiÞ as the probability of base i occurring

at a site in a sequence at taxon a.
For each directed edge a! f , f ! b and f ! c of the tree leading away from the root, a j� j

Markov matrix Maf , Mfb, Mfc is given. That is, the entries of each matrix are non-negative, and
each row sums to 1. The entries of these matrices are interpreted as probabilities of various base
substitutions occurring at any particular site in the sequence. For instance, Maf ði; jÞ, the i, j entry
ofMaf , is the conditional probability that if base i appears at vertex a at a particular site, then base
j will appear at vertex f at that site.

The vector pa and the matrices Maf , Mfb, Mfc constitute the parameters of our model, which
we denote by
M ¼ ðpa;Maf ;Mfb;MfcÞ:
Since pa has j� 1 degrees of freedom, and each of the matrices has jðj� 1Þ, there are a total of
ð3jþ 1Þðj� 1Þ scalar parameters. To be more specific, we specify the scalar parameters as the
first j� 1 entries of pa and the non-diagonal entries of the Markov matrices. Then the remaining
entries are given by formulas
paðjÞ ¼ 1�
Xj�1
i¼1

paðiÞ; Maf ðj; jÞ ¼ 1�
X
i 6¼j

Maf ðj; iÞ;

Mfbðj; jÞ ¼ 1�
X
i 6¼j

Mfbðj; iÞ; Mfcðj; jÞ ¼ 1�
X
i6¼j

Mfcðj; iÞ:
In particular, all entries of pa, Maf , Mfb and Mfc are (linear) polynomials in our chosen scalar
parameters.

Because we take an algebraic approach in this work, at times we will need to allow the scalar
parameters to be any complex numbers. Note that then the entries of pa,Maf ,Mfb, andMfc are also
allowed to be any complex numbers, as long as each row sums to 1. In such situations we refer
to complex parameters. When the additional criteria that all entries of pa, Maf , Mfb, and Mfc be
non-negative real numbers holds, we refer to the parameters as being stochastic.
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2.2. Expected frequencies of patterns

From a choice of parameters
M ¼ ðpa;Maf ;Mfb;MfcÞ;

we can compute the expected frequency of any pattern in sequences whose mutation is described
by our model. Let Eabcf ði; j; k; lÞ denote the expected frequency of the pattern with i at a, j at b, k
at c, and l at f . Then Eabcf is a four-dimensional array, the expected frequency array, with entries
Eabcf ði; j; k; lÞ ¼ paðiÞMaf ði; lÞMfbðl; jÞMfcðl; kÞ:

Note that the entries of Eabcf are monomials in the entries of pa and Maf , Mfb, Mfc, and hence are
polynomials in the scalar parameters of the model described above.

We will also need notation for various subarrays of Eabcf , as well as for the marginal arrays
found by summing over various indices. For instance, we let Ea2cf be the three-dimensional array
defined by
Ea2cf ði; j; kÞ ¼ Eabcdði; 2; j; kÞ;

while EabcR is the three-dimensional array defined by
EabcRði; j; kÞ ¼
Xj

l¼1
Eabcf ði; j; k; lÞ:
More generally, replacing one or more of the subscripts a, b, c, f with a number indicates the
subarray whose entries are those entries of Eabcf with the given numbers occuring in the corre-
sponding indices, while replacing one or more of a, b, c, f with a R indicates the marginal array
obtained by summing over the corresponding index.

With this notation, ET
aRRR ¼ pa, since both are simply the vectors of expected frequencies at a of

various bases 1; 2; . . . ;j, regardless of what appears at b, c and f . For another example, Eab2R is
the frequency matrix of patterns with various bases at a and b, but with 2 at c and any base at f .

Since the three-dimensional array EabcR will play a particularly important role, we also denote it
by Eabc. It is the expected frequency array of patterns at the leaves (and thus its entries can be
estimated from sequence data for the terminal taxa alone). The same notational conventions on
replacing a, b or c by numbers or R�s will be used for subarrays and marginal arrays of Eabc. When
we need to be explicit about choices of model parameters we write EabcðMÞ with
M ¼ ðpa;Maf ;Mfb;MfcÞ.

Note all the entries in all of the subarrays and marginal arrays associated to Eabcf ðMÞ and
EabcðMÞ will be polynomials (of degree at most 4) in the scalar parameters specifying M.

2.3. Trees relating n taxa

Our notation naturally generalizes to trees and models relating more than 3 terminal taxa.
We adopt the phrase n-taxon tree as shorthand for an unrooted topological bifurcating tree

with n leaves labeled by the taxa. There are thus three 4-taxon trees relating taxa a, b, c, and d, as
shown in Fig. 2.

Consider the 4-taxon tree T1. Assuming we root T1 at a, with internal vertices labeled as shown,
our model parameters will be M ¼ ðpa;Mae;Meb;Mef ;Mfc;MfdÞ, where pa is again the root distri-
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bution vector, and the various Mxy are Markov matrices for each edge in the tree directed away
from the root.

Since a bifurcating tree with n leaves has 2n� 3 edges, we specify a mutation model by indi-
cating a topological tree with n labeled leaves, a root distribution vector at leaf a, and 2n� 3
Markov matrices assigned to the edges directed away from a. As above, this gives
ðj� 1Þ þ jðj� 1Þð2n� 3Þ scalar parameters. While strictly speaking one should call the tree
topology a model parameter, we find it more convenient in this paper to reserve the word �pa-
rameter� for numerical quantities.

In the 4-leaf case with tree T1, one has a six-dimensional array Eabcdef of expected pattern
frequencies at all vertices, where
Eabcdef ði; j; k; l;m; nÞ ¼ paðiÞMaeði;mÞMebðm; jÞMef ðm; nÞMfcðn; kÞMfdðn; lÞ:

The four-dimensional array Eabcd of expected pattern frequencies at the leaves is defined by
Eabcd ¼ EabcdRR where
EabcdRRði; j; k; lÞ ¼
Xj

m¼1

Xj

n¼1
Eabcdef ði; j; k; l;m; nÞ:
Of course the parameters M and the array EabcdðMÞ reflect the labeled topological tree specified,
as one sees upon imitating our development for either of the other labeled 4-taxon trees T2 and T3.

The n-taxon case is similar. Obvious modifications describe model parameters for trees rooted
at internal vertices.

2.4. Phylogenetic invariants and varieties

Returning to the 3-leaf case for concreteness, let Xabc denote a j� j� j array of indeterminants,
and C½Xabc� ¼ C½X111; . . .Xjjj� the polynomial ring in its j3 indeterminant entries, with complex
coefficients. Then a phylogenetic invariant for the 3-leaf general Markov model is a polynomial
p 2 C½Xabc� such that p � 0 under the substitution Xabc  EabcðMÞ of the polynomial expressions
(in terms of the scalar parameters) for the expected pattern frequencies at the leaves.

If two polynomials p1 and p2 vanish under this substitution, then so does any C½Xabc�-lin-
ear combination of p1 and p2. Thus the set of all phylogenetic invariants for the 3-leaf gen-
eral Markov model forms an ideal in C½Xabc�. We denote this phylogenetic invariant ideal by
AT , where T is the tree of Fig. 1, the only bifurcating topological tree that can relate 3 terminal taxa.

Similarly, for the 4-leaf case, and the tree T1 of Fig. 2, one has an ideal AT1 2 C½Xabcd � of all
polynomials that vanish identically under the substitution Xabcd  EabcdðMÞ. Since there are three



120 E.S. Allman, J.A. Rhodes / Mathematical Biosciences 186 (2003) 113–144
possible 4-taxon trees, we in fact have three such 4-taxon ideals, which we might denote AT1 , AT2 ,
and AT3 . Any polynomial p such that p 2 ATi but p 62 ATj for some i; j is topologically-informative,
since it will vanish on all expected frequencies arising from tree i, but not vanish on most of those
arising from tree j.

For the n-taxon case we similarly have an ideal of phylogenetic invariants for each n-taxon tree,
and a concept of topologically-informative invariants.

For each topological tree, one would like to be able to explicitly give the ideal of phylogenetic
invariants for the general Markov model. Since these ideals are finitely generated (by the Hilbert
basis theorem) this would mean to give an explicit list of generators of the ideal. Even in the 3-leaf
case, where there is only one topology and thus no topologically-informative invariants, deter-
mining generators of the phylogenetic invariant ideal might be valuable for measuring the fit of
the general Markov model to data.

Finding phylogenetic invariants can be viewed as a problem in computational algebraic geometry.
In principle, Gr€oobner basis methods can be used to find generators of the ideal AT from the
polynomial entries of the expected frequency arrays. However, the computation seems to be beyond
current capabilities, due to the large number of variables involved in the elimination process.
Nonetheless, we will find it convenient to use some of the language of algebraic geometry.

For any ideal a 2 C½x1; . . . ; xm�, the affine algebraic variety associated to a is
V ðaÞ ¼ fx 2 Cm jpðxÞ ¼ 0 for all p 2 ag:

For an n-taxon tree T with phylogenetic invariant ideal AT , the phylogenetic variety associated to
T is V ðAT Þ � Cjn . For any choiceM of model parameters for the chosen topological tree, whether
stochastic or complex, the array EðMÞ of expected frequencies of patterns at the terminal taxa will
produce a point in V ðAT Þ. However, V ðAT Þ will typically contain many other points as well (see
Section 9 for examples).

For a treeT , letmdenote thenumberof scalar parameters in the generalMarkovmodel onT . Then
we can view complex parameters as points inCm, and the stochastic parameters as points in a subset
of ½0; 1�m � Rm. Several times we will use the observation that if pðX Þ is a polynomial that vanishes
under the substitution X  EðMÞ for all choices of M in a non-empty open subset of either Cm or
Rm, then p 2 AT . This is a consequence of viewing pðEðMÞÞ as a polynomial in the scalar pa-
rameters, and the fact that a multivariable polynomial which vanishes on a non-empty open set
in Cn or Rn must be identically zero.

In particular, we can characterize the phylogenetic variety V ðAT Þ as the smallest algebraic
variety containing all points of the form EðMÞ when M is allowed to range over any non-empty
open subset of either Cm or Rm.
3. Alternative root locations

Although we assume throughout most of this paper that our trees are rooted at leaf a, this
assumption is in fact not essential for studying phylogenetic invariants of the general Markov
model. More specifically, the phylogenetic invariant ideal associated to an n-taxon tree is inde-
pendent of any choice of root location, whether at a leaf, at an internal node of valence 3, or at
a node of valence 2 inserted along some edge. This follows from the following proposition, which
is a slight variation on Theorem 2 of [18], with a similar proof.
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Proposition 1. Suppose an n-taxon tree T is given. Let r be some choice of root for T (which may be
a leaf, an internal node of valance 3, or along some edge). Let stochastic parameters
Mr ¼ fpr;Mxy; . . .g for the general Markov model on the rooted tree Tr be given.

Suppose further that all entries of pr are positive, and no column of any of theMxy is zero. Then for
any other choice of a root s for T at either a leaf or an internal node of valance 3, there is a uniquely
determined choice of general Markov model parameters Ms with the same properties producing the
same expected frequency array as Mr at the leaves and internal nodes of valence 3.

Since the proposition equates the expected frequency array at leaves and internal nodes of
valance 3 for different roots under certain conditions, it certainly implies the equality of the
expected frequency array at the leaves alone. This implies a result on phylogenetic invariants:

Corollary 2. Let T be an n-taxon tree and let a be one of the taxa labeling the leaves. Then the
phylogenetic invariant ideal AT for the general Markov model on T rooted at a is identical to the
phylogenetic invariant ideal ATr for the general Markov model on T rooted at r, where r is any other
leaf, internal node of valance 3, or new node inserted on an edge of T .

Proof. To see AT � ATr , suppose pðX Þ 2 AT . Let EðMÞ be the expected frequency array at the
leaves for the model rooted at a with parameters M, and EðMrÞ the expected frequency array
at the leaves for the model rooted at r with parameters Mr.

Let mr denote the number of scalar parameters associated toMr. The real scalar parameters for
Mr resulting in pr having positive entries, all Mxy 2Mr having non-zero columns, and Mr being
stochastic form a non-empty open set in Rmr . By Proposition 1, we see that for all Mr in this set,
EðMrÞ ¼ EðMÞ for some M. Thus EðMrÞ 2 V ðAT Þ, and so pðEðMrÞÞ ¼ 0 on this open set in
parameter space. We conclude p 2 ATr .

We similarly see ATr � AT if the root r is at either a leaf or an internal node of valence 3 of T .
If, however r lies on an edge of T , say the edge from f to c, we need one additional observation

to complete the argument. Let EðMf Þ denote the expected frequency array at the leaves for the
tree rooted at f , with parameters Mf . By Proposition 1 again, if m is the number of scalar pa-
rameters inM, we know that for anyM in a certain non-empty open set in Rm there is anMf such
that EðMÞ ¼ EðMf Þ. But if Mf ¼ fpf ;Mfc; . . .g, then EðMf Þ ¼ EðMrÞ where Mr ¼ fpr;
Mrf ;Mrc; . . .g is defined by letting pr ¼ pf , Mrf ¼ I, and Mrc ¼ Mfc, and retaining for Mr all
Markov matrices in Mf associated to edges other than f ! c. Thus for all M in some open set in
the parameter space of the model rooted at a, EðMÞ 2 V ðATrÞ and we can proceed as above. h

This corollary justifies our assumption throughout the rest of this paper that trees be rooted at
a leaf.
4. Recovering parameters from Eabc

Our basic viewpoint leading to the construction of invariants focuses first on the tree relating 3
terminal taxa. It is intimately tied to the question of when and how one can recover the pa-
rameters M from a numerical array EabcðMÞ, which was addressed by Chang in [17]. In order to
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both motivate our approach, and provide insight into our construction, we summarize some of
the ideas and issues raised in that paper, in the context of a 3-taxon tree.

Of course, considering more than three taxa is important for most real applications. Gener-
alizations to four and more taxa will be discussed in subsequent sections.

4.1. Obstacles to recovering parameters

Suppose for the 3-taxon tree numerical parameters M ¼ ðpa;Maf ;Mfb;MfcÞ are given, thus
determining an array Eabc ¼ EabcðMÞ. Several simple observations indicate M can not always be
recovered from Eabc, at least without imposing additional conditions or assumptions.

If some of the Markov matrix parameters are singular, then there may be infinitely many
choices of parameters giving the same array Eabc. To illustrate this, consider an extreme example
where all entries of both Mfb and Mfc are 1=j. Then we find
Eabcði; j; kÞ ¼
Xj

l¼1
paðiÞMaf ði; lÞMfbðl; jÞMfcðl; kÞ ¼

Xj

l¼1
paðiÞMaf ði; lÞ

1

j2
¼ 1

j2
paðiÞ:
Thus the array Eabc is independent of the choice of Maf . More subtle examples of arrays Eabc

arising from infinitely many choices of parameters can be constructed in which two of the Markov
matrices are non-singular.

There is another issue preventing the unique recovery of M from Eabc. Informally, one can
insert a permutation of the bases at the internal node of the tree without affecting any of the
expected frequencies in Eabc.

To be more specific, let r be a permutation of the set f1; 2; . . . ; jg. Then there is an associated
permutation matrix P with the property that for any row vector v ¼ ðv1; v2; . . . ; vjÞ, we have
vP ¼ ðvrð1Þ; vrð2Þ; . . . ; vrðjÞÞ:

Then if M is any matrix with j columns, MP has the same columns as M , but reordered by r.
Similarly for a matrix M with j rows, PTM has the same rows as M , but reordered by r.

Proposition 3. Suppose r is a permutation of f1; 2; 3 . . . ;jg with associated permutation matrix P .
For any choice of model parameters M ¼ ðpa;Maf ;Mfb;MfcÞ, let
Mr ¼ ðpa;Maf P ; PTMfb; PTMfcÞ:

Then EabcðMrÞ ¼ EabcðMÞ.

Proof
EabcðMÞði; j; kÞ ¼
Xj

l¼1
paðiÞMaf ði; lÞMfbðl; jÞMfcðl; kÞ

¼
Xj

l¼1
paðiÞMaf ði;rðlÞÞMfbðrðlÞ; jÞMfcðrðlÞ; kÞ

¼
Xj

l¼1
paðiÞðMaf P Þði; lÞðPTMfbÞðl; jÞðPTMfcÞðl; kÞ

¼ EabcðMrÞði; j; kÞ: �
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Of course for an n-taxon tree with parameters M, for any choice of a permutation for each
of the n� 2 internal nodes one can define a similar action of the permutations on M to produce
new parameters M0 with EðM0Þ ¼ EðMÞ.

Remark 1. For biological applications, we expect our Markov matrices to have their largest
entries along the main diagonal, since most sites should not mutate along an edge, or we would
not have been able to align sequences. This means both that the Markov matrices are non-
singular, since they are fairly close to the identity matrix, and that we can single out a single
biologically-reasonable ordering of the columns of Maf . Thus the issues of non-uniqueness
of parameters raised here are primarily of theoretical importance.

4.2. Recovering parameters

We turn now to the deduction of parameters M from the array Eabc.
Consider the expected frequency array Eabk, where k is a particular base at c. Then we can

express its entries as
Eabkði; jÞ ¼ Eabcði; j; kÞ ¼
Xj

l¼1
paðiÞMaf ði; lÞMfbðl; jÞMfcðl; kÞ:
Letting
Cfc;k ¼ diagðMfcð1; kÞ;Mfcð2; kÞ; . . . ;Mfcðj; kÞÞ

denote the diagonal matrix formed from the kth column of Mfc, and Da ¼ diagðpaÞ, this becomes
Eabk ¼ DaMafCfc;kMfb: ð1Þ

Similarly,
EabRði; jÞ ¼
Xj

l¼1
paðiÞMaf ði; lÞMfbðl; jÞ;
so
EabR ¼ DaMafMfb: ð2Þ

Assuming Da, Maf , and Mfb are non-singular, then
EabRð Þ�1Eabk ¼ M�1fb Cfc;kMfb:
Now the expression on the right side of this equation is simply a diagonalization of a matrix. That
is, the rows of Mfb are the left eigenvectors of ðEabRÞ�1Eabk, and the diagonal entries of Cfc;k are
the corresponding eigenvalues.

As long as the eigenvalues are distinct, the eigenvectors of a diagonalizable matrix are uniquely
determined up to scalar multiples. Since Mfb is a Markov matrix, its rows must each sum to 1, so
the particular scalar multiple is thus uniquely determined. Therefore the collection of rows of Mfb

can be found from the eigenvectors; only the order in which those rows appear is not deducible
from ðEabRÞ�1Eabk. This, however, is precisely the issue described in Proposition 3. More formally,
we obtain the following partial converse of that proposition, which is essentially Lemma 4.1 of
[17], and whose proof we therefore omit.
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Proposition 4. Let
M ¼ ðpa;Maf ;Mfb;MfcÞ and M0 ¼ ðp0a;M 0af ;M 0fb;M 0fcÞ:
Suppose that Maf and Mfb are non-singular, no pair of rows of Mfc are identical, and pa has all
non-zero entries. Then EabcðM0Þ ¼ EabcðMÞ implies that M0 ¼Mr for some permutation r.

Note the proposition indicates that, provided all Markov parameters are non-singular, there
are only finitely many parameter choices leading to the same expected frequency array.

The argument behind this last proposition in fact provides a constructive way of recovering
parameters M from an array EabcðMÞ. Provided EabR is non-singular, one simply computes the
matrices ðEabRÞ�1Eabi from Eabc, and then using standard algorithms computes their common ei-
genvectors, scaling appropriately to give choices of Markov matrix parameters. If j6 4, one could
in principle even find exact formulas for the eigenvectors, since the characteristic equation which
must be solved is polynomial of degree j. For any j, one can compute the eigenvectors numerically.
5. Phylogenetic invariants for 3 taxa

As the last section has shown, if Xabc ¼ EabcðMÞ, then the matrices X�1abRXabi must have a full set
of common eigenvectors. Since matrices with common eigenvectors commute, this observation
leads to the construction of phylogenetic invariants.

5.1. Commutation relations

We work initially under the assumption that any matrix whose inverse we need actually exists.
After using this to deduce invariants, we will show the invariants found in this way are valid even
if the assumption is not met.

First, for i; j ¼ 1; 2; . . . ; j, define matrices
Yc;i ¼ ðXabiÞðXabRÞ�1; ð3Þ

Yb;j ¼ ðXajcÞðXaRcÞ�1: ð4Þ

If Xabc ¼ EabcðMÞ, then from equations like (1) and (2) we deduce that
Yc;i ¼ ðDaMaf ÞCfc;iðDaMaf Þ�1;

Yb;j ¼ ðDaMaf ÞCfb;jðDaMaf Þ�1:

Thus these matrices are simultaneously diagonalizable, and hence commute:
Yc;iYc;j ¼ Yc;jYc;i; ð5Þ

Yc;iYb;j ¼ Yb;jYc;i: ð6Þ

We first focus on Eq. (5) in the case where i 6¼ j. Expressing it in terms of Xabc yields
XabiX�1abRXabjX�1abR ¼ XabjX�1abRXabiX�1abR:
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Multiplying on the right by XabR, yields
XabiðXabRÞ�1Xabj ¼ XabjðXabRÞ�1Xabi: ð7Þ

Now the inverse of a non-singular matrix A can be expressed as
A�1 ¼ 1

detðAÞCofðAÞ
T
;

where CofðAÞ denotes the matrix of cofactors of A. For a j� j matrix A, this is another j� j
matrix whose entries are explicitly known polynomials in the entries of A, found by taking
±determinants of ðj� 1Þ � ðj� 1Þ submatrices. As such, each entry of the cofactor matrix is a
polynomial of degree j� 1 in the entries of A, with ðj� 1Þ! terms.

Multiplying Eq. (7) by detðXabRÞ gives
XabiCofðXabRÞTXabj ¼ XabjCofðXabRÞTXabi: ð8Þ
This is an identity of matrices, yielding j2 scalar identities from the various entries. Furthermore,
each side of the equation has entries that are polynomials of degree jþ 1 in the entries of Xabc, so
each identity, after possible cancelation, is of degree at most jþ 1. While all j2 identities obtained
this way may not be independent of one another, we do at least have a collection of invariants that
must be satisfied if Xabc is of the form EabcðMÞ and XabR is non-singular.

Writing each of these identities in the form
pðXabcÞ ¼ pðX111;X112; . . . ;XjjjÞ ¼ 0;
we have a set of polynomial invariants
Sc;i;j ¼ fpnðXabcÞ jn ¼ 1; . . . ;j2g:
We get such a set for each choice of the pair i 6¼ j, and there are jðj� 1Þ=2 such pairs. This leads
to a set of invariants
Sc ¼
[
i;j

Sc;i;j:
Similar arguments yield sets Sa and Sb of invariants arising from
XjbcCofðXRbcÞTXibc ¼ XibcCofðXRbcÞTXjbc;

XajcCofðXaRcÞTXaic ¼ XaicCofðXaRcÞTXajc:
Each of the sets Sa, Sb, and Sc has at most j3ðj� 1Þ=2 elements, each of which is a poly-
nomial of degree at most jþ 1.

Returning to Eq. (6) to obtain additional invariants, we express it in terms of Xabc and multiply
it by detðXabRÞ detðXaRcÞ to get
XajcCofðXaRcÞTXabiCofðXabRÞT ¼ XabiCofðXabRÞTXajcCofðXaRcÞT : ð9Þ

The entries of this matrix identity give j2 scalar invariants, each of which is of degree at most 2j.
We denote the set of these invariants by Sbc;ji. There are j2 such sets as i, j range over 1; 2; . . . ;j,
which we combine to form a set of cardinality at most j4:
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Sbc ¼
[
i;j

Sbc;ji:
We can also construct sets Sac and Sab, based on the formulas
XT
abjCofðXabRÞXibcCofðXRbcÞT ¼ XibcCofðXRbcÞTX T

abjCofðXabRÞ;

XT
ajcCofðXaRcÞXT

ibcCofðXRbcÞ ¼ XT
ibcCofðXRbcÞXT

ajcCofðXaRcÞ;

which can be derived similarly. Alternately, one may obtain these equations from Eq. (9) by
interchanging the roles of a, b, and c, being careful to transpose matrices when necessary.

5.2. Symmetry relations

Another source of invariants is the fact that certain expressions defined in terms of the expected
frequency array must produce symmetric matrices. For example, since
Xabi ¼ DaMafCfc;iMfb;

XRbc ¼ MT
fbdiagðpaMaf ÞMfc;

Xajc ¼ DaMafCfb;jMfc;
we see that
XabiðXT
RbcÞ

�1XT
ajc ¼ DaMafCfc;idiagðpaMaf ÞCfb;jMT

afDa
is symmetric. Thus invariants arise from the equation
XabiCofðXRbcÞXT
ajc ¼ XajcCofðXRbcÞTX T

abi: ð10Þ

Interchanging the roles of a, b, c also yields
XibcCofðXaRcÞTXabj ¼ XT
abjCofðXaRcÞXT

ibc;

XT
ibcCofðXabRÞTXajc ¼ XT

ajcCofðXabRÞXibc:
Since an equation stating that a matrix is symmetric yields jðj� 1Þ=2 non-trivial scalar
equalities, these symmetry conditions yield at most 3jðj� 1Þ=2 invariants, all of degree at most
jþ 1. However, one can show that these invariants are a subset of those arising from commu-
tation relations.

Finally, we have the trivial invariant that the entries of Xabc, being frequencies of all possible
patterns, must sum to 1, so let
S0 ¼ fX111 þ X112 þ � � � þ Xjjj � 1g:

In total, we have found a set of invariants
S ¼S0 [Sa [Sb [Sc [Sab [Sbc [Sac:
As one would expect, explicit computations for specific values of j show these are usually non-
trivial. Of course we should also expect many of these invariants to be consequences of others,
so that they are not independent. For instance, identities such as
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Xj

i¼1
Yc;i ¼ I
can be used to explicitly produce some dependencies.
Actually, we have not yet given a complete argument as to why the elements of S are invar-

iants. Our derivation of S above from commutation and symmetry relations required assump-
tions that XabR, XaRc and XRbc all be invertible, or equivalently that
detðXabRÞ 6¼ 0; detðXaRcÞ 6¼ 0; detðXRbcÞ 6¼ 0:
However, we can certainly find a non-empty open set of parameters on which these conditions
hold (for instance, a neighborhood of fð1=j; . . . ; 1=jÞ; I; I; IgÞ. But since any polynomial van-
ishing on EðMÞ for all M in such an open set must lie in AT , this shows S � AT .

Remark 2. We could obtain many other invariants, by varying the steps above slightly and
temporarily assuming different matrices are invertible. For instance, in Eq. (3) we may replace
XabR by any linear combination of the Xabks and in Eq. (4) we may replace XaRc by any linear
combination of the Xalbs and then reason similarly under the assumption that these linear com-
binations are non-singular. We do not explicitly list the invariants so produced here for three
reasons. First, there are no essentially new ideas in producing them. Second, all our results on the
inferential power of the invariants we have found will use only some of the invariants already
explicitly listed. Third, if one were to use these invariants on sequence data, one might choose to
implement the invariants in a form using inverses rather than cofactors. Since one can expect
matrices such as XabR to be far from singular while the individual Xabks should be more nearly
singular, the numerical computation of the inverse of XabR should be better behaved.

Nonetheless, using a symbolic computation package it is straightforward to produce an explicit
list of all invariants discussed here. For example, one finds that for j ¼ 4, the invariants of degree
5 so produced form a 1728-dimensional vector space. By a partially-computational argument of
Hagedorn [14], or a representation-theoretic argument of Landsberg and Manivel [19], this must
be the full space of degree 5 invariants.

5.3. Additional invariants through saturation and radical

The invariants obtained through the commutation relations can, in principle, be refined
through two additional steps. Though explicit computations of these steps seems beyond current
capabilities of Gr€oobner basis packages, they still provide useful theoretical understanding.

Let I ¼ hSi be the ideal generated by S in the polynomial ring C½Xabc�, so I � AT .
Let daðXabcÞ, dbðXabcÞ, and dcðXabcÞ be polynomials in the entries of Xabc defined by
daðXabcÞ ¼ detðXRbcÞ; dbðXabcÞ ¼ detðXaRcÞ; dcðXabcÞ ¼ detðXabRÞ

and consider the set of polynomials
T ¼S [ f1� tdaðXabcÞ; 1� udbðXabcÞ; 1� vdcðXabcÞg;

where t, u, and v are 3 new indeterminants. In the ring C½Xabc; t; u; v�, T generates an ideal T, and
defines a variety V ðTÞ in Cj3þ3. The projection of this variety onto Cj3 is precisely the subset
of V ðIÞ comprised of those points at which none of da; db; dc vanish. The ideal
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eII ¼ T \ C½Xabc�

is called the saturation of I with respect to da, db, dc. The variety V ðeIIÞ contains all the points of
V ðIÞ at which all these determinants are non-zero, and is, in fact, the smallest variety to do so.

Clearly I � eII, but it is also the case that eII � AT . To see this we argue as before that there is a
non-empty open set of parameters M for which these polynomials will vanish on EabcðMÞ (for
instance, a neighborhood of fð1=j; . . . ; 1=jÞ; I ; I ; Ig). But since any polynomial vanishing on
EðMÞ for all M in such an open set must lie in AT , this shows eJJ � AT .

Remark 3. In principle, computing a Gr€oobner basis for T using a monomial term ordering of �tuv-
elimination type� (that is, any monomial ordering in which monomials involving any of t, u, or v
are greater than all monomials in C½Xabc�) would allow one to find a basis for the elimination idealeII ¼ T \ C½Xabc�.

Unfortunately a Gr€oobner basis calculation even for I, much less for T, when j ¼ 4 seems
beyond the capability of current standard software packages. To see the difficulty, note that we
are dealing with polynomials in 64+ 3 variables, and the polynomials arising from Eqs. (8) and
(10) and their analogs are homogeneous of degree 5 and have hundreds of terms. Those arising
from Eq. (9) are more complex. However this elimination problem involves far fewer variables
than that involved in the direct calculation of all invariants by Gr€oobner methods as outlined,
for example, in [16].

Example. For j ¼ 2, things are simple. One readily sees that Eq. (8) yields only the zero poly-
nomial, and thus Sc, and similarly Sb and Sa, contain only the zero invariant. In fact, one can
see this without even doing a calculation since
Yc;1 þ Yc;2 ¼ I;
so the commutation of the Yc;i is guaranteed. Eqs. (9) and (10) are more opaque, but a calculation
shows they also yield only the zero polynomial. Thus Sbc, Sab, Sac and Ssym also only contain
zero, and S ¼S0. That is, I is generated by the trivial invariant. One then deduces that eII ¼ I.

Of course, in this case our model has 7 scalar parameters, while EðMÞ is a point in C8, so we
would have expected AT ¼ hS0i, as a Gr€oobner basis calculation can confirm.

If the saturation eII could be found for larger j, one additional step could, in principal, produce
a potentially larger ideal of invariants. By the Strong Nullstellensatz, the full ideal of all poly-

nomials vanishing on V ðeIIÞ is the radical
ffiffiffiffieIIp
, and of course

ffiffiffiffieIIp
� AT .

We summarize our results so far by the chain of inclusions
I � eII � ffiffiffiffieIIq
� AT ;
which implies
V ðIÞ � V ðeIIÞ ¼ V

ffiffiffiffieIIq� �
� V ðAT Þ:
For any j we have an explicit list of generators of I, but do not know if we have explicit gen-
erators for any of the other ideals.
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6. Sufficiency of the invariants arising from commutation relations: 3 taxa

While our method is able to produce a large set S of explicit invariants which generate an ideal
I, due to current computational limits we have not be able to explictly find eII or

ffiffiffiffieIIp
. Moreover,

at this point one might speculate that a large gap still lies between
ffiffiffiffieIIp

and AT . One may thus
reasonably ask what we have gained over the direct, yet infeasible, Gr€oobner basis calculation of
generators of AT described in [16]. Is there a sense in which we have found �enough� invariants?

We address this question in two ways. In this section we give a result for the 3-taxon case with
j6 4. Later in Section 8, after discussing constructing invariants for n-taxon trees, we shall give
a different result that has no restriction on j or n.

We will need some terminology which will be used in the n-taxon case also.

Definition. Let T be an n-taxon tree relating taxa a1; a2; . . . ; an with phylogenetic invariant ideal
AT . Suppose D � Cjn and R � C½Xa1a2...an �. Then we say R is a strong set of invariants on D for
the tree T if it has the properties
R � AT ;

V ðhRiÞ \D � V ðAT Þ:

Thus a set of invariantsR being strong onDmeans that any point inD satisfying the invariants

in R satisfies all possible invariants for the tree. As long as we only consider points in D, a strong
set of invariants has as much distinguishing power as all of AT .

For any set D, there is value in identifying small sets of invariants that are strong on D. With
this in mind, we focus on the 3-taxon case and let
S0 ¼S0 [Sc �S:
Thus S0 contains the trivial invariant and only certain of the ðjþ 1Þ-degree invariants arising
from commutation relations.
Theorem 5. Suppose j6 4 in the 3-taxon case. Let O denote the open set that is the complement of
V ðhdciÞ. Then S0 is a strong set of invariants on O.

Before giving the proof of this theorem, we focus on its implications.
Since an ordering of the taxa a, b, c is arbitrary, one can consider more invariants to get a set

of strong invariants on a larger set.

Corollary 6. Suppose j6 4 in the 3-taxon case. Let Q denote the open set that is the complement of
V ðhda; db; dciÞ ¼ V ðhdaiÞ \ V ðhdbiÞ \ V ðhdciÞ
and letS00 ¼S0 [Sa [Sb [Sc. ThenS00 is a strong set of invariants on Q, and thusS is a strong
set of invariants on Q.

Proof. If Xabc 2 Q, then at least one of the da; db; dc is non-zero at Xabc. Permuting the taxa if
necessary, we may assume dcðXabcÞ 6¼ 0. Then Theorem 5 applies to show Xabc 2 V ðAT Þ.
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Since S00 �S, S is strong on any set on which S00 is strong. h

Let I0 ¼ hS0i, eII0 its saturation with respect to the polynomial dc, and
ffiffiffiffiffieII0p

the radical of the
saturation. Then
I0 � I; eII 0 � eII; ffiffiffiffiffieI0I0q
�

ffiffiffiffieIIq
:

We can now show that if we were able to find explicit generators for eII 0 and eII, these sets would
be quite powerful.

Corollary 7. For j6 4 in the 3-taxon case,
ffiffiffiffiffieII 0q
¼

ffiffiffiffieIIq
¼ AT
and V ðeII 0Þ ¼ V ðeIIÞ ¼ V ðAT Þ. Thus eII 0 and eII are strong sets of invariants on all of Cj3 .

Proof. With O as in Theorem 5, we have that
V ðI0Þ \ O � V ðAT Þ:
But V ðeII0Þ is the smallest variety containing V ðI0Þ \ O, so
V ðeII 0Þ � V ðAT Þ:

Since eII 0 � eII � AT , we also have
V ðeII 0Þ � V ðeIIÞ � V ðAT Þ:

Thus these three varieties must be equal, and so the corresponding radical ideals are equal. h

Example. For j ¼ 2, we have observed that eII ¼ hS0i, from which it follows that
ffiffiffiffieIIp
¼ hS0i.

Therefore AT ¼ hS0i, and all invariants of the 3-taxon tree are multiples of the trivial invariant.

Our proof of Theorem 5 will depend on the irreducibility of certain varieties of commuting
matrices.

Proposition 8. Let Cðn;mÞ denote the ane variety of commuting n-tuples of m� m matrices over C.
Then for j6 4, Cðj� 1; jÞ is irreducible.

This is proved for j ¼ 4 by Guralnick and Sethuraman in [20]; the easier case of j ¼ 3 is shown
by Guralnick in [21], with references given there to earlier proofs. This last paper also shows that
for j > 4 the variety is not irreducible.

Lemma 9. For j6 4, ðj� 1Þ-tuples of j� j simultaneously diagonalizable matrices are Zariski
dense in Cðj� 1;jÞ.

Proof. Consider the smaller set of ðj� 1Þ-tuples of j� j simultaneously diagonalizable matrices
where the first matrix has j distinct eigenvalues. This is the same as the set of ðj� 1Þ-tuples of
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commuting matrices where the first matrix has distinct eigenvalues. Thus it is an open set in
Cðj� 1;jÞ, since the distinct eigenvalue condition can be specified as pðxÞ 6¼ 0 for a certain poly-
nomial in the entries of the matrices. But a non-empty open subset of an irreducible set is dense. h

Proof of Theorem 5. Suppose Xabc 2 V ðhS0iÞ \ O and p 2 AT .
First note that it is enough to show that pðXabcÞ ¼ 0 under the additional assumption that XaRR

has no zero entries. For if some of the entries of XaRR are zero, we can find a matrix M arbitrarily
close to I (in the Euclidean sense), whose columns add to 1, with MXaRR having no zero entry.
Then defining eXXabc by eXXabi ¼ MXabi, one checks that eXXabc 2 V ðhS0iÞ \ O, and so Xabc is in the
closure of arrays satisfying the additional assumption as well.

Assuming, then, that XaRR has no zero entries, for any ðj� 1Þ-tuple of j� j matrices ðM1; . . . ;
Mj�1Þ, letMj ¼ I �

P
Mi, and define an array Yabc by Yabi ¼ XabRMi. Let eppðM1; . . . ;Mj�1Þ ¼ pðYabcÞ.

We first show epp vanishes on all ðj� 1Þ-tuples of simultaneously diagonalizable matrices.
WritingMi ¼ S�1DiS, it is enough to consider those tuples where S has no row summing to 0, since
these are dense in the full set. But then we may assume S has rows summing to 1. But for such Mi,
by applying the ideas of Section 4, we see Yabc ¼ EðMÞ. In fact, M is composed of pa ¼ XT

aRR,
Maf ¼ D�1a XabRS�1, Mfb ¼ S, and Mfc with ith column coming from the diagonal of the Di. ThuseppðM1; . . .Mj�1Þ ¼ pðEðMÞÞ ¼ 0.

Now by the preceeding lemma, epp must therefore vanish on all ðj� 1Þ-tuples of commuting
matrices. In particular, for the commuting matrices Mi ¼ X�1abRXabi, we find pðXabcÞ ¼ 0. h

Remark 4. Since Cðm� 1;mÞ is not irreducible for m > 4, it is not hard to see that Theorem 5
cannot be extended to larger j. Indeed explicit arrays Xabc 62 V ðAT Þ can be constructed which
satisfy all polynomials in S0, but not dc. However, whether Corollary 6 can be extended by a
different proof to larger j is not known.
7. Phylogenetic invariants for four or more taxa

In light of the last section, there are two reasonable goals in producing phylogenetic invariants.
First, one might hope to produce as many invariants as possible, keeping in mind that their
statistical behavior on noisy data is currently unknown and thus the more invariants we have to
investigate, the more likely we may be to find ones that behave well. Second, one might hope to
produce as small a set of invariants as possible that, on some set D of possible data, is in some
sense sufficient to stand-in for all invariants (e.g., the notion of a strong set of invariants on D).

In this section we pursue both goals for the general Markov model on an n-taxon tree. We first
define a large number of invariants through commutation and symmetry relations and other
approaches. We then single out a smaller subset of these which in the next section we will prove
has a sufficiency property.

Consider the case of four taxa a, b, c, and d, related according to the tree T1 in Fig. 2. Model
parameters are specified as
M ¼ fpa;Mae;Meb;Mef ;Mfc;Mfdg;
with the expected frequency of patterns at the terminal taxa given by Eabcd ¼ EabcdðMÞ.
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Of course a large number of invariants can be found by considering subtrees connecting any
three of the leaves. (By a subtree of T we mean a topological bifurcating tree whose leaves are a
subset of those of T and which is obtained from T by deleting some leaves, edges and internal
nodes, �merging� edges if necessary.) For instance, the entries in the three-dimensional array EabcR

must satisfy all of the invariants discussed earlier in the three taxa case. These polynomials, then,
are simply the ones found earlier, with the sums appearing as entries of XabcR substituted in for the
variables used earlier. Similarly one can substitute the entries of XRbcd , XaRcd , and XabRd to obtain
more invariants associated to 3-taxon subtrees.

However, we must expect other invariants not coming from 3-taxon subtrees, as a simple ex-
ample shows. Since the only 3-taxon invariants in the j ¼ 2 case are multiples of the trivial one,
any array Xabcd whose entries sum to 1 will satisfy all the 3-taxon subtree invariants. However,
with only 11 scalar parameters in the j ¼ 2, 4-taxon model, the points of the form EðMÞ in C16

must be on a variety of dimension at most 11. Thus there must be additional invariants. (In fact,
from any 4-taxon invariant not arising from a 3-taxon invariant one could easily construct an
example of a four-dimensional array that satisfies all invariants induced by 3-taxon subtrees, yet
does not satisfy all invariants of the 4-taxon model.)

We will focus on producing invariants for n-taxon trees that do not come from considering
smaller subtrees.

7.1. First construction: (3+)-taxon identities

Our first construction of invariants for n-taxon trees is one that has no analog in the 3-taxon
case. As an example of it, for the 4-taxon tree T1 note that
EaicR ¼ DaMaeCeb;iMefMfc;

EaRcR ¼ DaMaeMefMfc;

EaiRd ¼ DaMaeCeb;iMefMfd ;

EaRRd ¼ DaMaeMefMfd :
Thus
EaicRE�1aRcR ¼ EaiRdE�1aRRd
and for each choice of i we obtain j2 invariants from the entries of
XaicRCofðXaRcRÞT detðXaRRdÞ ¼ XaiRdCofðXaRRdÞT detðXaRcRÞ: ð11Þ

Note that these invariants are of degree 2j.

In fact, the polynomial identities obtained from Eq. (11) are topologically informative; that is,
identity (11) holds precisely because a and b are neighbors. To see this, suppose we consider the
tree T2 of Fig. 2 in which a and c are neighbors, with parametersM ¼ fpa;Mae;Mec;Mef ;Mfb;Mfdg.
Then we find:
EaicR ¼ DaMaeC0eb;iMec;

EaRcR ¼ DaMaeMec;
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EaiRd ¼ DaMaeMefCfb;iMfd ;

EaRRd ¼ DaMaeMefMfd ;
where C0eb;i is the diagonal matrix constructed from the ith column of the product MefMfb. Thus
EaicRE�1aRcR ¼ ðDaMaeÞC0eb;iðDaMaeÞ�1;

EaiRdE�1aRRd ¼ ðDaMaeÞMefCfb;iM�1ef ðDaMaeÞ�1:
Generically at least, C0eb;i 6¼ MefCfb;iM�1ef , as one can choose parameters so the matrix product on
the right is not diagonal. Thus the generic EabcdðMÞ for tree T2 will not satisfy Eq. (11).

Returning to tree T1, there are invariants analogous to those in Eq. (11) again specifying that
a and b are neighbors, but in which the roles of a and b are reversed:
XibcRCofðXRbcRÞT detðXRbRdÞ ¼ XibRdCofðXRbRdÞT detðXRbcRÞ;

as well as invariants specifying that c and d are neighbors:
XT
aRciCofðXaRcRÞ detðXRbcRÞ ¼ XT

RbciCofðXRbcRÞdetðXaRcRÞ;

XT
aRidCofðXaRRdÞ detðXRbRdÞ ¼ XT

RbidCofðXRbRdÞ detðXaRRdÞ:

This construction of invariants generalizes to an n-taxon tree T as follows: Choose three of the
taxa, and denote them by a1, a2, and a3. Let v be the internal node of T that is the only internal
node of the 3-taxon subtree relating these ai. Let a4; . . . ; am denote those taxa for which the path
ai ! a1 in T does not pass through v. (The construction assumes at least one such ai exists, and
thus that nP 4.) Let amþ1; . . . ; an denote the remaining taxa. Then order the indexing of the
expected frequency array so taxa appear in the order a1; a2; . . . ; an.

Now for any 16 i4; . . . ; im 6 j, similar reasoning to the above yields
Xa1a2Ri4...imR...RCofðXa1a2R...RÞ
T
detðXa1Ra3R...RÞ ¼ Xa1Ra3i4...imCofðXa1Ra3R...RÞ

T
detðXa1a2R...RÞ: ð12Þ
Varying the choices of a1, a2, a3 yields many more invariants, all of degree 2j. These are also
topologically informative for any nP 4. That at least some of them are topologically informative
is perhaps most easily seen by summing equations of the form (12) over all indices i5; . . . ; im which
reduces them to the invariants (11) for a 4-taxon subtree.

7.2. Second construction: (4+)-taxon identities

A similar source of invariants which did not arise in the 3-taxon case is the 4-point condition,
with the essential idea appearing in [1]. For the 4-taxon tree T1 with parameters M ¼ fpa;Mae;
Meb;Mef ;Mfc;Mfdg, for convenience define
pe ¼ paMae; pb ¼ peMeb; Mbe ¼ diagðpbÞ
�1MT

ebdiagðpeÞ; Db ¼ diagðpbÞ:

Then
EaRRd ¼ DaMaeMefMfd ; EaRcR ¼ DaMaeMefMfc;

ERbRd ¼ DbMbeMefMfd ; ERbcR ¼ DbMbeMefMfc
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and so
EaRRdðERbRdÞ�1 ¼ EaRcRðERbcRÞ�1: ð13Þ

Thus
XaRRdCofðXRbRdÞT detðXRbcRÞ ¼ XaRcRCofðXRbcRÞT detðXRbRdÞ ð14Þ

yields invariants of degree 2j. Variations on this, by interchanging the role of the pair a and b with
c and d, or taking the matrix inverse of each side of Eq. (13) are possible also.

Note that by taking the determinant of each side of Eq. (13) and rearranging terms we obtain
detðEaRRdÞ detðERbcRÞ ¼ detðEaRcRÞ detðERbRdÞ: ð15Þ

This is nothing more than an exponentiated form of the 4-point condition applied to the log-det
distance. However the invariants in Eq. (14) are potentially more powerful than the single in-
variant to which Eq. (15) gives rise.

Actually, more careful reasoning shows one can strengthen Eq. (14) to
XaiRdCofðXRbRdÞT detðXRbcRÞ ¼ XaicRCofðXRbcRÞT detðXRbRdÞ: ð16Þ

Notice that summing Eq. (16) over i gives Eq. (14) again.

This construction of invariants generalizes for the n-taxon case as follows: For a tree T choose
any four taxa and denote them by a1, a2, a3, a4 in such a way that in the 4-taxon subtree relating
them a1 and a2 are neighbors, and so a3 and a4 are also neighbors. Let a5; . . . ; am denote those taxa
other than a1, a2, a3, a4 for which the path ai ! a1 first joins the subtree anywhere except along the
subtree edges containing a3 and a4. (If no such taxa exist, the construction will still make sense.)
Let amþ1; . . . ; an denote the remaining taxa. Then order the indexing of the expected frequency
array so taxa appear in the order a1; a2; . . . ; an.

Now for any 16 i2; i5; . . . ; im 6 j similar reasoning to the above yields
Xa1i2Ra4i5...imR...RCofðXRa2Ra4R...RÞ
T
detðXRa2a3RR...RÞ

¼ Xa1i2a3Ri5...imR...RCofðXRa2a3RR...RÞ
T
detðXRa2Ra4R...RÞ: ð17Þ
Note that summing Eq. (17) over each of i2; i5; . . . ; im produces Eq. (14) applied to the 4-taxon
subtree.

Interestingly, our first construction of invariants by (3+)-taxon identities can be viewed as a
degenerate case of the 4-point construction, with a1 ¼ a2.

Varying the choices of a1, a2, a3, a4 yields many more invariants, all of degree 2j. One can show
that these will be topologically informative.

7.3. Third construction: commutation relations

Numerous invariants can be found by considering commutation relations, as in the 3-taxon
case. For instance for the 4-taxon tree T1, for any 16 i; j; k; l6 j
Eabij ¼ DaMaePe;cd;ijMeb;

Eabkl ¼ DaMaePe;cd;klMeb;

EabRR ¼ DaMaeMeb;
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where Pe;cd;ij is a diagonal matrix whose diagonal entries give the conditional probabilities that
each base at e becomes i at c and j at d. That is,
Pe;cd;ijðk; kÞ ¼
Xj

m¼1
Mef ðk;mÞMfcðm; iÞMfdðm; jÞ:
Thus
EabijE�1abRREabkl ¼ EabklE�1abRREabij
and so we have invariants from the entries of
XabijCofðXabRRÞTXabkl ¼ XabklCofðXabRRÞTXabij: ð18Þ

This used only that a and b were neighbors, so similar invariants are obtained focusing on c and d.
One can also show that these invariants are topologically informative. Note that invariants in this
class are all of degree jþ 1. Thus they are of lower degree than those produced by either of the
other constructions.

This construction, analogous to that of Eq. (8) in the 3-taxon case, generalizes to the n-taxon
tree as follows: For an n-taxon tree T , choose any two taxa, and denote them by a1 and a2. Let v
be any internal node of T that lies on the path a1 ! a2. Let a3; . . . ; am denote those taxa for which
the path ai ! a1 first joins the path a2 ! a1 at v. Let amþ1; . . . ; an denote the remaining taxa. Then
order the indexing of the expected frequency array so taxa appear in the order a1; a2; . . . ; an.

Now for any 16 i3; . . . ; im 6 j and 16 j3; . . . ; jm 6 j, similar reasoning to the above yields
Xa1a2i3...imR...RCofðXa1a2R...RÞ
TXa1a2j3...jmR...R ¼ Xa1a2j3...jmR...RCofðXa1a2R...RÞ

TXa1a2i3...imR...R: ð19Þ

There is also an analog of the 3-taxon equation (9) for the n-taxon tree: Choose any three taxa and
denote them by a1, a2, and a3. Let v be the internal node of T that is the only internal node of the
3-taxon subtree relating these ai. Let a4; . . . ; am denote those taxa except a3 for which the path
ai ! a1 in T first joins the path a2 ! a1 at v. Similarly, let amþ1; . . . ; al denote those taxa except a2
for which the path ai ! a1 in T first joins the path a3 ! a1 at v. (Either of these sets may be empty,
but if both are, then the construction reduces to one for a 3-taxon subtree.) Let alþ1; . . . ; an denote
the remaining taxa. Then order the indexing of the expected frequency array so taxa appear in
the order a1; a2; . . . ; an.

Now for any 16 i3; . . . ; im 6 j and 16 j2; jmþ1; . . . ; jl 6 j,
Xa1a2i3...imR...RCofðXa1a2R...RÞ
TXa1j2a3R...Rjmþ1...jlR...RCofðXa1Ra3R...RÞ

T

¼ Xa1j2a3R...Rjmþ1...jlR...RCofðXa1Ra3R...RÞ
TXa1a2i3...imR...RCofðXa1a2R...RÞ

T
:

Varying the choices of a1; a2 and a3 yields many more invariants, all of degree 2j. One can also
show these are topologically informative.

7.4. Fourth construction: symmetry relations

The construction of invariants through symmetry relations for the 3-taxon tree generalizes as
follows to the n-taxon tree: Choose three of the taxa, and denote them by a1, a2, and a3. Let v be
the internal node of T that is the only internal node of the 3-taxon subtree relating these ai. Let
a4; . . . ; am denote those taxa for which the path ai ! a1 in T does not pass through v. (If no such
taxa exist, the construction reduces to a 3-taxon subtree construction.) Let amþ1; . . . ; an denote the
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remaining taxa. Then order the indexing of the expected frequency array so taxa appear in the
order a1; a2; . . . ; an.

Now for any 16 i2; i3; i4; . . . ; im 6 j, similar reasoning to the 3-taxon case yields
Xa1a2i3i4...imR...RCofðXRa2a3R...RÞXT
a1i2a3i4...imR...R

¼ Xa1i2a3i4...imR...RCofðXRa2a3R...RÞ
TX T

a1a2i3i4...imR...R
:

Varying the choices of a1, a2, a3 yields many more invariants, all of degree jþ 1. At least some of
these are topologically informative for nP 4.

Just as in the 3-taxon case, there are variations on the constructions above in which, rather than
inverting the specified matrices, one instead inverts any linear combination of certain matrices
that sum to produce it. The comments in Remark 2 are relevant here as well.

Obviously one can also repeat in the n-taxon case the non-explicit saturation and radical steps
done for 3-taxon invariants, and possibly obtain more invariants as a result.

7.5. A small set of invariants

For further study in the next section, for an n-taxon tree T we choose a particular subset S0ðT Þ
of the invariants above. Actually, as there will be some freedom in the definition of S0ðT Þ, there
is a family of such S0ðT Þ.

The definition is an inductive one on the number of taxa n.
For the 3-taxon tree T , let S0ðT Þ ¼S0 ¼S0 [Sc as in Section 6, where c is an arbitrarily

chosen leaf.
Now for an n-taxon tree T , choose any two taxa which are neighbors and denote them a1 and

a2. Let T� denote the ðn� 1Þ-taxon tree obtained by deleting a2 and the edge a2 $ v leading from
it, and replacing the two other edges v$ a1 and v$ w that connect to v with a1 $ w. Now
S0ðT�Þ is already defined, so let
S� ¼ feppðXa1a2...anÞ jeppðXa1a2...anÞ ¼ pðXa1Ra3...anÞ for some p 2S0ðT�Þg:

LetSþ be all the invariants produced by Eq. (19), for all choices of ik, jl, but with the fixed choice
of a1 and a2. Finally, let S

0ðT Þ ¼Sþ [S�.
Note S0ðT Þ is composed of the trivial invariant and only certain of the invariants arising from

the commutation relations construction which are of degree jþ 1.

8. Sufficiency of invariants arising from commutation relations: near-diagonal arrays

Producing an analog for the n-taxon case of the 3-taxon results in Section 6 would of course be
desirable, though we have not done so. However, while those results identify powerful sets of
invariants on certain sets, they also point out that there are points satisfying the invariants that do
not come from any choice of model parameters, whether stochastic or complex. (See Section 9 for
explicit examples.) In other words, polynomial invariants alone are not capable of distinguishing
points of the form EðMÞ.

In this section we prove a different type of sufficiency result for the invariants constructed in this
paper. In brief, there is an open set on which the invariants can test whether a point is of the form
EðMÞ. Furthermore, this result requires no restriction on n or j.

Again, we need some new terminology.



E.S. Allman, J.A. Rhodes / Mathematical Biosciences 186 (2003) 113–144 137
Definition. Let T be an n-taxon tree rooted at taxon a1. Suppose D � Cjn and R � C½Xa1a2...an �.
Then we say R is a parameter-strong set of invariants on D for the tree T if
Xa1a2...an 2 V ðhRiÞ \D

implies
Xa1a2...an ¼ Ea1a2...anðMÞ

for some choice of complex parameters M.

Informally, R is parameter-strong on D means any point in D at which the elements of R
vanish �comes from� some complex choice of model parameters.

Note that a choice of a terminal taxon as the root of T is implicit in the notion of a parameter-
strong set of invariants, since the designation of the root is necessary for defining the parameters.
Indeed, one can construct examples of even two-dimensional arrays Xab for which Xab is of the
form EabðMÞ if the 2-taxon tree is rooted at a, but not if it is rooted at b.

We immediately see

Proposition 10. If a set R is a parameter-strong set of invariants on D, then it is a strong set of
invariants on D.

Definition. An n-dimensional array X is said to be diagonal if X ði1; i2; . . . ; inÞ ¼ 0 for all n-tuples
ði1; i2; . . . ; inÞ except possibly those with i1 ¼ i2 ¼ � � � ¼ in.

Let T be any n-taxon tree. If parameters for the general Markov model on T are chosen so
the identity matrix is assigned to each edge and some base distribution vector is chosen for taxon a1,
then the corresponding expected pattern frequency array will be diagonal. Conversely, given an n-
dimensional j� � � � � j diagonal array of non-negative numbers that sum to 1, there are stochastic
parameters on T , with the base distribution vector composed of the diagonal entries and all
Markov matrices the identity, such that the array is the expected pattern frequency array for these
parameters. Informally, diagonal arrays are the expected frequency arrays of models in which no
mutations occur, and thus they fit all topological trees.

This motivates the following definition. Note that we strengthen the contents of the last
paragraph slightly by requiring all bases appear with positive probability.

Definition. An n-dimensional j� j� � � � � j array X is phylogenetically trivial if it is diagonal,
with positive entries on the diagonal that sum to 1.

Remark 5. In biological circumstances expected frequency arrays, whether theoretical or esti-
mated from data, are typically close to phylogenetically trivial ones. In the theoretical framework
this is because model parameters describe base substitution processes where most sites are left
unchanged. When working with data, this is because most sites must be identical in order to
identify sequences as related and to align them.

We first focus on the 3-taxon case, with S0 ¼S0 [Sc �S the sets of invariants defined
earlier.
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Theorem 11. For the 3-taxon tree, there exists an open set O � Cj3 which contains all phylo-
genetically trivial arrays and on which S0 is parameter-strong regardless of which leaf is taken to be
the root. Furthermore, if Xabc 2 O, and for a fixed choice of a terminal taxon as the root, Xabc ¼
EabcðMÞ ¼ EabcðM0Þ, then M0 ¼Mr for some permutation r.

While we do not identify such a set O in a quantitative way, the existence of such a set means
that arrays that satisfy the invariants in S0 and are �sufficiently-close� to phylogenetically trivial
ones arise from model parameters, and these parameters are �essentially� unique.

To prove Theorem 11 we need the following technical lemma, whose proof we defer to Ap-
pendix A.

Lemma 12. For i ¼ 1; . . . ;j, let Ei;i denote the j� j matrix with all entries 0, except the ði; iÞ entry
which is 1. Then for any open neighborhood Q � Cj2 of the identity matrix I , there exist
open neighborhoods Ni � Cj2 of Ei;i with the following property: If Mi 2Ni , i ¼ 1; . . . ;j are com-
muting matrices, then there exists a matrix S 2 Q with rows summing to 1 such that SMiS�1 is diagonal
for all i. Furthermore, the simultaneous left eigenspaces of the Mi are all one-dimensional.

Proof of Theorem 11. Let X 0
abc denote any phylogenetically trivial array. It is enough to find a

neighborhood O of X 0
abc on which S0 is parameter-strong and the other statements of the theorem

hold.
Let O1 3 X 0

abc and Q 3 I be open sets with the properties that if Xabc 2 O1 and S 2 Q then: (1)
XabR is invertible, (2) XaRR, XRRc have all non-zero entries, and 3) XT

RbRS
�1 has all non-zero entries.

Such sets exist since the first two conditions are met by requiring polynomial inequalities in the
entries of Xabc hold, while for the third we know XT

RbRS
�1 is continuous in S and Xabc, and has non-

zero entries at S ¼ I , Xabc ¼ X 0
abc.

For arrays Xabc 2 O1 \ V ðI0Þ, we can define the matrices
Zc;i ¼ ðXabRÞ�1Xabi
and the Zc;i will commute.
For the chosen Q, letNi be the open sets whose existence is asserted by Lemma 12. We will now

find an open set O 3 X 0
abc such that Xabc 2 O implies each Zc;i 2Ni. To do this, note the map
u : Xabc 7!ðZc;1; . . . ; Zc;jÞ

is continuous on O1. Moreover, uðX 0

abcÞ ¼ ðE1;1; . . . ;Ej;jÞ. Thus O ¼ u�1ðN1 � � � � �NjÞ has the
desired properties.

Now if Xabc 2 O \ V ðI0Þ, then Lemma 12 implies that the Zc;i are simultaneously diagonalizable
by a matrix S 2 Q whose rows sum to 1. Using the ideas of Section 4, this allows us to deduce
parameters M (rooted at a) with Xabc ¼ EabcðMÞ. Since Lemma 12 also implies the eigenspaces
used in the deduction of M are all one-dimensional, M is uniquely determined up to the action
of a permutation.

Note also that pb ¼ XT
RbR, pc ¼ XT

RRc, and pf ¼ pbM
�1
fb ¼ XT

RbRS
�1 have only non-zero entries. Thus

proceeding as in Section 3, fromM we can deduce parametersMb (resp.,Mc) with root at taxon b
(resp., c), unique up to the action of a permutation, so that Xabc ¼ EabcðMbÞ ¼ EabcðMcÞ. h

The result also extends to n-taxon trees.
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Theorem 13. For an n-taxon tree T , let S0ðT Þ denote the set of invariants defined in Section 7. Then
there exists an open set O � Cjn which contains all phylogenetically trivial arrays and on which
S0ðT Þ is parameter-strong, regardless of which leaf is taken as the root. Moreover, for a fixed choice
of root, if Xa1...an 2 O and Xa1...an ¼ Ea1...anðMÞ ¼ Ea1...anðM0Þ, then M0 can be obtained from M
through the action of some choice of permutations at each internal node of T .

Proof.We proceed by induction, with the base case n ¼ 3 being Theorem 11. For future use, let O3

denote the open set constructed in Theorem 11 for this 3-taxon case.
For T an n-taxon tree with n > 3, let a1 and a2 be the two neighboring leaves of T that were

used in the inductive definition of S0ðT Þ, with v the vertex both are connected to by an edge. Now
the map
u1 : Xa1a2...an 7!Xa1a2a3R...R
is continuous, so Q1 ¼ u�11 ðO3Þ is open, and is easily seen to contain all phylogenetically trivial
arrays, since O3 has that property.

With T� the (n� 1)-taxon tree used in the definition of S0ðT Þ, let OT� be an open set which the
inductive hypothesis asserts has the properties stated in the theorem. The map
u2 : Xa1a2...an 7!Xa1Ra3...an
is continuous, so Q2 ¼ u�12 ðOT�Þ is open and contains all phylogenetically trivial arrays.
Let OT ¼ Q1 \ Q2. To show S0ðT Þ is parameter-strong on OT for parameters rooted at a1,

suppose
Xa1...an 2 V ðhS0ðT ÞiÞ \ OT :
Now summing Eq. (19) over all choices of i4; . . . ; in and j4; . . . ; jn shows u1ðXa1a2...anÞ satisfies
Eq. (8) for each choice of i and j at a3. So, since u1ðXa1a2...anÞ satisfies the trivial invariant and lies
in O3, by Theorem 11 we know
u1ðXa1a2...anÞ ¼ Ea1a2a3ðM3Þ;
for some M3 ¼ fpa1 ;Ma1v;Mva2 ;Mva3g. Moreover, M3 is uniquely determined up to the action of a
permutation.

Now X�1a1a2R...R
exists since u1ðXa1a2...anÞ 2 O3. Thus since Xa1...an satisfies Eq. (19) for all ik, jl, one

sees that all the matrices
Yi3...in ¼ Xa1a2i3...inðXa1a2R...RÞ
�1
must commute.
Now the Yi3...in must also commute with all the
Yi3 ¼ Xa1a2i3R...RðXa1a2R...RÞ
�1
;

which are simply sums of Yi3...in . However, since the parameters M3 are unique up to the action of
permutations, we know the Yi3 have j one-dimensional simultaneous eigenspaces, and are diag-
onalized by
Yi3 ¼ ðDa1Ma1vÞCva3;i3ðDa1Ma1vÞ
�1
:
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Thus one also has that
Yi3...in ¼ ðDa1Ma1vÞCi3...inðDa1Ma1vÞ
�1
;

for some diagonal matrices Ci3...in . Since Xa1a2R...R ¼ Da1Ma1vMva2 , we find
Xa1a2i3...in ¼ Da1Ma1vCi3...inMva2 : ð20Þ

By the definition of S0ðT Þ, we know u2ðXa1a2...anÞ satisfies all invariants in S0ðT�Þ and also lies

in OT� . Thus by induction we know
u2ðXa1a2...anÞ ¼ Ea1a3...anðMT�Þ;

for some MT� ¼ fpa1 ;Ma1w; . . .g, unique up to action of permutations at internal nodes of T�.
Here w is as in the definition of S0ðT�Þ. Also this pa1 must agree with that in M3, since both
are given by XT

a1R...R
.

Let
Mvw ¼ M�1a1v
Ma1w:
Finally, let MT be comprised of pa1 , Ma1v, Mva2 , Mvw, and all parameters in MT� except Ma1w.
With this choice of parameters, we claim Xa1...an ¼ Ea1...anðMT Þ. To establish this, we need only

show
Xa1a2i3...in ¼ Ea1a2i3...inðMT Þ;

or that
ðDa1Ma1vÞ
�1Xa1a2i3...inM

�1
va2
¼ ðDa1Ma1vÞ

�1Ea1a2i3...inðMT ÞM�1va2
:

But by Eq. (20) for the left hand side, and the structure of the expected frequency array for the
right hand side, both sides of this equation are diagonal matrices. Thus to prove they are equal, its
enough to show equality upon multiplying on the right by a column vector of 1s. Now the
Markov matrixMva2 has this vector as right eigenvector of eigenvalue 1, so M�1va2

does as well. Thus
it is enough to show 0 1 0 1
ðDa1Ma1vÞ
�1Xa1a2i3...in

1

..

.

1

@ A ¼ ðDa1Ma1vÞ
�1Ea1a2i3...inðMT Þ

1

..

.

1

@ A;
which is simply
ðDa1Ma1vÞ
�1Xa1Ri3...in ¼ ðDa1Ma1vÞ

�1Ea1Ri3...inðMT Þ:

But this follows from the fact that
Xa1Ra3...an ¼ Ea1a3...anðMT�Þ ¼ Ea1Ra3...anðMT Þ

by the definition of MT .

The uniqueness of parameters up to the actions of permutations follows easily from that
property for the 3-taxon and ðn� 1Þ-taxon subtrees used in the argument.

While this proves all the claims assuming parameters are rooted at a1, it is straightforward
to modify the arguments for other choices of a leaf to serve as the root. h

Remark 6. For biological understanding, Theorems 11, 13 are of course primarily of interest
when applied to an arrays X of non-negative real numbers. In that case, one can modify the proofs
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above to show the eigenvalues and eigenvectors of the Zc;i in Theorem 11 must be real, and so the
parameters M must be real as well. Unfortunately, that is not sufficient to conclude that the
parameters must be stochastic. See Section 9 for an example.
9. Some cautionary examples

In this section we give examples of specific arrays that illustrate the pitfalls of using phyloge-
netic invariants to attempt to conclude that an array is of the form EðMÞ for some choice of M.
While Theorem 13 tells us that can be valid for arrays sufficiently close to diagonal, in general it
is not correct, and even when it is, we have no assurances that the parameters are stochastic.

Though our examples are contrived, and perhaps not of the sort that would appear in bio-
logical applications, nevertheless they are instructive.

Consider the 2 · 2 · 2 array Xabc with
Xab1 ¼
0:25 �
0 0:25

� �
Xab2 ¼

0:25 ��
0 0:25

� �
;

for any � 6¼ 0. Then since for 3 taxa and j ¼ 2, the phylogenetic invariant ideal is generated by the
trivial invariant, we have that Xabc 2 V ðAT Þ. However, ðXabRÞ�1Xabi ¼ 2Xabi is not diagonalizable,
and thus by Section 4, Xabc 6¼ EabcðMÞ for any M.

While in this example Xabc had a negative entry which is obviously not biologically meaningful,
we can eliminate that feature and preserve the essential nature of the example by letting
Xab1 ¼
0:25 �
0 0:25

� �
0:75 0:25
0:25 0:75

� �
; Xab2 ¼

0:25 ��
0 0:25

� �
0:75 0:25
0:25 0:75

� �
:

Choosing any 1=12 > � > 0 makes all entries of Xabc positive, yet ðXabRÞ�1Xab1 is again not diag-
onalizable.

One can construct similar examples with larger j, using larger non-diagonalizable matrices. If,
for instance, these have a single Jordan block, one can relatively easily show that the point Xabc

so constructed is in the closure of those points of the form EabcðMÞ. Thus we can ensure Xabc lies
in V ðAT Þ even though we do not explicitly know all invariants for jP 3.

One can even extend this example to more taxa by beginning with such a 3-taxon example and
then adding to the tree additional edges (with Markov matrices I , for instance) off of taxon c, thus
making c an internal node in the final tree. To see that such an example lies in V ðAT Þ, we need
only note that it lies in the closure of the set of points of the form EðMÞ.

We thus obtain

Proposition 14. For nP 3, let T be any n-taxon tree and AT the ideal of phylogenetic invariants for
the general Markov model on T . Then there exist arrays Xa1a2...an of non-negative numbers with
Xa1a2...an 2 V ðAT Þ such that Xa1a2...an 6¼ Ea1a2...anðMÞ for all choices of parameters M, including com-
plex ones. Thus there are no parameter-strong sets of invariants on all of Cjn .

Even when an array X is of the form EðMÞ, it is generally not obvious whether the parameters
M are stochastic, or merely complex. Remark 6 indicates that if an array is sufficiently close to a
phylogenetically trivial one, the parameters will at least be real. One might hope that imposing the
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additional condition that all entries of X be non-negative would ensure the parameters be sto-
chastic.

Unfortunately, choosing some random examples of positive arrays Xabc near a diagonal one for
j ¼ 2 and solving for the parameters shows these sometimes turn out to involve negative quan-
tities.

To illuminate this issue further, for the 3-taxon case with j ¼ 2 and any 1=2 > � > 0 consider
the parameters
pa ¼ ð0:5; 0:5Þ; Maf ¼ Mfb ¼
1� � �
� 1� �

� �
; Mfc ¼

1� � �
��2 1þ �2

� �

in which one negative entry appears. A calculation of EabcðMÞ shows it to be an array of positive
numbers which of course lies in V ðAT Þ. Note that as �! 0, EabcðMÞ approaches a phylogeneti-
cally trivial array.

Modifying this example, for more bases and more taxa, as above, shows

Proposition 15. For nP 3, let T be any n-taxon tree and AT the ideal of phylogenetic invariants
for the general Markov model on T . Then there is no open set O � ½0; 1�j

n

containing the phylo-
genetically trivial arrays for which
Xa1a2...an 2 V ðAT Þ \ O

implies
Xa1a2...an ¼ Ea1a2...anðMÞ;

for a stochastic M.

Note that in passing from considering only the vanishing of phylogenetic invariants to also
considering the biologically natural condition that all entries of an array be non-negative, we have
made an important step from only considering equalities to also considering inequalities. We have
passed from algebraic geometry over C, to algebraic geometry over R. The question of what
additional conditions involving inequalities can help distinguish those points of the form EðMÞ
for stochastic M is an interesting one.
Appendix A

Proof of Lemma 12. The key is to show there are neighborhoods of Ei;i in which any matrix has
an eigenvector close to the standard basis vector ei.

Each Ei;i has as its characteristic polynomial pðxÞ ¼ ðx� 1Þxj�1. But for any d1 > 0 (to be
chosen later) there exists a d2 > 0 such that if all coefficients of a jth degree polynomial qðxÞ are
within d2 of the corresponding coefficients of pðxÞ, then qðxÞ will have a simple root k 2 C with
j1� kj < d1 while all other roots q of qðxÞ satisfy jqj < d1. (This can be shown, for instance, by the
argument principle of complex analysis.) There also exists an open set Oi

1 3 Ei;i such that if
M 2 Oi

1, then the characteristic polynomial ofM will have its coefficients within d2 of those of pðxÞ.
Thus for all d1 with 0 < d1 < 1=2, there is an open set
Oi
1 3 Ei;i ð21Þ
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such that all matrices in Oi
1 have exactly one eigenvalue k (of algebraic multiplicity 1) satisfying

jk� 1j < d1.
Now for any matrix M and scalar k for which the expression makes sense, define the vector
v ¼ vðM ; kÞ ¼ 1Pn
j¼1 cj;1

ðc1;1; c2;1; . . . ; cn;1Þ;
where cj;1 is the ðj; 1Þ-cofactor of kI �M (i.e., ð�1Þjþ1 times the determinant of the matrix ob-
tained by deleting the jth row and first column of kI �M). Since the cj;1 are polynomials in k and
the entries of M , the vector v is a continuous function of M and k. Furthermore, if k is an ei-
genvalue of M , then properties of cofactors imply vðkI �MÞ ¼ 0. Thus, provided it is defined, v is
an eigenvector of M with eigenvalue k. Note also that vðEi;i; 1Þ ¼ e1.

Let � > 0 be such that Q contains an �-ball around I (using the Euclidean metric). Then by the
continuity of vðM ; kÞ, there are open sets Oi

2 3 Ei;i; and Oi
3 3 1 such that if M 2 Oi

2 and k 2 Oi
3 then
kvðM ; kÞ � eik <
minð�; 1Þffiffiffi

j
p :
Now choose 1=2 > d1 > 0 in the first paragraph sufficiently small that the d1-ball around 1 is
contained in Oi

3, and let Oi
1 3 Ei;i; be the open set whose existence is asserted in (21). Let

Ni ¼ Oi
1 \ Oi

2. Thus Ni is a neighborhood of Ei;i such that if M 2Ni then M has a left eigenvector
v, whose entries sum to 1, of eigenvalue k, with kv� eik < minð�; 1Þ=

ffiffiffi
j
p

. Furthermore, the k-
eigenspace of M is one-dimensional.

Now suppose we have matrices Mi 2Ni , i ¼ 1; . . . ; j which commute. For each Mi, let vi be the
eigenvector whose existence is asserted in the last paragraph, with ki its eigenvalue.

Since kvi � eik < 1=
ffiffiffi
j
p

for i ¼ 1; . . . ;j, the vectors vi for i ¼ 1; . . . ;j must be linearly inde-
pendent. To see this, suppose they are dependent. Then there exists a vector c ¼ ðc1; . . . ; cjÞ with
kck ¼ 1 such that the inner product hc; vii is zero for all i. Then
jcij ¼ jhc; eiij ¼ jhc; eii � hc; viij ¼ jhc; ei � viij6 kckkei � vik <
1ffiffiffi
j
p :
But since kck ¼
Pj

i¼1 jcij
2
, this implies kck < 1, which is a contradiction.

Because the Mj commute, the vi must in fact be simultaneous eigenvectors of all the Mj. For
viMjMi ¼ viMiMj ¼ viMjki;
so viMj lies in the one-dimensional ki-eigenspace of Mi, and hence viMj ¼ viki;j for some ki;j.
Since the Mj have a linearly independent set of j common eigenvectors, they are simultaneously

diagonalizable. Finally, if S is the matrix whose ith row is vi, then S 2 Q, its rows sum to 1, and it
diagonalizes all the Mi. h
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