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Abstract

The general Markov model of the evolution of biological sequences along a tree leads to a parameteriza-
tion of an algebraic variety. Understanding this variety and the polynomials, called phylogenetic invariants,
which vanish on it, is a problem within the broader area of Algebraic Statistics. For an arbitrary trivalent
tree, we determine the full ideal of invariants for the 2-state model, establishing a conjecture of Pachter–
Sturmfels. For the κ-state model, we reduce the problem of determining a defining set of polynomials to
that of determining a defining set for a 3-leaf tree. Along the way, we prove several new cases of a conjec-
ture of Garcia–Stillman–Sturmfels on certain statistical models on star trees, and reduce their conjecture to
a family of subcases.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

An important problem arising in modern biology is that of sequence-based phylogenetic in-
ference. Suppose we obtain a collection of biological sequences, such as genomic DNA, from
currently extant species, or taxa. Assuming these sequences evolved from a common ancestral
sequence, how can we infer a tree that describes their evolutionary descent? The use of algebraic
methods for this problem was first proposed in 1987 in independent works by Lake [14], and
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Cavender and Felsenstein [5]. Recently, Garcia, Stillman, and Sturmfels [10] initiated a more
general algebraic study of statistical models, of which phylogenetic models are a particularly
interesting example. In this new field, Algebraic Statistics, the viewpoints of algebraic geometry
are central to investigations of probabilistic models arising in applied contexts.

In model-based phylogenetics, evolution is usually assumed to proceed along a binary tree
from an ancestral sequence at the root of the tree, to sequences found in the taxa, which label
the leaves of the tree. The κ = 4 bases A, C, G, T of which DNA is composed are viewed
as states of random variables. Each site in the sequence might be assumed to evolve i.i.d., so
that different sites can be viewed as trials of the same process. Probabilities of the various base
substitutions along an edge of the tree can then be given by a Markov transition matrix along that
edge. Additional biologically reasonable, or mathematically convenient, assumptions as to the
form of these transition matrices are often imposed. The basic problem is to assume some model
along these lines and use it to infer, from observations of DNA sequences only at the leaves,
a tree topology that might describe their evolutionary descent. An excellent overview of the field
of phylogenetics is provided by the recent volume of Felsenstein [9].

In the phylogenetics literature, a phylogenetic invariant for a particular model and tree is a
polynomial that vanishes on all joint distributions of bases at the leaves that arise from the model,
regardless of the values of the model parameters. In the terminology of algebraic geometry,
the model and tree imply a parameterization of a dense subset of a variety, and phylogenetic
invariants are the elements of the prime ideal defining that variety.

For applications, one might hope that the near-vanishing of phylogenetic invariants on ob-
served frequencies of bases in DNA data could be used as a test of model-fit and/or tree topology.
Although this idea remains undeveloped for practical use, phylogenetic invariants have already
provided means for addressing more theoretical questions in phylogenetics, such as the nature of
maximum likelihood points [6], and the identifiability of certain models [4].

In this paper we investigate the phylogenetic variety for the general Markov model of base
substitution for an arbitrary tree, a detailed specification of which will be given in the next sec-
tion. This model was also the focus of the related investigations [1,2].

One main result is the proof of Conjecture 13 of Pachter and Sturmfels [16] on the ideal of
phylogenetic invariants for the general Markov model in the case of κ = 2 states: the invariants
arising from all 3 × 3 minors of ‘2-dimensional flattenings’ of an array along the edges of a
binary n-taxon tree T generate the full ideal. This is Theorem 4, which is stated more fully in
Section 4 and proved in Section 8.

For an explicit example of this theorem, consider the 5-taxon tree of Fig. 1. Then for the
2-state model, denote the states by 0 and 1. A 2 × 2 × 2 × 2 × 2 tensor P encodes the probabil-
ities of various states at the leaves, where P(i1, i2, i3, i4, i5) = pi1i2i3i4i5 is the joint probability
of observing state ij in the sequence at leaf aj , j = 1, . . . ,5. Now P has two natural flatten-
ings according to the partitions of leaves produced by deleting an internal edge of the tree. The

Fig. 1. A 5-taxon tree.
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partitions, or splits, are {{a1, a2}, {a3, a4, a5}}, and {{a1, a2, a3}, {a4, a5}}, and the corresponding
flattenings are

⎛
⎜⎝

p00000 p00001 p00010 p00011 p00100 p00101 p00110 p00111
p01000 p01001 p01010 p01011 p01100 p01101 p01110 p01111
p10000 p10001 p10010 p10011 p10100 p10101 p10110 p10111
p11000 p11001 p11010 p11011 p11100 p11101 p11110 p11111

⎞
⎟⎠

and ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p00000 p00001 p00010 p00011
p00100 p00101 p00110 p00111
p01000 p01001 p01010 p01011
p01100 p01101 p01110 p01111
p10000 p10001 p10010 p10011
p10100 p10101 p10110 p10111
p11000 p11001 p11010 p11011
p11100 p11101 p11110 p11111

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The theorem states that the 3 × 3 minors of these two matrices generate the prime ideal of all
phylogenetic invariants for the 2-state general Markov model on this tree. In particular, this ideal
has a natural set of generators that correspond to the splits, and therefore to specific topological
features of the tree.

We note that this theorem provides the first determination of all phylogenetic invariants for
an arbitrary binary tree for any non-group-based model. Sturmfels and Sullivant [19] solved
the similar problem for group-based models, using the Hadamard conjugation [8,12,13,20] to
recognize the varieties as toric. While algebraic models intermediate to the group-based and
general ones have been introduced recently [3,7], our knowledge of them is less complete.

We also investigate the question of the explicit determination of the phylogenetic variety and
ideal for larger κ . We show in Theorem 17 that if we have a set of polynomials whose zero set
is the variety for the 3-taxon tree, then we can construct a set of polynomials whose zero set
is the variety for any binary n-taxon tree. Similar to the conjecture of [16], our constructions
involve ‘flattenings,’ though both 2- and 3-dimensional ones are now needed, as might be ex-
pected from [1]. Thus the only remaining obstruction to our determination of a defining set of
polynomials for the phylogenetic variety for any binary tree and any number of states κ is the
determination of a defining set for the 3-taxon tree variety.

In Conjecture 5 we suggest that the same construction yielding set-theoretic defining poly-
nomials for the variety would yield generators of the full prime ideal vanishing on the variety,
provided we begin with generators of the ideal for the 3-taxon tree. This is the analog for arbi-
trary κ of the Pachter–Sturmfels conjecture.

Theorems 4, 17, and Conjecture 5, as well as the Sturmfels–Sullivant group-based result,
can all be viewed as statements that the phylogenetic varieties and ideals arise from the ‘local
structure’ of the tree. Exploiting this observation to provide better ways of characterizing the
statistical support a data set might provide for specific local tree features would be interesting
work for the future. In particular, invariants might provide a means of characterizing support for
particular splits or tripartitions of the taxa.

Despite our primary focus on phylogenetic models, to prove Theorem 17 we must con-
sider certain other statistical models on star trees. In Section 6, we therefore investigate models
Please cite this article in press as: E.S. Allman, J.A. Rhodes, Phylogenetic ideals and varieties for the general Markov
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with a κ-state hidden variable associated to the internal node, and li -state observed variables
associated to the n leaves. Such models are of course interesting in applications outside of phy-
logenetics, as they are examples of rather common ‘mixture models’ in statistics. Following [10],
they are termed hidden naive Bayes models.

Our work here focuses on such models in the case that for each i the number of states li is at
least as large as the number of hidden states κ . Theorems 10 and 11 describe how set-theoretic
and ideal-theoretic defining sets of the associated varieties can be deduced from set-theoretic and
ideal-theoretic defining sets of the variety of the related model which has κ-state variables on
each leaf.

As a consequence of this work on star tree models, in Corollary 14 we prove several cases of
Conjecture 21 of [10], on ideal generators for the hidden naive Bayes model with κ = 2. While
one of these cases, for the 3-leaf tree, has been recently proved in [15], even for that case our
argument is different, and perhaps more direct. Moreover, our work indicates that establishing
the special cases mentioned in Conjecture 16 of this paper is sufficient to prove the full conjecture
of [10].

Before obtaining these results, we begin with several background sections. In Section 2, we
define the phylogenetic variety for the general Markov model through the natural parameteriza-
tion arising from modeling molecular evolution along a tree T by associating Markov matrices to
each edge. In Section 3 we then give a more convenient parameterization of (a dense subset of)
the cone over the phylogenetic variety, which associates an arbitrary κ × κ matrix to each edge
of T , rather than a Markov matrix. Section 4 introduces flattenings of tensors along edges and
vertices of trees, while Section 5 develops the relationship of a form of multiplication of tensors
to the varieties under investigation. Subsequent sections contain our primary results.

Finally, we note that most of the results on phylogenetic trees in this paper hold not only for
binary trees, but also under the weaker assumption that each vertex have valency at least three.
An important exception is Theorem 4, where the binary assumption is critical to our proof.

2. Affine and projective phylogenetic varieties

Let T denote an n-taxon tree, by which we mean a tree with all internal vertices unlabeled
and of valency at least 3, with n leaves labeled by taxa a1, . . . , an. We will sometimes specify in
addition that T is binary (i.e., all internal vertices are trivalent), as this assumption is needed for
some of our results, and is often the case of primary interest in phylogenetics.

Choosing as a root any vertex r of T , either internal or a leaf, denote the rooted tree by T r .
Parameters for the κ-state general Markov model of sequence evolution on T r consist of a root
distribution vector π r = (π1,π2, . . . , πκ) with non-negative entries summing to 1, together with
a κ × κ Markov matrix Me, which has non-negative entries with each row summing to 1, for
each of the 2n − 3 edges e of T r directed away from r .

This models the evolution of biological sequences as follows. The κ states [κ] = {1,2, . . . , κ}
correspond to the alphabet from which sequences are composed. The root r represents the most
recent common ancestor of the currently extant taxa, and other internal nodes of the tree represent
most recent common ancestors of those taxa separated from the root by that node. The root
distribution vector encodes the frequencies πi with which each state i occurs in an ancestral
sequence at r . The (i, j)-entry of a Markov matrix along a particular edge of T directed away
from r is the conditional probability of state i changing to state j at any particular site in the
sequence during evolution along that edge. Thus each site in a biological sequence is assumed to
evolve independently, according to the same process (i.i.d.). Note the biological term ‘sequence’
Please cite this article in press as: E.S. Allman, J.A. Rhodes, Phylogenetic ideals and varieties for the general Markov
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as used here implies no mathematical structure other than a correspondence between sites based
on ancestry; except for matching sites by common ancestry, the ordering of the sites within the
sequences is irrelevant.

Suppose a rooted n-taxon tree T r has |E| edges, so that for a binary tree |E| = 2n − 3. For
the general Markov model of evolution along T r the parameter space S can thus be identified
with a subset of [0,1]N , where N = (κ − 1) + |E|κ(κ − 1).

Furthermore, there is a polynomial map φr :S → [0,1]L, L = κn, giving the joint distribution
of states in sequences at the leaves resulting from any parameter choice. We view points in φr(S)

or CL as κ × · · · × κ tensors, with the ith index referring to the state at leaf ai . Indices thus
typically range through [κ], and a fixed ordering of the taxa is reflected in the ordering of indices
of tensors. Assuming the model adequately reflects real molecular evolution, from biological
sequence data we can estimate entries of φr(s), but usually have little or no direct information
about the parameters s.

The map φr is explicitly given by φr(s) = P , where

P(i1, . . . , in) =
∑

(bv)∈H

(
π r (br )

∏
e

Me(bs(e), bf (e))

)
, (1)

where the product is taken over all edges e of T r directed away from r , edge e has initial vertex
s(e) and final vertex f (e) and associated Markov matrix Me , and the sum is taken over the set

H = {
(bv)v∈Vert(T )

∣∣ bv ∈ [κ] if v �= aj , bv = ij if v = aj

} ⊂ [κ]2n−2.

Thus H represents the set of all ‘histories’ consistent with the specified states at the leaves.
The map φr can also be defined inductively, using matrix algebra, by viewing the tree T r as

built up from smaller trees by the addition of pairs of terminal edges, as we now explain. For this
purpose, we first assume T is binary.

A cherry of T is a pair of distinct leaves ai1 , ai2 whose incident edges contain a common
(internal) vertex of T . For n � 3, any binary n-taxon tree contains at least two cherries, and any
rooted binary n-taxon tree contains at least one cherry in which neither taxon of the cherry is the
root of the tree.

For n � 3 let T r
n = T r denote a rooted binary n-taxon tree labeled by taxa a1, . . . , an. Choose

a cherry of T r
n which does not contain the root r . Let T r

n−1 denote the rooted binary (n−1)-taxon
tree obtained by deleting the cherry and its two incident edges from T r

n and labeling as a new
taxon, say b, the (formerly internal) common vertex of the incident edges.

Applying this definition recursively, we obtain from T r a sequence of rooted trees T r
n , T r

n−1,

. . . , T r
2 , which of course may depend on some arbitrary choices of cherries. We assume such

choices have been made and fixed.
The map φr described above can now be described inductively as follows:
A rooted 2-taxon tree has only one edge e directed away from r , so with parameters π r

and Me,

φr(π r ;Me) = diag(π r )Me,

where diag(v) denotes the square matrix with v on its main diagonal and zeros elsewhere.
To define φr for T r

m, direct edges e away from r and suppose parameters

s = (
π r ; {Me}

)

Please cite this article in press as: E.S. Allman, J.A. Rhodes, Phylogenetic ideals and varieties for the general Markov
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for T r
m are given. Then one obtains parameters s̃ for T r

m−1 by simply discarding from s the two
Markov matrices associated to the edges of T r

m not appearing in T r
m−1. Inductively, we may

assume φ̃r : S̃ → [0,1]κm−1
, the map giving the joint distribution of states at leaves for T r

m−1 as
a function of parameters on T r

m−1, has been given. For convenience, we also assume that taxa of
T r

m are a1, a2, . . . , am and those of T r
m−1 are a1, a2, . . . , am−2, b, with the given orderings, and

that e1 and e2 are the edges of T r
m containing am−1, am, respectively.

Then φr(s) = P , where P is an m-dimensional tensor with 2-dimensional slices given by first
letting P̃ = φ̃r (s̃), v = P̃ (i1, . . . , im−2, ·) and setting

P(i1, . . . , im−2, ·, ·) = MT
e1

diag(v)Me2 . (2)

One can check that this definition of φr agrees with our earlier one, and so is independent of
the choice of cherries defining the sequence T r

2 , T r
3 , . . . , T r

n .
This approach to an inductive definition of φr can be extended to the case of non-binary trees

as follows. For an arbitrary tree T r , let T̃ r denote any binary tree which resolves T r , in the sense
that T r can be obtained from T̃ r by contraction of some edges. Extend a choice of parameters
s on T r to parameters s̃ on T̃ r by assigning the identity matrix to those edges of T̃ r which are
collapsed in T r . Then since φr(s) = φ̃r (s̃), the inductive definition for binary trees can be applied
for T̃ r .

Lemma 1. For any n-taxon tree T , the inductive definition of φr based on Eq. (2) and outlined
above agrees with the definition in Eq. (1).

We also denote by φr the unique extension of this map to a polynomial map φr : CN → CL.
The affine phylogenetic variety V (T ) for the general Markov model on T is defined as the closure
in CL of the image of φr . (Note that this closure may be taken using either the Zariski topology
or the standard topology on CL, as the two closures will agree for the image of a polynomial
map.) As has been shown elsewhere [1,17], this definition is independent of the choice of the
root r . V (T ) is irreducible, as it is the zero set of a prime ideal, the kernel of the map between
polynomial rings associated to φr .

Now one readily sees the image of φr lies on the hyperplane defined by the trivial phylogenetic
invariant

∑
i∈[κ]n P (i)−1 = 0. It is therefore natural to pass to the projective phylogenetic variety

in PL−1 by taking a projective closure. We denote this by V (T ) also, making clear by context
whether the affine or projective version is meant.

The phylogenetic ideals of all polynomials vanishing on the affine phylogenetic variety or
vanishing on the projective phylogenetic variety are of course closely related. Generators of the
homogeneous ideal aT of the projective variety, together with the trivial invariant, generate the
ideal of the affine variety. Conversely, any homogeneous polynomial in the ideal of the affine
variety is in the homogeneous ideal of the projective variety. Thus identifying phylogenetic in-
variants for the general Markov model means identifying those polynomials vanishing on the
projective phylogenetic variety.

3. Reparameterization

For any projective variety V ⊆ Pm, let CV ⊆ Cm+1 denote the cone over V , that is, the union
of the lines represented by points in V . Equivalently, CV is the affine variety defined by the same
polynomials as V .
Please cite this article in press as: E.S. Allman, J.A. Rhodes, Phylogenetic ideals and varieties for the general Markov
model, Adv. in Appl. Math. (2007), doi:10.1016/j.aam.2006.10.002



ARTICLE IN PRESS YAAMA:1155
JID:YAAMA AID:1155 /FLA [m1+; v 1.69; Prn:5/02/2007; 14:58] P.7 (1-22)

E.S. Allman, J.A. Rhodes / Advances in Applied Mathematics ••• (••••) •••–••• 7
A dense subset of the cone CV(T ) admits a parameterization that will be more useful than the
parameterization φr above. This new parameterization simplifies many arguments, since it allows
matrices with any row sums to be associated to edges, and no longer requires a root distribution,
or even a specification of a root.

Definition 2. Consider an n-taxon tree T with |E| edges. Let U = CK with K = |E|κ2. Choose
any vertex of T as a root, directing all edges of T r away from r . View u ∈ CK as a |E|-tuple of
complex κ × κ matrices Me, one for each edge e of T r .

Then, in the case that T is binary, let ψ :U → CL be given inductively as follows, using the
sequence of trees T r = T r

n , T r
n−1, . . . , T

r
2 chosen in the discussion leading to Lemma 1:

If n = 2, ψ(u) = ψ(Me) = Me, so ψ is the identity map.
If n > 2, let ψ̃ : Ũ → Cκn−1

be the map associated to T r
n−1. Then for u ∈ U , define ũ ∈ Ũ by

omitting from u the matrices associated to the edges e1, e2 of T r
n not in T r

n−1. Then ψ(u) = P ,

where P is an n-dimensional tensor with 2-dimensional slices given by first letting P̃ = ψ̃(ũ),
v = P̃ (i1, . . . , in−2, ·) and setting

P(i1, . . . , in−2, ·, ·) = MT
e1

diag(v)Me2 .

For non-binary trees, modify this construction as indicated for Lemma 1.

As in Lemma 1, one sees that this map is independent of the choice of cherries determining
the sequence T r

2 , T r
3 , . . . , T r

n . Although ψ apparently depends on the choice of r , one can further
check that if r is moved from one vertex of an edge e to the other vertex, we need only transpose
the matrix Me associated to that edge and the map is unchanged. Thus the map is independent
of the choice of r , though our conception of how components of CK are placed into matrices
does depend on r . Indeed, all these observations follow from the observation that ψ can also be
defined by a formula like that in Eq. (1), but with the factor π r (br ) omitted.

Proposition 3. The closure of ψ(U) in CL is the cone CV(T ) over the phylogenetic variety
V (T ).

Proof. To see φr(S) ⊆ ψ(U), suppose s = (π r ; {Me}) ∈ S. Let e0 be the one edge of T r
2 , and

define M ′
e0

= diag(π r )Me0 . With u = (M ′
e0

, {Me}e �=e0), we find that φr(s) = ψ(u). Thus V (T ) ⊆
ψ(U). Furthermore ψ(U) is a cone, since if u = ({Me}) ∈ U and λ ∈ C, by picking any particular
edge e0 of T and defining u′ ∈ U to be identical to u but with λMe0 replacing Me0 , then ψ(u′) =
λψ(u). Thus CV(T ) ⊆ ψ(U).

We next show there is a non-empty open, and therefore dense, subset of U whose image under
ψ lies in the cone over φr(S), and hence in CV(T ). This will imply ψ(U) ⊆ CV(T ).

For simplicity of exposition, assume T r is binary.
First, if n = 2, then φr(S) certainly contains those 2-dimensional arrays whose entries add

to 1 and none of whose row sums are 0. Now the subset of U on which all row sums of Me(= u)

are non-zero and the total sum of the entries of Me(= u) is non-zero is an open set. The points in
the image under ψ of this open set lie in the cone over φr(S).

Proceeding inductively, let e1, e2 be the edges of T r
m which are not in T r

m−1, and e3 the third
edge meeting them. We may also suppose r does not lie at the common vertex of e1, e2, e3. Now
Please cite this article in press as: E.S. Allman, J.A. Rhodes, Phylogenetic ideals and varieties for the general Markov
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there is an open O1 ⊂ U such that for points u ∈ O1, Me1 and Me2 have all row sums non-zero.
Letting Di be the invertible diagonal matrix constructed from the row sums of Mei

, we may write

Mei
= DiM

′
ei
, i = 1,2,

where M ′
ei

has rows summing to 1. Let M ′
e3

= Me3D1D2. Then for any u ∈O1, we define a new
u′ ∈O1 as

u′ = ({Me}e/∈{e1,e2,e3},M ′
e1

,M ′
e2

,M ′
e3

)
,

so that ψ(u′) = ψ(u). Note that ω :O1 →O1 mapping u 	→ u′ is given by rational functions.
Let ψ̃ : Ũ → Cκm−1

and φ̃r : S̃ → Cκm−1
be the parameterizations associated to T r

m−1. Then by

induction there is a non-empty open Õ ⊂ Ũ such that the image of all points in Õ under ψ̃ lie in
the cone over φ̃r (S̃). Then O = ω−1(Õ× C2κ2

) is a non-empty open subset of U , and the image
of any point of O under ψ lies in the cone over φr(S).

If T r is not binary, slight modifications can be made to the above argument to obtain the
result. �

While the definition of ψ has introduced many unnecessary parameters, in the sense that the
dimension of the image is much smaller than the dimension of the parameter space, it offers us
the advantage of dropping inconvenient requirements—that row sums of vectors and matrices be
1—that arose from the original probabilistic setting of the general Markov model.

4. Flattenings and phylogenetic invariants

To describe the set of phylogenetic invariants we are concerned with, we require the notion of
flattening a tensor P ∈ Cκn

according to an n-taxon tree T .
Let e be an edge of T . Then e induces a split of the taxa according to the connected com-

ponents of T \ {e}. By reordering the indices in P if necessary, we may assume the split is
{{a1, . . . , ak}, {ak+1, . . . , an}}. The flattening of P on e is the κk × κn−k matrix F = Flate(P )

defined as follows: Fix any ordering of J1 = [κ]k and J2 = [κ]n−k , and for u ∈ J1, v ∈ J2, let
F(u, v) = P(u1, . . . , uk, v1, . . . , vn−k).

If the tensor P = φr(s) gives the joint distribution of states for some parameter choice for the
general Markov model on T , then Flate(P ) can be thought of as a joint distribution for a related
graphical model with less complicated structure: For a tree with at least 3 leaves, choose the root
r to be at one vertex of the edge e, and imagine at r a κ-state hidden variable. The possible joint
states at the taxa a1, . . . , ak are viewed as a single κk-state observed variable. Similarly, the joint
states at the taxa ak+1, . . . , an are described through a single κn−k-state variable. We thus have a
“coarser” graphical model with one hidden κ-state internal node and two descendent nodes with
κk and κn−k states, respectively, as depicted in Fig. 2. The flattening of P simply prevents one
from examining the finer structure in the joint distribution array that arises from the branching
of T on either side of e.

From this interpretation one readily sees that for any P ∈ φr(S), Flate(P ) has rank at most κ .
Indeed, for the coarser graphical model, the joint distribution matrix must have the form

Flate(P ) = MT
1 diag(πr)M2

where M1 and M2 are κ × κk and κ × κn−k Markov matrices.
Please cite this article in press as: E.S. Allman, J.A. Rhodes, Phylogenetic ideals and varieties for the general Markov
model, Adv. in Appl. Math. (2007), doi:10.1016/j.aam.2006.10.002
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Fig. 2. Flattening on an edge e.

As a result, all (κ + 1) × (κ + 1) minors of Flate(P ) must vanish. As is classically known,
such minors generate the full prime ideal of polynomials vanishing on matrices of rank � κ , and
thus generate all invariants associated to the coarser model. For the original model on T , these
minors therefore give phylogenetic invariants, which we call edge invariants associated to the
edge e.

We denote by Fedge(T ) the set of all (κ +1)× (κ +1) minors of all flattenings of a κ ×· · ·×κ

tensor of κn indeterminates on edges of T . Of course the choice of ordering of rows and columns
in the flattening introduces factors of ±1, but as our goal is to determine ideal generators, we
may ignore this issue.

In Section 8 we will establish the following, which was conjectured in [16].

Theorem 4. For κ = 2 and any number of taxa n, the phylogenetic ideal aT for the general
Markov model on a binary n-taxon tree T is generated by Fedge(T ), the 3 × 3 minors of all edge
flattenings of a 2 × · · · × 2 tensor of indeterminates.

However, for larger κ it is not enough to consider only 2-dimensional edge flattenings (i.e.,
flattenings to matrices) to obtain generators of the phylogenetic ideal. This can be seen already
for the 3-taxon tree. In this case, Fedge(T ) is empty, but for any κ > 2 the phylogenetic ideal
contains polynomials of degree κ + 1 (see [1]; for κ = 3 see also [10]). Thus we need at least to
consider flattenings of P at internal nodes of T producing 3-dimensional tensors.

More specifically, consider a trivalent internal vertex v of a tree T , contained in edges e1,
e2, e3. Then v induces a tripartition of the taxa according to the connected components of
T \ {v, e1, e2, e3}. By reordering the indices in P if necessary, we may assume the tripartition is

{{a1, . . . , ak}, {ak+1, . . . , ak+l}, {ak+l+1, . . . , an}
}
.

Then a flattening of P at v is a κk × κl × κn−k−l array F = Flatv(P ) defined as follows: Fix
an ordering of J1 = [κ]k , J2 = [κ]l , and J3 = [κ]n−k−l , and for u ∈ J1, v ∈ J2, w ∈ J3, let
F(u, v,w) = P(u1, . . . , uk, v1, . . . , vl,w1, . . . ,wn−k−l ).

As illustrated in Fig. 3, we think of this flattening as producing a joint distribution array as-
sociated to a graphical model with one hidden κ-state internal node and three descendent nodes
with κk , κl , and κn−k−l states, respectively. Similar to flattenings on edges, a flattening at an in-
ternal node ignores the finer structure in the joint distribution array that arises from the branching
of T in the three directions leading away from v.

An ideal is associated to such a graphical model (1 hidden κ-state ancestral node, 3 descendent
nodes), and so to the flattening at a vertex. While we will investigate such ideals further in
Section 6, already we can formulate a natural extension of the conjecture of [16].
Please cite this article in press as: E.S. Allman, J.A. Rhodes, Phylogenetic ideals and varieties for the general Markov
model, Adv. in Appl. Math. (2007), doi:10.1016/j.aam.2006.10.002
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Fig. 3. Flattening at a vertex v.

Conjecture 5. For any κ and any number of taxa n, the phylogenetic ideal aT for the general
Markov model on a binary n-taxon tree T is the sum of the ideals associated to the flattenings
of P at vertices of T .

That this conjecture is identical to Theorem 4 when κ = 2 follows from work of Landsberg
and Manivel [15]. They show that in this special case the ideal associated to a vertex flattening
is the sum of those associated to the edge flattenings on the three edges containing the vertex.
(The Landsberg–Manivel result is a special case of a conjecture in [10]. We will give a new and
simpler proof of this case, and several additional cases, as Corollary 14.)

Of course the notion of flattening at a vertex can be extended in a straightforward way for
vertices of valence > 3, and the conjecture formulated for non-binary trees as well. The extended
conjecture for non-binary trees remains open even for κ = 2.

Although we will primarily need to refer to the 2- and 3-dimensional flattenings of a tensor
P on an edge or at a vertex of a tree T , the notion naturally extends to flattenings based on any
partition of the set of labels (taxa) associated to the indices of P . For instance, an n-dimensional
κ × · · · × κ tensor P with associated labels a1, . . . , an can be flattened according to the partition
{{a1}, . . . , {an−2}, {an−1, an}} to give an (n − 1)-dimensional κ × · · · × κ × κ2 tensor. We use
such a flattening, where an−1, an are in a cherry, in Section 8. Flattenings according to arbitrary
bipartitions also appear in Section 6.

5. The algebra of tensors, trees, and parameters

In this section we define binary operations on trees, model parameters on trees, and tensors.
These operations, all denoted by the same symbol ‘∗’, exhibit relationships that will make them
useful in later sections.

Tensors. If Q and R are m- and n-dimensional tensors of ‘matching size κ’ in the last and first
index respectively, then we define an l = (m + n − 2)-dimensional tensor Q ∗ R by

(Q ∗ R)(i1, . . . , il) =
κ∑

j=1

Q(i1, . . . , im−1, j)R(j, im, . . . , il).

For m = n = 2, this is of course just matrix multiplication.
Please cite this article in press as: E.S. Allman, J.A. Rhodes, Phylogenetic ideals and varieties for the general Markov
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Fig. 4. The ∗ operation on trees.

More generally, if the pth index of Q and the qth index of R both run through [κ], we may
define Q ∗p,q R by a similar sum. However, to keep our notation less cumbersome, we will
generally try to express products using the last and first indices.

Trees. Suppose T ′ is a tree with taxa a1, a2, . . . , am, and T ′′ is a tree with taxa b1, b2, . . . , bn.
Then by T ′ ∗T ′′ we mean the (m+n−2)-taxon tree with taxa a1, . . . , am−1, b2, . . . , bn obtained
by first identifying the vertices am and b1, and then deleting this vertex, replacing the two edges
it lies in with a single conjoined edge, as illustrated in Fig. 4.

Parameters. Consider trees T ′, T ′′, and T = T ′ ∗ T ′′ with m, n, and m + n − 2 taxa. Then from
Section 3 we have the parameterizations

ψ ′ :U ′ → Cκm

,

ψ ′′ :U ′′ → Cκn

,

ψ :U → Cκm+n−2
,

of the cones over the associated phylogenetic varieties.

To impose directions on the edges of the trees for notational purposes, root T ′ and T at a1, and
T ′′ at b1. Then for u′ ∈ U ′, u′′ ∈ U ′′, we define u′ ∗u′′ ∈ U by retaining for each edge of T except
the conjoined one the matrix associated to the edge in either u′ or u′′, and for the conjoined edge
using the product of the matrices in u′ and u′′ associated to its parts.

One readily sees that these three definitions imply the following.

Lemma 6. ψ(u′ ∗ u′′) = ψ ′(u′) ∗ ψ ′′(u′′).

Lemma 7. If T = T ′ ∗ T ′′, then CV(T ) = CV(T ′) ∗ CV(T ′′).

Proof. It is clear that

U = U ′ ∗ U ′′ = {u′ ∗ u′′ | u′ ∈ U ′, u′′ ∈ U ′′}.

Thus by Lemma 6,

CV(T ) = ψ(U) = ψ ′(U ′) ∗ ψ ′′(U ′′) = CV(T ′) ∗ CV(T ′′). �
This result will be strengthened in Corollary 21.
Please cite this article in press as: E.S. Allman, J.A. Rhodes, Phylogenetic ideals and varieties for the general Markov
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In the special case when T ′′ is a 2-taxon tree, T ′ ∗T ′′ is isomorphic to T ′. Then u′′ = ψ(u′′) is
simply a κ × κ matrix. Informally, one can think of ψ ′(u′) ∗ ψ ′′(u′′) as the result of ‘extending’
the edge of T ′ terminating at am and associating to the edge extension the matrix u′′.

Considering invertible matrices u′′, we get an action of GL(κ,C) on both U ′ and ψ ′(U ′). Thus
GL(κ,C) acts on the closure, CV(T ′), as well. Viewing the action described here as operating in
‘the last index’ of a tensor in VT ′ , we similarly have an action in the other indices. These actions
of GL(κ,C) are of course just restrictions of the natural actions of that group on the set of all
κ × · · · × κ tensors: For j = 1, . . . , n, the ‘j th index’ action is defined by P 	→ P ∗j,1 A for
A ∈ GL(κ,C).

6. Models on star trees

In this section, we step back from the phylogenetic tree setting, and consider in more depth
the hidden naive Bayes models of [10]. Most of our results will be needed for application to
phylogenetic varieties. However, we develop this material in slightly greater generality than we
need for phylogenetic applications, and so obtain partial results on a conjecture of [10] as well.

The graphical models of this section are based on a star tree, as in Fig. 5, with one internal
vertex r , connected by edges to n leaves a1, a2, . . . , an. A hidden random variable associated
to r has κ possible states, with probability distribution given by a vector π r . Each leaf ai has
associated to it a random variable with li states, and Markov matrices Mi of size κ × li give
conditional probabilities of observing the various states at ai given the state at r .

As in the phylogenetic situation, such a model defines a projective variety, the closure
of the set of joint distributions of observations at the leaves arising from this parameteriza-
tion. We denote this variety by V (κ; l1, l2, . . . , ln), and the homogeneous ideal defining it by
a(κ; l1, l2, . . . , ln).

As pointed out in [10], the variety V (κ; l1, l2, . . . , ln) can be viewed more geometrically as
the κ-secant variety of the Segre product Pl1−1 × Pl2−1 × · · · × Pln−1. Here ‘κ-secant variety’
means the closure of the union of the (κ − 1)-dimensional affine spaces spanned by collections
of κ points on the original variety, so, for instance, the 2-secant variety arises from points on
secant lines.

Note that V (κ;κ, κ, κ) = V (T3), the phylogenetic variety for a κ-state, 3-taxon tree. The
varieties V (κ;κk, κl, κn−k−l ), with k, l, n − k − l � 1, are the ones that arose in Section 4, in
the discussion of flattenings of tensors at vertices of phylogenetic trees. Moreover, flattenings on
edges involve V (κ;κk, κn−k), the variety of rank κ matrices of size κk × κn−k , which is well
understood classically.

Our first goals are to show Theorems 10 and 11: Given a set F of polynomials set-theoretically
(respectively, ideal-theoretically) defining V (κ;κ, κ, . . . , κ) for the n-leaf star tree, then for any

Fig. 5. Graphical depiction of a hidden naive Bayes model.
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li � κ we can explicitly construct polynomials set-theoretically (respectively, ideal-theoretically)
defining V (κ; l1, l2, . . . , ln). (See also Proposition 4.4 of [15].)

Previous to these theorems, we know of only one general result concerning defining polyno-
mials of V (κ; l1, l2, . . . , ln): When κ = 2, for any number of leaves, [15] gives a natural set of
polynomials defining the variety as a set.

For our application to phylogenetic trees, the assumption that internal nodes are trivalent
means only the case n = 3 is needed. We therefore summarize known results on V (κ;κ, κ, κ) =
V (T3) for small κ .

For κ = 2, as noted in [1,10,15], V (T3) = P7, and so {0} is the full prime ideal defining the
variety.

For κ = 3, a generating set F for the prime ideal may be taken to be the 27 quartic polynomials
in [10], first found in [18] but also obtained from the construction in [1].

For κ � 4, finding an explicit set F that even set-theoretically defines the variety is still an
open problem. However, any polynomial vanishing on the variety must be of degree at least κ +1.

When κ = 4, all degree 5 polynomials vanishing on the variety form an explicitly-known
1728-dimensional vector space. This dimension is computed in [11,15], and an explicit construc-
tion for general κ is given in [1] that produces a spanning set when κ = 4. Moreover, off another
explicitly-known variety, the vanishing of these polynomials does distinguish points of V (T3).
However, an explicit degree 9 polynomial is known which vanishes on V (4;3,3,3) (see [10] for
a statement, or [18] for the construction), and from this polynomial one can obtain degree 9 poly-
nomials vanishing on V (4;4,4,4) = V (T3) by evaluation on 3 × 3 × 3 subarrays of a 4 × 4 × 4
tensor. By consideration of the multidegrees of each monomial term in its many variables, one
can show that these degree 9 polynomials cannot be generated by the degree 5 ones.

We also note that if φ is the parameterization arising from the general Markov model on T3,
then for all κ � 2 the image of φ is strictly smaller than its closure V (T3). This is pointed out in
Section 9 of [1], but in the terminology of [18] is simply the statement that ‘rank κ’ is a strictly
stronger statement than ‘border rank κ’ for κ × κ × κ tensors.

By modifying the approach of Section 3, it is possible to parameterize a dense subset of the
cone CV(κ; l1, l2, . . . , ln) using parameters which are arbitrary matrices. We leave the details to
the reader, but denote this parameterization by ψκ;l1,...,ln , where

ψκ;l1,...,ln :Uκ;l1,...,ln → CL, Uκ;l1,...,ln = Cκ(l1+···+ln), L = l1l2 · · · ln,
and if P = ψ(M1,M2, . . . ,Mn) then

P(i1, . . . , in) =
κ∑

k=1

n∏
j=1

Mj(k, ij ).

Here Mj ∈ M(κ, lj ,C), the set of complex κ × lj matrices.
In order to relate V (κ; l1, l2, . . . , ln) to V (κ;κ, κ, . . . , κ) we need the following lemma. It can

be interpreted as describing the effect of extending one edge of the star tree, and associating a
(non-square) matrix to that extension, as was explained at the end of Section 5.

Lemma 8. Let P ∈ CV(κ; l1, l2, . . . , ln) and let A ∈ M(ln, l
′
n,C). Then A defines a map

CV(κ; l1, l2, . . . , ln) → CV(κ; l1, l2, . . . , l′n) by P 	→ P ∗ A. Furthermore,

(i) if rank(A) = l′n, then CV(κ; l1, l2, . . . , ln) ∗ A is dense in CV(κ; l1, l2, . . . , l′n);
(ii) if κ � ln then CV(κ; l1, l2, . . . , ln) ∗ M(ln, l

′
n,C) is dense in CV(κ; l1, l2, . . . , l′n).
Please cite this article in press as: E.S. Allman, J.A. Rhodes, Phylogenetic ideals and varieties for the general Markov
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Proof. Suppose first that P = ψκ;l1,...,ln (M1,M2, . . . ,Mn), with complex κ × li matrix parame-
ters Mi , i = 1,2, . . . , n, associated to the n edges of T directed away from the internal node.
Then

P ∗ A = ψκ;l1,...,ln−1,l
′
n
(M1,M2, . . . ,Mn−1,MnA),

hence P ∗A ∈ CV(κ; l1, l2, . . . , l′n). Since P ∗A ∈ CV(κ; l1, l2, . . . , l′n) for P in a dense subset of
CV(κ; l1, l2, . . . , ln), it follows that P ∗A ∈ CV(κ; l1, l2, . . . , l′n) for all P ∈ CV(κ; l1, l2, . . . , ln).

Now suppose rank(A) = l′n. Then as Mn ranges through all κ × ln complex matrices, MnA

ranges through all κ × l′n complex matrices. Thus

ψκ;l1,...,ln (Uκ;l1,...,ln ) ∗ A = ψκ;l1,...,ln−1,l
′
n
(Uκ;l1,...,l′n),

and so a subset of CV(κ; l1, . . . , ln) ∗ A is dense in CV(κ; l1, . . . , l′n).
Finally suppose κ � ln. Then as Mn ranges through all κ × ln complex matrices and A through

all ln × l′n matrices, MnA ranges through all κ × l′n complex matrices. Thus

ψκ;l1,...,ln (Uκ;l1,...,ln ) ∗ M
(
ln, l

′
n,C

) = ψκ;l1,...,ln−1,l
′
n
(Uκ;l1,...,l′n).

Therefore a subset of CV(κ; l1, . . . , ln) ∗ M(ln, l
′
n,C) is dense in CV(κ; l1, . . . , l′n). �

Remark 9. For non-zero P and A as in the proof, it is possible for P ∗A to be a zero tensor. Thus
while the above lemma could be formulated in terms of a rational map between the underlying
projective varieties, it is slightly easier for us to consider a polynomial map on the cones.

By permuting indices Lemma 8 can be applied in any index, not just the last. As shorthand,
we will refer to this as letting an lk × l′k matrix ‘act in the kth index.’ By considering only
invertible lk × lk matrices, we have a group action of GL(lk,C) in the kth index, and so an
action of GL(l1,C) × · · · × GL(ln,C) on V (κ; l1, . . . , ln). While this group action underlies the
dimension computations of [15], our work will emphasize the utility of non-square and non-
invertible matrices as well.

Theorem 10. Consider an n-leaf star tree. Suppose l1, l2, . . . , ln � κ . Let F be any set of polyno-
mials whose zero set is V (κ;κ, κ, . . . , κ). For k = 1,2, . . . , n, let Zk = (zk

ij ) be lk ×κ matrices of

indeterminates. For an l1 × l2 × · · ·× ln tensor P of indeterminates, let P̃ be the κ × κ × · · ·× κ

tensor that results from letting each Zk act formally in the kth index of P . Let F̃ denote the set
of polynomials in the entries of P obtained from those in F by substituting into them the entries
of P̃ , expressing the results as polynomials in the zk

ij , and then extracting the coefficients. Let
Fedge denote the set of (κ + 1) × (κ + 1) minors of the n flattenings of P on edges of the star
tree. Finally, let F(κ; l1, l2, . . . , ln) = F̃ ∪Fedge.

Then F(κ; l1, l2, . . . , ln) defines V (κ; l1, l2, . . . , ln) set-theoretically.

Proof. We first observe that all polynomials in F(κ; l1, l2, . . . , ln) vanish on the cone CV(κ; l1,
l2, . . . , ln): Polynomials in Fedge must vanish there, since the model has κ states at the inter-
nal node, so all 2-dimensional flattenings on edges must have rank � κ on the parameterized
subset of the variety, and hence on the whole variety. Polynomials in F̃ must vanish there,
Please cite this article in press as: E.S. Allman, J.A. Rhodes, Phylogenetic ideals and varieties for the general Markov
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since for all assignments of values to the zk
ij , if P ∈ CV(κ, l1, . . . , ln) then, by Lemma 8,

P̃ ∈ CV(κ;κ, . . . , κ).
Now suppose all polynomials in F(κ; l1, l2, . . . , ln) vanish on a tensor P0 ∈ Cl1l2···ln . Then,

flattening P0 on the edge of the tree leading to an gives a matrix of rank l � κ , so we can write

P0 = Q′
0 ∗ B ′

n

where Q′
0 is an l1 × l2 ×· · ·× ln−1 × l tensor and B ′

n is an l × ln matrix. Construct a κ × ln matrix
Bn of rank κ by augmenting B ′

n with additional rows. Similarly augment Q′
0 with additional zero

entries to obtain an l1 × l2 × · · · × ln−1 × κ tensor Q0 with P0 = Q0 ∗ Bn. Now there exists an
ln ×κ matrix An so that BnAn = I , the identity matrix. Thus P0 ∗An ∗Bn = Q0 ∗Bn ∗An ∗Bn =
Q0 ∗ I ∗ Bn = P0.

Proceeding similarly for the other taxa, we obtain matrices Ak , Bk such that

(P0 ∗k,1 Ak) ∗k,1 Bk = P0 ∗k,1 (Ak ∗ Bk) = P0.

By simultaneously letting each Ak act in the kth index of P0, we obtain a κ × κ × · · · × κ

tensor P̃0. Because all polynomials in F̃ vanish on P0, all polynomials in F vanish on P̃0. Thus
by our choice of F , P̃0 ∈ CV(κ;κ, κ, . . . , κ). Since, by repeated applications of Lemma 8, letting
each Bk act in the kth index maps CV(κ;κ, κ, . . . , κ) to CV(κ; l1, l2, . . . , ln), and maps P̃0 to P0,
we see P0 ∈ CV(κ; l1, l2, . . . , ln). �

We now state an ideal-theoretic version of this result.

Theorem 11. Suppose l1, l2, . . . , ln � κ , and F is a set of polynomials generating a(κ;κ, κ,

. . . , κ). Then the set F(κ; l1, l2, . . . , ln) constructed from F as in Theorem 10 generates
a(κ; l1, l2, . . . , ln).

Since the key argument in the proof of Theorem 11 will be used again in Section 8, we present
it as a lemma.

Lemma 12. Let V1 and V2 be subvarieties of Cnm1 and Cnm2 , respectively, with m1 � m2, such
that, when points are written as n × m1 and n × m2 matrices,

V1 = V1 ∗ M(m1,m1,C)

and

V2 = V1 ∗ M(m1,m2,C).

Let ai denote the ideal of all polynomials vanishing on Vi .
Then a2 is generated by the (m1 + 1) × (m1 + 1) minors of an n × m2 matrix P of indetermi-

nates, together with all polynomials of the form f (P ∗A), where f ∈ a1 and A ∈ M(m2,m1,C).

Proof. Let b denote the ideal generated by the (m1 + 1) × (m1 + 1) minors, together with the
polynomials f (P ∗ A) described above.

First we show a2 ⊇ b. It is enough to show the specified generators of b vanish on
V1 ∗ M(m1,m2,C). Since all points in this set are matrices of rank at most m1, the specified
Please cite this article in press as: E.S. Allman, J.A. Rhodes, Phylogenetic ideals and varieties for the general Markov
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minors vanish there. To see the f (P ∗ A) vanish there, consider a point Q0 ∗ B where Q0 ∈ V1,
B ∈ M(m1,m2,C). Then Q0 ∗B ∗A ∈ V1 since B ∗A ∈ M(m1,m1,C). Thus f (P ∗A) vanishes
at Q0 ∗ B .

Our argument that a2 ⊆ b is more involved.
Note GL(m2,C) acts on V1 ∗ M(m1,m2,C), and hence on V2 as well. Consider the degree

m homogeneous component a
(m)
2 of a2. Then the GL(m2,C)-action on V2 gives a representation

of GL(m2,C) on a
(m)
2 , in which C ∈ GL(m2,C) maps the polynomial g(P ) 	→ g(P ∗ C). Since

GL(m2,C) is reductive, this representation decomposes into a sum of irreducible ones. Consider
now one of the irreducible subspaces, W . It will be enough to show that W ⊆ b.

Consider any non-zero polynomial g(P ) ∈ W . Let Q denote a n × m1 matrix of indetermi-
nates. Then for any B ∈ M(m1,m2,C), the polynomial gB(Q) = g(Q∗B) vanishes on V1, since
Q0 	→ Q0 ∗ B maps V1 to V2. Thus gB ∈ a1.

Suppose first that for all B ∈ M(m1,m2,C) the polynomial gB(Q) is identically zero. Then
g must vanish on all n×m2 matrices of rank at most m1, since any such matrix can be written as
Q0 ∗B for some complex matrices Q0 ∈ M(n,m1,C), B ∈ M(m1,m2,C), and then g(Q0 ∗B) =
gB(Q0) = 0. Thus if all gB are identically zero, then g is in the ideal generated by (m1 + 1) ×
(m1 + 1) minors of P , and hence g ∈ b.

Suppose, then, that for some B the polynomial gB is not identically zero. Let D ∈
M(m2,m1,C) be chosen so that h(P ) = gB(P ∗ D) is a non-zero polynomial. Such a D must
exist since m1 � m2. (For instance, D may be taken so that its first m1 rows form an identity and
the remaining rows are zero.) Then h(P ) = g(P ∗DB), where DB is a complex m2 ×m2 matrix
that is generally not invertible.

Nonetheless, the irreducibility of W implies that h(P ) ∈ W . This is simply because W is
closed in a

(m)
2 , and so must contain the closure of the orbit of g under GL(m2,C), and this

closure contains g(P ∗ DB).
Now since g(P ) ∈ W , h(P ) = gB(P ∗ D) ∈ W , and gB ∈ a1, the irreducibility of W implies

g(P ) is in the span of polynomials of the form f (P ∗ A) where f ∈ a1 and A ∈ M(m2,m1,C).
Thus in this case as well, g ∈ b. �
Proof of Theorem 11. Let a = a(κ; l1, . . . , ln), and let b be the ideal generated by F(κ; l1,
. . . , ln), the set defined in Theorem 10. Note that b is equivalently described as generated by

Fedge ∪ ˜̃F , where ˜̃F denotes the set of all polynomials of the form f (P̃ ) where f ∈ F and P̃ is
obtained from a tensor P of indeterminates by the action of numerical matrices Zk ∈ M(lk, κ,C)

in each index k.
That a ⊇ b was shown in the proof of Theorem 10. To establish a ⊆ b. We proceed by induc-

tion on the number of indices k such that lk > κ , the base case of zero being trivial.
If at least one such lk > κ exists, we may assume ln > κ . Then let V1 = CV(κ; l1, . . . , ln−1, κ)

and V2 = CV(κ; l1, l2, . . . , ln). We view points on V1 and V2 as l1 · · · ln−1 × κ and l1 · · · ln−1 × ln
matrices, respectively, by flattening on the edge of the star tree leading to the nth leaf. Using
Lemma 8 we see that V1 ∗M(κ,κ,C) = V1 and, since ln > κ , that V2 = V1 ∗ M(κ, ln). Therefore
we may apply Lemma 12, and obtain that a is generated by the (κ + 1) × (κ + 1) minors of
the flattening of P on the edge to the nth leaf, together with all polynomials f (P ∗ A) where
f ∈ a(κ; l1, . . . , ln−1, κ) and A ∈ M(ln, κ,C). We thus need only show such f (P ∗ A) are in b.

Now by induction, a(κ; l1, . . . , ln−1, κ) is generated by (κ + 1) × (κ + 1) minors of edge
flattenings of an l1 × · · · × ln−1 × κ tensor Q of indeterminates, together with polynomials of
the form h(Q̃), where h ∈ a(κ;κ, . . . , κ) and Q̃ is a κ × · · · × κ tensor obtained from Q by
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letting elements of M(li, κ,C) (respectively M(κ,κ,C)) act on Q in the ith index for each i �= n

(respectively i = n). We may thus assume f itself has one of these forms.
In the first case, where f ∈ a(κ; l1, . . . , ln−1, κ) is a minor of an edge flattening for the model,

we see f vanishes on all tensors Q that have rank at most κ when flattened on a certain edge
e not leading to the nth leaf. But if P is an l1 × · · · × ln tensor with rank(Flate(P )) � κ , then
rank(Flate(P ∗ A)) � κ as well, for all A ∈ M(ln, κ,C). Thus f (P ∗ A) vanishes on all tensors
such that rank(Flate(P )) � κ , and so f (P ∗ A) is in the ideal generated by (κ + 1) × (κ + 1)

minors from edge flattenings of P .
In the second case, where f = h(Q̃), we find f (P ∗ A) = h(P̃ ) where P̃ is obtained from P

by letting elements of M(li, κ,C) act on P in the ith index for each i, and h vanishes on
V (κ;κ, . . . , κ).

Thus in either case f (P ∗ A) ∈ b. �
Remark 13. It is natural to ask whether a smaller set of polynomials than the set described
above—namely, those constructed by evaluation of polynomials in F on all κ ×· · ·×κ subarrays
of an l1 × · · · × ln array of indeterminates—is sufficient to define the variety V (κ; l1, . . . , ln).
Indeed, Lemma 15 below shows it does in the special case κ = 2, assuming elements of F have
a special form.

However, in general this subset does not even define the variety set-theoretically. To see this,
consider the 3 × 3 × 4 tensor

P = e1 ⊗ e1 ⊗ f1 + e2 ⊗ e2 ⊗ f2 + e3 ⊗ e3 ⊗ f3 + e1 ⊗ e2 ⊗ f4,

where the ei are the standard basis vectors for C3 and the fi the standard basis vectors for C4.
That all 3 × 3 × 3 subarrays of P are in V (3;3,3,3) is clear from the form of P . One can
verify that P /∈ V (3;3,3,4) by checking the non-vanishing at P of some of the polynomials
constructed in Theorem 11.

As a corollary to Theorem 11, we prove several cases of Conjecture 21 in [10] on the ideals
a(2; l1, . . . , ln). We note the n = 3 case was first proved in [15] by invoking sophisticated meth-
ods of Weyman [21].

Corollary 14. For n � 5, the ideal a(2; l1, . . . , ln) associated to the hidden naive Bayes model
with a 2-state hidden variable and n observed variables with l1, . . . , ln states, is generated by the
3×3 minors of all 2-dimensional flattenings associated to bipartitions of the observed variables.

Proof. Since there are no polynomials vanishing on V (2;2,2,2) = P7, by Theorem 11 the set
of polynomials vanishing on V (2; l1, l2, l3) is generated by edge invariants.

By calculations of [10], the statement holds for the two cases V (2;2,2,2,2) and V (2;2,2,

2,2,2). The corollary then follows from Lemma 15 below. �
Lemma 15. Suppose, for the n-leaf star tree, that the ideal a(2;2, . . . ,2) is generated by the
3 × 3 minors of all 2-dimensional flattenings of 2 × · · · × 2 tensors according to bipartitions of
the observed variables. Then a(2; l1, . . . , ln) is generated by the 3×3 minors of all 2-dimensional
flattenings of l1 × · · · × ln tensors according to bipartitions of the observed variables.

Proof. By Theorem 11, a(2; l1, . . . , ln) is generated by all 3 × 3 minors of edge flattenings of
an l1 × · · · × ln tensor of indeterminates P , together with all 3 × 3 minors of all 2-dimensional
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flattenings of all P̃ , where P̃ denotes a 2 × · · · × 2 tensor obtained from P by an action in each
index i by matrices Ai ∈ M(li,2,C). One readily sees such flattenings of P̃ can be expressed
as F̃ = B1 ∗ F ∗ B2, where F is the corresponding flattening of P and the Bj are matrices
depending on the Ai . But then the 3 × 3 minors of such a flattening of P̃ will be zero provided F

has rank � 2. Thus these polynomials are in the ideal b generated by 3 × 3 minors of flattenings
of P . Therefore a(2; l1, . . . , ln) ⊆ b.

That a(2; l1, . . . , ln) ⊇ b is clear. �
A proof of the full Conjecture 21 of [10] will therefore follow from the following special

cases:

Conjecture 16. (See Garcia, Stillman, Sturmfels [10].) The ideal a(2;2,2, . . . ,2), that is, the
ideal associated to the hidden naive Bayes model with a 2-state hidden variable and n 2-state
observed variables, is generated by the 3×3 minors of all 2-dimensional flattenings arising from
bipartitions of the observed variables.

7. Set-theoretic description of the phylogenetic variety: Arbitrary κ

For the remainder of this paper, we return to the consideration of models on phylogenetic
trees. We first establish a set-theoretic result that provides some evidence for Conjecture 5, for
arbitrary κ .

Theorem 17. For an n-taxon tree T , let F(T ) be the union of all sets of polynomials
F(κ; l1, l2, . . . , ln), defined as in Theorem 10, associated to flattenings at nodes of T . Then the
zero set of F(T ) is the phylogenetic variety V (T ).

More informally, in conjunction with Theorem 10 this means that from polynomials whose
zero set is V (κ;κ, . . . , κ) one can explicitly construct polynomials whose zero set is V (T ) for
any n-taxon tree T .

In particular, knowledge of set-theoretic defining polynomials for V (T3) is sufficient to give
set-theoretic defining polynomials for V (T ) for any binary tree T . Thus while one might naively
view the case of V (T3) as the simplest, in fact it is the only remaining barrier to the determination
of polynomials defining the binary n-taxon variety, for any n. In the cases κ = 2,3 where such
defining polynomials are known, we thus obtain the following.

Corollary 18. For κ = 2 or 3, and any binary tree T , explicit polynomials set-theoretically
defining V (T ) can be given.

Note that for κ = 2 a stronger result is provided by Theorem 4, to be proved in Section 8.
For the remainder of this section let VFlat(T ) denote the zero set of F(T ). Our proof of

Theorem 17 will follow several lemmas. The first is an analog for VFlat(T ) of Lemma 7.

Lemma 19. Let T ′ and T ′′ be n-taxon and m-taxon trees, with T = T ′ ∗ T ′′. If Q ∈ CVFlat(T
′)

and R ∈ CVFlat(T
′′), then Q ∗ R ∈ CVFlat(T ).

Proof. Consider any internal node v of T , which we may assume arises from an internal node
of T ′. We assume v is trivalent; straight-forward modifications to our argument give the general
case.
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Flattening Q at v, the resulting tensor lies on CV(κ;κn1 , κn2 , κn3), with n3 = n − n1 − n2,
where we assume taxon an of T ′ (where taxon b1 of T ′′ is to be joined) is included in the last
index of the flattening. Then the flattening of Q ∗ R at v is obtained from the flattening of Q at
v by an action in the third index by a matrix R′ whose entries are determined by those of R. By
Lemma 8 the flattening of Q ∗ R at v lies in CV(κ;κn1 , κn2 , κn3+m−2).

Thus Q ∗ R ∈ CVFlat(T ). �
We also need a converse to this lemma.

Lemma 20. Let T ′ and T ′′ be n-taxon and m-taxon trees, with T = T ′ ∗ T ′′. Then if P ∈
CVFlat(T ), there exist Q ∈ CVFlat(T

′) and R ∈ CVFlat(T
′′) with P = Q ∗ R.

Proof. Let e be the edge of T formed by conjoining edges of T ′ and T ′′. Since any P ∈
CVFlat(T ) satisfies the edge invariants for e, we may flatten it on e to obtain a κn−1 × κm−1

matrix of rank l � κ , and write

P = Q ∗ R,

where Q and R are n- and m-dimensional tensors, respectively, with all indices running
through [κ]. We may further assume the non-zero Qk = Q(·, . . . , ·, k) are linearly independent,
as are the non-zero Rk = R(k, ·, . . . , ·), and that Qk , Rk are non-zero only for k = 1, . . . , l � κ .

We next show Q ∈ CVFlat(T
′). First observe that since the non-zero Rk are independent, if

we write them as row vectors, there is a κm−1 × κ matrix A so that RkA = ek for all k � l. Now
supposing the taxa of T ′ and T ′′ are a1, . . . , an and b1, . . . , bm, respectively, flatten P according
to the partition {{a1}, . . . , {an−1}, {b2, . . . , bm}} to an n-dimensional κ ×· · ·×κ ×κm−1 tensor F .
Letting R′ denote the κ × κm−1 flattened form of R with rows Rk , we have F = Q ∗ R′. Thus
F ∗ A = Q ∗ R′ ∗ A = Q. (Note that A does not act in a single index of P here, but does act in
a single index of the flattening F .) It is now straightforward to see that any flattening of Q at an
internal vertex of T ′ is obtained from a flattening of P at a vertex of T , followed by an action in
one of the resulting indices of a matrix determined by A. Thus by the definition of F(T ), Q will
satisfy all polynomials in F(T ′).

Similarly, R ∈ CVFlat(T
′′). �

Proof of Theorem 17. We already know that VFlat(T ) ⊇ V (T ).
The proof that VFlat(T ) = V (T ) proceeds by induction on the number n of taxa. The cases of

n = 2,3 hold by the definition of F(T ).
For simplicity, we first consider a binary tree T = Tn, with n � 4 taxa. Picking a cherry of T ,

let Tn−1 and T3 be such that T = Tn−1 ∗ T3. Suppose P ∈ CVFlat(T ). By Lemma 20, we have
P = Q ∗ R, for Q ∈ CVFlat(Tn−1) and R ∈ CVFlat(T3). This, in combination with Lemma 19,
means the map

μ : CVFlat(Tn−1) × CVFlat(T3) → CVFlat(Tn)

defined by (Q,R) 	→ Q ∗ R is surjective.
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Denote the parameterizations of the cones over the phylogenetic varieties for Tk by
ψk :Uk → CLk . With the map α :Un−1 × U3 → Un defined by α(un−1, u3) = un−1 ∗ u3, the
diagram

Un−1 × U3
ψn−1×ψ3

α

CVFlat(Tn−1) × CVFlat(T3)

μ

Un

ψn
CVFlat(T )

commutes, by Lemma 6.
Now α and μ are surjective, and by the inductive hypothesis the image of ψn−1 ×ψ3 is dense

in CVFlat(Tn−1)×CVFlat(T3), so the image of ψn is dense in CVFlat(T ). Thus VFlat(T ) = V (T ).
If T is not binary, the above argument may be modified by replacing the decomposition T =

Tn−1 ∗ T3 by T = Tn−k+1 ∗ Tk+1 where Tk+1 is a star tree with k + 1 leaves and Tn−k+1 has
n − k + 1 leaves, if necessary. �

Theorem 17 and the preceding lemmas yield the following strengthening of Lemma 7.

Corollary 21. If T = T ′ ∗ T ′′, then CV(T ) = CV(T ′) ∗ CV(T ′′).

8. The phylogenetic ideal: Binary T and κ = 2

We now prove Theorem 4, and thus assume T is a binary tree and κ = 2.
Our arguments will use in several ways the fact (see Section 6) that for κ = 2 the variety

V (T3) fills its ambient space: V (T3) = P7. Note, however, that for κ > 2, V (T3) � Pκ3−1, and so
the approach here cannot be successfully modified in a simple way.

The first use of this special fact is to note that for our chosen κ , V (2;2,2,2) = V (T3) = P7

means the set F defining V (T3) is {0}. Thus the set F(Tn) of the set-theoretic result Theorem 17
is the set of edge invariants. While our goal is to show F(Tn) generates the full ideal vanishing
on V (Tn), we will not, in fact, appeal to Theorem 17 to do so.

The second use of V (T3) = P7 is more subtle. Recall that regardless of κ , there are actions
of GL(κ,C) on V (Tn) in each index. However, in the case κ = 2, the special nature of V (T3)

gives us actions of GL(4,C) on V (Tn) via the cherries of Tn. This is really the key point in our
argument, as it underlies the application of Lemma 12. Nonetheless, this action is in some respect
an ‘unnatural’ consequence of κ = 2. The following lemma provides a more careful statement of
the special structure we use.

Lemma 22. Let Tn denote a binary n-taxon tree, labeled so that taxa an−1 and an form a cherry.
Write Tn = Tn−1 ∗ T3, where an−1, an are taxa on T3. Let e denote the edge of Tn formed from
conjoining edge ẽ of Tn−1 and the appropriate edge of T3. View points in CV(Tn) and CV(Tn−1)

as 2n−2 × 4 and 2n−2 × 2 matrices by flattening them on the edges e and ẽ, respectively. Then

CV(Tn) = CV(Tn−1) ∗ M(2,4,C)

and

CV(Tn−1) = CV(Tn−1) ∗ M(2,2,C).
Please cite this article in press as: E.S. Allman, J.A. Rhodes, Phylogenetic ideals and varieties for the general Markov
model, Adv. in Appl. Math. (2007), doi:10.1016/j.aam.2006.10.002



ARTICLE IN PRESS YAAMA:1155
JID:YAAMA AID:1155 /FLA [m1+; v 1.69; Prn:5/02/2007; 14:58] P.21 (1-22)

E.S. Allman, J.A. Rhodes / Advances in Applied Mathematics ••• (••••) •••–••• 21
Proof. The first claim is simply Lemma 7 applied to Tn−1 and T3, combined with the observation
that CV(T3) = C8 flattens to give M(2,4,C). (Note that by Corollary 21, we could also remove
the closure symbol here.)

For the second claim, apply the same argument to Tn−1 and T2, observing that CV(T2) =
M(2,2,C). �
Proof of Theorem 4. We proceed by induction on the number n of taxa for Tn, with the cases
of n = 2,3 known.

Let a = aT denote the ideal vanishing on CV(T ), and b the ideal generated by Fedge(T ). That
a ⊇ b has been discussed already; we must show the opposite inclusion.

With Tn = T , choose a cherry so that Tn = Tn−1 ∗ T3, with notation as in Lemma 22. By
that lemma, we may apply Lemma 12 with V1 = CV(Tn−1) and V2 = CV(Tn). We thus find a

is generated by the 3 × 3 minors of the edge flattening Flate(P ) on the conjoined edge e of an
n-dimensional tensor of indeterminates P , together with all polynomials of the form g(P ) =
f (Flate(P ) ∗ B) where f (Q) vanishes on CV(Tn−1), Q is an (n − 1)-dimensional tensor of
indeterminates, and B ∈ M(4,2,C).

Now, by induction, the ideal of such f is generated by 3 × 3 minors of Flate′(Q) as e′ ranges
through edges of Tn−1. Consider one such minor, say f0, obtained from the flattening on an edge
e0 of Tn−1. We may assume e0 �= ẽ, since otherwise there are no 3 × 3 minors. It will be enough
to show f0(Flate(P ) ∗ B) ∈ b.

We claim that f0(Flate(P ) ∗ B) vanishes on all P that have rank at most 2 when flattened on
the edge e0 in Tn. For such a P , since Flate0(P ) is 2m ×2n−m, there is an expression P = P1 ∗P2,
where P1 is an (m + 1)-dimensional 2 × · · · × 2 tensor, and P2 an (n − m + 1)-dimensional
2 × · · ·× 2 tensor. Then writing P and P2 as 2 × · · ·× 2 × 4 tensors by flattening to combine the
taxa an−1, an, we have P ∗ B = P1 ∗ (P2 ∗ B). This shows P ∗ B also has rank at most 2 when
flattened on e0, and so f0 vanishes on it, as claimed.

But since f0(Flate(P ) ∗ B) vanishes on all P of rank at most 2 when flattened on e0, it is
contained in the ideal generated by 3 × 3 minors of flattenings on e0. Thus it is in b. �
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