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a b s t r a c t

Species trees represent the historical divergences of populations or species, while gene trees trace the
ancestry of individual gene copies sampled within those populations. In cases involving rapid speciation,
gene treeswith topologies that differ from that of the species tree canbemost probable under the standard
multispecies coalescentmodel,making species tree inferencemore difficult. Such anomalous gene trees are
not well understood except for some small cases. In this work, we establish one constraint that applies to
trees of any size: gene trees with ‘‘caterpillar’’ topologies cannot be anomalous. The proof of this involves
a new combinatorial object, called a population history, which keeps track of the number of coalescent
events in each ancestral population.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

An important distinction is made in phylogenetics between
species trees and gene trees. Species trees describe the ancestral
relationships between populations of individuals (each carrying
many genes) that have undergone divergences at various times in
the past. A gene tree tracks the ancestral relationships for a sin-
gle gene sampled from individuals within extant species popu-
lations. In a species tree, the ancestral populations associated to
edges have finite durations (see Fig. 1). As a result, going back-
wards in time, several gene lineages from sampled individualsmay
remain distinct within a common ancestral population – a phe-
nomenon called incomplete lineage sorting (Maddison, 1997) – and
then merge with other lineages to form a gene tree that is topo-
logically dissimilar to the species tree. An understanding of this
phenomenon, which leads us to expect some, and possibly many,
gene trees to differ from the species tree, is essential to statisti-
cal approaches to inference of species trees from genomic data
sets.

The multispecies coalescent model gives a stochastic descrip-
tion of gene tree formation within a species tree. Kingman’s
coalescent model (Kingman, 1982; Hudson, 1983; Tajima, 1983;
Wakeley, 2008) is adopted for eachpopulation (edge) of the species
tree, so that the waiting time until coalescence between any pair
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of gene lineages within a population, going backwards in time, is
exponentially distributed withmean 1. At each node of the species
tree, gene lineages reaching it from its descendent edges ‘enter’
the population above starting a new coalescent process. Combin-
ing calculations of probabilities for thewithin-populationKingman
coalescent process with combinatorial features of the species tree,
it is possible to calculate the probability of the formation of any
topological gene tree (Degnan and Salter, 2005). A rooted species
tree, with branch lengths, relating n taxa thus determines a prob-
ability mass function on the set of all (2n − 3)!! rooted topological
gene trees defined on the same species.

Under this model, the most likely gene tree topology does
not necessarily match that of the species tree. For example, the
species tree (((a, b), c), d), with choices of appropriate branch
lengths, can result in any of the symmetric gene tree topologies,
((a, b), (c, d)), ((a, c), (b, d)), or ((a, d), (b, c)), being more prob-
able than the gene tree (((a, b), c), d). The term anomalous gene
tree (AGT) is used to describe gene trees that are more probable
than the gene tree with the same topology as the species tree. Al-
though for four taxa, AGTs only arise for an asymmetric species
tree, for any species tree topology with five or more taxa there are
branch lengths (durations of internal populations) that lead to at
least one AGT (Degnan and Rosenberg, 2006).

Although this result describes the shapes of species trees that
can have AGTs, less is known about gene tree shapes that can be
AGTs. For four taxa (Degnan and Rosenberg, 2006), explicit compu-
tation of gene tree probabilities under the coalescent showed that
only symmetric gene trees can be AGTs. For five taxa (Rosenberg
and Tao, 2008), a computation showed that if the species tree is
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Fig. 1. A species tree with the matching gene tree (A, B, C) under three different coalescent histories (out of 13 possible), and a nonmatching caterpillar gene tree (D).
Speciation events occur when populations (shaded polygons) split into two new populations going forward in time (downward). The population ancestral to the root of
the species tree (lightest shading) is assumed to extend infinitely into the past; all other populations have finite durations. The nodes of the trees are labeled in a postorder
traversal using large, boxed numbers for the species tree, and unboxed numbers for the coalescent events. The vectors h, y give coalescent histories and population histories,
respectively, as explained in Section 2, using node labels as vector indices.
completely unbalanced, e.g., ((((a, b), c), d), e), then any gene tree
with a different unlabeled topology can be an AGT. However, for
five-taxon species trees of any topology, a completely unbalanced
gene tree is never an AGT. Furthermore, any noncaterpillar gene
tree can be an AGT for some species tree. For example, if the species
tree is a caterpillar, then any noncaterpillar gene tree ismore prob-
able than the matching gene tree if all species tree branch lengths
are sufficiently short (Degnan and Rosenberg, 2006).

We refer to completely unbalanced trees, such as ((((a, b), c),
d), e) and its analogs with more taxa, as rooted caterpillars, usually
omitting the word ‘‘rooted’’ as this paper only concerns rooted
trees. We generalize the above observations by showing that
for species trees of any size, there are no AGTs with caterpillar
topologies. This also implies the statement chosen as the title
of this paper, using the terminology introduced in Degnan and
Rosenberg (2006) which we restate in the next section.

While our results are theoretical, they have potential to con-
tribute to the practice of species tree inference. For instance, when
different genes yield different inferred phylogenetic trees, or dif-
ferent methods yield conflicting estimated species trees, evolu-
tionary biologists sometimes wonder if their inferred tree is an
AGT rather than the desired species tree (e.g. Castillo-Ramírez and
González, 2008; Zhaxybayeva et al., 2009). A recent paper uses a
heuristic test based on taking subsets of four-taxa to conclude that
there is evidence of the anomaly zone in a skink phylogeny (Linkem
et al., 2014). One implication for our results is that if a phylogenetic
method returns a caterpillar tree (as often happens in with smaller
numbers of species), the empirical phylogeneticist can be sure that
an AGT was not inferred.
2. Notation and definitions

Let X denote a finite set, whose elements we refer to as taxa. By
a tree on X we will mean a topological tree with leaves bijectively
labeled by X .

Definition 1. A species tree σ = (ψ,λ) on X is a rooted, binary tree
ψ on X together with a vector λ = (λ1, . . . , λn−2) of internal edge
lengths (weights), where n = |X |, {e1, . . . , en−2} are the internal
edges of ψ , and λi > 0 is the length of ei for i = 1, . . . , n − 2.

Nodes of the species tree represent speciation events, and
edges represent populations extending over time. Edge lengths are
given in coalescent units which (for constant population size) are
the ratio of elapsed time to population size. It is convenient for
the coalescent model to view ψ as augmented by an additional
directed edge leading to its root, in order to refer to a population
ancestral to the root. We treat this edge as having infinite length,
and consider it to be an internal edge of the species tree.

The coalescent on a species tree σ models the formation of gene
trees by the merging of ancestral lineages (going backwards in
time) within the populations represented by the tree’s edges. We
focus on the situation where one lineage is sampled per taxon, so
pendant edge lengths for the species treewould be irrelevant.With
this sampling scheme, a gene tree can also be leaf-labeled by X .

Since under the standard coalescent only binary gene trees
have positive probability of being realized, and we are interested
solely in the topological form of these trees, wemake the following
definition.
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Fig. 2. A wicked forest with three balanced 8-taxon species trees. Branch lengths are drawn to scale with the total depth of the tree equal to 0.11 coalescent units. For each
species tree i ∈ {I, II, III}, the two gene trees with the matching topology for species tree j ∈ {I, II, III} r {i} are AGTs for species tree i. Species tree I in Newick format is
(((A : 0.108, B : 0.108) : 0.001, (C : 0.009,H : 0.009) : 0.1) : 0.0010, ((D : 0.0797,G : 0.0797) : 0.03, (E : 0.0097, F : 0.0097) : 0.100) : 0.0003).
Definition 2. A gene tree, T , on taxa X is a rooted binary tree on X .

Definition 3. Given a species tree σ = (ψ,λ), the matching gene
tree is the gene tree TM isomorphic to ψ as a leaf-labeled tree.

Though it is in some sense artificial to distinguish between
ψ and TM , we do so in order to keep clear the difference in
viewpoint between the fixed topological species tree ψ and one
of the possible states, TM , of the gene tree random variable under
the coalescent model.

Probabilities of an event E under the 1-sample per taxon
coalescent model on a species tree σ are denoted Pσ (E). In
particular, the probability of a gene tree T is Pσ (T ). (See Degnan
and Salter, 2005, for details on computations of such probabilities.)

Definition 4 (Degnan and Rosenberg, 2006). A gene tree T is said to
be an anomalous gene tree (AGT) for a species tree σ = (ψ,λ) if
Pσ (T ) > Pσ (TM).

AGTs are significant, since their existence thwarts picking
the most frequently occurring gene tree in a sample as the
estimate of the species tree (Degnan and Rosenberg, 2006).
Though intuitively appealing, this democratic vote method is not
statistically consistent. The following pathological situation is one
where such voting is particularly misleading, in that voting based
on gene trees arising from several species trees always ranks the
true tree last.

Definition 5 (Degnan and Rosenberg, 2006). A wicked forest W is a
set of at least two species trees,with distinct topologies but defined
on the same set of taxa X , such that for all σi, σj ∈ W with i ≠ j,
the gene tree T j

M matching σj is an AGT for σi.

The first set of trees noticed to form awicked forest had six taxa
and was given by Degnan and Rosenberg (2006). Their discovery
was motivated by trying to find examples of trees that were AGTs
yet were less balanced than the matching tree. Rosenberg and
Tao (2008) fully characterized wicked forests for five-taxon trees,
the smallest number of taxa for which wicked forests exist. The
maximum number of trees that can form a wicked forest for n > 5
taxa is not known. An example of a wicked forest with three trees
is shown in Fig. 2 and is based on swapping two-taxon clades in the
trees.

To compute and compare the probabilities of various gene trees
under the coalescent model, we need further technical notions.

We treat all trees as directed graphs, with all edges directed
away from the root (except, in species trees, for the ‘‘edge’’
ancestral to the root). Since we depict trees with the root placed
above the leaves, we use terminology such as ‘ancestral’ and
‘above,’ or ‘descendent’ and ‘below’ interchangeably to describe
directed relationships of nodes and edges.

Under the coalescent model on a species tree σ = (ψ,λ)
on X , all gene trees T on X are realizable. That is, Pσ (T ) > 0
for all T . To compute Pσ (T ) one considers the various ways in
which T is realizable. This may be done at several levels of detail.
Themost detailed non-metric characterizationwould be to specify
coalescent histories with in-population rankings, in which for each
node of T one indicates an edge of ψ on which the coalescent
event that node described occurred, as well as an ordering to the
coalescent events within each species tree edge. (These are called
instantiations of coalescent histories by Degnan and Salter, 2005.)

A less detailed level is to specify coalescent histories, where the
ranking of coalescent events on edges is not recorded. This is the
key notion used by Degnan and Salter (2005) for the computation
of gene tree probabilities (with adjustments for the count of
possible in-population rankings).

Finally, a population history is an even cruder summary. It
records only the number of coalescent events on the edge, but does
not record which lineages coalesced. To the best of our knowledge,
this concept has not been used in previous works studying species
trees and gene trees, though it plays an essential role in our
arguments.

To formalize these notions, it is useful to encode the topology of
a tree through the ancestral relationships of its nodes. LetVT denote
the set of nodes of a rooted tree T (either a gene or species tree),
and IT ⊂ VT the subset of internal nodes. Let

αij =


1 if node i is ancestral or equal to node j,
0 otherwise.

This indicator function α on VT × VT fully encodes the topology of
T . Labeling the edges of T by the label of their end nodes, α also
gives indicators of ancestral relationships between edges.

Definition 6 (Degnan and Salter, 2005). Letσ = (ψ,λ) be a species
tree and T a gene tree on X , with |X | = n. A coalescent history for T
is an (n − 1)-tuple h = hT = (hi)i∈IT with each hi ∈ Iψ satisfying

(1) for all i ∈ IT , the set of leaves descended from node i of T is a
subset of the set of leaves descended from node hi ofψ; i.e., for
all leaf labels k, αik = 1 implies αhik = 1, and

(2) if node i is ancestral to node j on T , then node hi is ancestral or
equal to node hj on σ ; i.e., αij = 1 implies αhihj = 1.

The set of coalescent histories for a species tree with topology ψ
and a gene tree T is denoted Hψ,T .

Conceptually, such a history records that the coalescent event
forming node i of the gene tree occurs in the population
immediately above node hi of the species tree. Condition (1)
thus encodes the idea that coalescences must predate the most
recent common ancestor of the populations fromwhich they were
sampled. Condition (2) ensures that the sequence of coalescences
is consistent with the topology of the gene tree; e.g., if a gene tree
displays subtree ((a, b), c), then c cannot coalesce with (a, b) in
population i unless a and b have coalesced either in population i or
one of its descendant populations in the species tree.

A coalescent history can be viewed as an event under the
coalescentmodel.Moreover,Hψ,T gives a partition of the event that
the gene tree is T into disjoint subevents h. Although by definition
P(T ,h) = P(h), for clarity we prefer to include the redundant
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reference to T in this notation. Note that Pσ (T ,h) > 0 for every
h ∈ Hψ,T (Degnan and Salter, 2005).

Definition 7. Let σ = (ψ,λ) be a species tree on X , with |X | = n.
A population history for ψ is an (n − 1)-tuple y = (yi)i∈Iψ with
yi ∈ {0, 1, . . . , n − 1} satisfying

(1)


i∈Iψ
yi = n − 1, and

(2)


j∈Iψ
(1 − yj)αij ≥ 0 for all i ∈ Iψ .

The set of all (n − 1)-tuples satisfying conditions (1) and (2) is
denoted Yψ .

One should interpret a population history as indicating the
number of coalescent events on each edge of a species tree
that leads to a realization of some (unspecified) gene tree. Then
condition (1) of the definition is interpreted as stating that over the
full species tree all lineages ultimately coalesce into one—i.e., there
are a total of n − 1 coalescences.

Condition (2) requires more elucidation: First note that for i ∈

Iψ ,
j∈Iψ

αij = ℓi − 1

where ℓi is the number of leaf descendants of node i on ψ . This
equivalence is due to the number of leaf descendants of a node of
a binary tree being the number of internal descendants plus 1. As
an example, for the species tree in Fig. 1(A), we have

α11 = α22 = α31 = α32 = α33 = α41 = α42 = α43 = α44 = 1

and αij = 0 for all other choices of i and j. To further illustrate the
example,

ℓ3 = α31 + α32 + α33 = 3 = 4 − 1.

Thus condition (2) is equivalent to

ℓi >

j∈Iψ

yjαij,

for each i ∈ Iψ . This expresses that the number of coalescent events
occurring on edges i and below in the species tree cannot exceed
the maximum possible for the lineages present in that part of the
tree.

For any fixed species tree ψ and gene tree T there is a natural
map Φψ,T from the set of coalescent histories to the set of pop-
ulation histories, defined by ‘forgetting’ which lineages coalesce:
More formally

Φψ,T : Hψ,T → Yψ
h = (hj)j∈IT → y = (yi)i∈Iψ ,

where

yi =


j∈IT

δ(hj = i)

is the sum of indicators.
Population histories can also be viewed as events under the

coalescent model.

Definition 8. Given a species tree σ , we say that a population
history y ∈ Yψ is compatible with a gene tree T if they can be
simultaneously realized, i.e., if Pσ (T , y) > 0.We use Yψ,T to denote
the set of population histories compatible with a gene tree T .
Note that Yψ,T = Φψ,T (Hψ,T ), and Pσ (T , y) =


h∈Φ
−1
ψ,T (y)

Pσ
(T ,h).

The loss of information in passing from coalescent histories
to population histories is illustrated in Fig. 1. In (A) and (B), two
different coalescent histories for the matching gene tree yield the
same population history. For (A), the coalescent history is h =

(4, 3, 4, 4) because node 2 of the gene tree coalesces in population
3 of the species tree (hence h2 = 3), while all other nodes coalesce
in population 4 (hi = 4 for i ≠ 2). In (B), the coalescent history is
h = (3, 4, 4, 4) since node 1 of gene tree coalesces in population
3 of the species tree (h1 = 3). Both coalescent histories have one
coalescence in population 3 and three coalescences in population
4, making their population histories both (0, 0, 1, 3).

Fig. 1(C) and (D) illustrate another aspect of coalescent
histories and population histories: that the probability of the
same numbers of events in each species tree population can
have a higher probability for a non-matching tree. In (C), there
are two coalescent events in population 3. For this gene tree,
either the (a, b) coalescence or the (c, d) coalescence can occur
more recently within population 3 and result in the same gene
tree topology, coalescent history, and population history, but
different in-population rankings. For the same population history
with a caterpillar gene tree (D), however, the gene tree topology
constrains the coalescence of lineage c to be more ancient than
the coalescence of a with b. This results in a lower probability for
the same population history when the gene tree is a caterpillar
compared to the matching gene tree.

3. Results

Our main result is the following:

Theorem 9. For a species tree σ = (ψ, λ), let T be any caterpillar
gene tree, with T ≠ TM . Then Pσ (T ) < Pσ (TM). In particular, a
caterpillar is never an AGT.

As a consequence, we also obtain:

Corollary 10. There are no caterpillars in a wicked forest.

Proof. Any species tree in a wicked forest must have a topology
which can be an AGT for some other species tree defined on the
same taxa. Since caterpillars cannot be AGTs by Theorem 9, no
species tree in a wicked forest can have a caterpillar topology. �

Our proof of the theorem is built on a succession of lemmas. To
simplify statements, we assume throughout that the species tree
σ = (ψ, λ) has been fixed.

The first lemma is immediately clear.

Lemma 11. The probability of a gene tree T can be written as

Pσ (T ) =


y∈Yψ,T

Pσ (T , y).

Lemma 12. The matching gene tree TM is compatible with every
population history. That is, Yψ,TM = Yψ , so Yψ,T ⊆ Yψ,TM for every
gene tree T .

Though the proof of this is somewhat technical, the idea behind
it is simple: With a population history y fixed, we pick any cherry
on TM , and have the coalescent event forming that cherry occur
on the edge of ψ as close to the leaves as possible among those
allowed by y. We then show that deleting the cherry from TM and
ψ , and the coalescent event from y leads to trees and a population
history with one fewer taxa, so an inductive argument gives the
result.
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Proof of Lemma 12. Wemust show that if y ∈ Yψ , then Pσ (TM , y)
> 0. But

P(TM , y) =


h∈Φ

−1
ψ,TM

(y)

P(TM ,h),

so it suffices to show there is some h ∈ Hψ,TM withΦψ,TM (h) = y,
since for such an h, Pσ (TM ,h) > 0.

We prove this by induction on the number of taxa n. The base
case of n = 2 is clear, since there is only one gene tree T = TM , and
one coalescent history h, with Pσ (TM ,h) = 1.

Now assume the result is known for n−1 taxa. For n-taxon trees
on taxa X , identify the nodes of the matching gene tree TM with
those of the species tree ψ so that we may use the same notation
to refer to either. Pick an internal node v on ψ that is parental to
exactly two leaves, say a and b. On both ψ and TM , prune the edge
descending from the node v to leaf a, and then suppress that node,
to obtain matching (n − 1)-taxon trees ψ̃ and T̃M on taxa X r {a}.
We may thus view the node sets of the four trees as satisfying
Vψ̃ = VT̃M

⊂ Vψ = VTM .
We similarly relate a population history y onψ to a population

history ỹ on ψ̃ in the following way: Let w = w(y) be the most
recent vertex on ψ , ancestral or equal to population v, labeling a
population in which a coalescent event occurs. That is

w = min{i | αiv = 1, yi > 0},

where the minimum is taken with respect to the ancestral
relationship. Then let ỹ = (ỹi)i∈I

ψ̃
where ỹi = yi − δ(i = w).

(In essence, this simply removes one coalescent event from the
population above w, but in the case where w = v, so yv = 1,
this is done through dropping yv from ỹ.)

We next verify that ỹ is a population history for ψ̃ , by showing
it satisfies the appropriate constraints. Clearly it has non-negative
entries. That condition (1) of Definition 7 is satisfied for ỹ is also
clear, since we have reduced the sum of the entries in y by 1.

For the inequality constraints of condition (2), first suppose
w = v. Then for all j ∈ Iψ̃ we have ỹj = yj. Thus for i ∈ Iψ̃ ,
j∈I
ψ̃

(1 − ỹj)αij =


j∈I
ψ̃

(1 − yj)αij

= −(1 − yv)αiv +


j∈Iψ

(1 − yj)αij.

But the first term in this last expression is 0, since yv = 1, and the
second is non-negative because y is a population history vector for
ψ . Thus condition (2) is established in this case.

Now suppose w is ancestral to v. Then ỹi = yi for all i ≠ w,
while ỹw = yw − 1, so
j∈I
ψ̃

(1 − ỹj)αij = αiw +


j∈I
ψ̃

(1 − yj)αij

= αiw − (1 − yv)αiv +


j∈Iψ

(1 − yj)αij.

By the minimality of w, we know yv = 0. It will follow that the
above expression is non-negative in any case when αiw − αiv ≥ 0.
This is true if either i is ancestral or equal tow (and hence ancestral
to v), or i is not ancestral to v (and hence not ancestral tow).

The remaining subcase to consider is when i is ancestral to v
but not ancestral or equal to w, i.e., i lies between v and w. In this
situation αiw − αiv = −1, so we must show
j∈Iψ

(1 − yj)αij ≥ 1.
But if i has two internal nodes as children, say k and l, then
j∈Iψ

(1 − yj)αij = (1 − yi)+


j∈Iψ

(1 − yj)αkj +

j∈Iψ

(1 − yj)αlj.

The two sums on the right are non-negative, because y is a
population history vector for ψ . Since yi = 0 by the minimality
of w, we obtain the needed inequality. The case where i has only
one internal node as a child is similar.

This concludes the argument that ỹ is a valid population history
for ψ̃ .

Since ỹ is a population history for ψ̃ , by the induction hypothe-
ses there is a coalescent history h̃ ∈ Hψ̃,T̃M withΦψ̃,T̃M (h̃) = ỹ. De-
fine a coalescent history for TM on ψ by h = (hi)i∈Iψ with hi = h̃i

for i ∈ ψ̃ and hv = w.
To verify thath ∈ Hψ,TM , wemust check that it satisfies the con-

straints of Definition 6. For a matching tree, condition (1) is equiv-
alent to saying that hi must be ancestral or equal to i. For i ≠ v,
this follows immediately from the fact that h̃i is ancestral to i on
T̃M . Since hv = w, and w ancestral to v, the constraint is satisfied
in all cases.

For condition (2), we must check that if i is ancestral to j on TM ,
then hi is ancestral or equal to hj on ψ . For j ≠ v, this follows im-
mediately from the analogous property for h̃, but for j = v requires
more explanation.

Suppose i is ancestral to v on TM . Then i is ancestral to leaf b on
TM , hence i is ancestral to leaf b on T̃M , so h̃i must be ancestral to leaf
b on ψ̃ , so hi is ancestral to leaf b onψ , and hence ancestral or equal
to node v. Ifw = v so hv = v, we are done verifying the constraint.
If w is ancestral to v, then since Φψ,T̃M (h̃) = ỹ, the minimality of
w ensures no entries of h̃ are nodes between leaf b and nodew on
ψ̃ . Thus hi does not lie between leaf b and nodew onψ . Since hi is
ancestral to v, it must therefore be ancestral or equal tow = hv .

Finally, observingΦψ,TM (h) = y completes the proof. �

Lemma 13. If T is a caterpillar gene tree, then for any population
history y ∈ Yψ , Pσ (T , y) ≤ Pσ (TM , y).

Proof. From Lemma 12, if Pσ (T , y) > 0, then Pσ (TM , y) > 0 as
well, so TM can be realized with y.

Now each of these probabilities can be expressed as a product
of two terms: one which depends only on T and y, and one which
depends only on y and λ. More specifically,

Pσ (T , y) = RT ,yf (y,λ),

Pσ (TM , y) = RTM ,yf (y,λ), (1)

where RT ,y counts the number of coalescent histories with in-
population rankings consistent with the gene tree T and y, and

f (y,λ) =

n−1
i=1

1
djiki

gjiki(λi),

with ji = ℓi − (


j≠i yjαij) the number of lineages ‘entering’ pop-
ulation i from below and ki = ji − yi the number of lineages ‘leav-
ing’ population i above, djk the number of sequences of coalescent
events that may occur for j labeled entering lineages to coalesce to
k leaving lineages, and gjk(u) is the functionwhich gives the proba-
bilities that j lineages in a population coalesce to k lineages in u co-
alescent units (Degnan and Salter, 2005; Rosenberg, 2003; Tavaré,
1984; Wakeley, 2008).

Since T is a caterpillar, its realization requires a specific ranked
ordering to coalescent events, so RT ,y = 1. Since RTM ,y ≥ 1 the
lemma follows from Eqs. (1). �
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Lemma 14. The population history 1 = (yi)i∈Iψ with all yi = 1
is consistent with the matching gene tree TM , but no other. That is,
1 ∈ Yψ,T if and only if T = TM .

Proof. That 1 ∈ Yψ,TM is a consequence of Lemma 12.
Suppose 1 ∈ Yψ,T . To establish that T = TM it is enough to show

these gene trees must have the same clades (Semple and Steel,
2003). Since Pσ (T , 1) > 0, T is realizable with one coalescent
event on each internal edge of ψ . But for any i, there are ℓi taxa
descended fromnode i ofψ , and population history 1 implies ℓi−1
coalescent events occur on or below the edge above i. Thus for both
T and y = 1 to be simultaneously realized, the lineages of all taxa
descended from i on ψ must coalesce to form a clade on T . Thus
every clade of ψ is a clade on T , so T = TM . �

Proof of Theorem 9. From the lemmas,

Pσ (T ) =


y∈Yψ,T

Pσ (T , y) ≤


y∈Yψ,T

Pσ (TM , y)

<


y∈Yψ,TM

Pσ (TM , y) = Pσ (TM).

The first equality is from Lemma 11; the next inequality from
Lemma 13; the next from Lemmas 12 and 14; and the final equality
from Lemma 11 again. �

Remark 15. Let σ = (ψ, λ) be a species tree on taxa X , and let
T be any nonmatching caterpillar gene tree on X . Then the above
considerations show

|Hψ,T | = |Yψ,T | < |Yψ,TM | ≤ |Hψ,TM |, (2)

i.e., the number of consistent coalescent histories is larger for
matching trees than for any nonmatching caterpillar tree. It has
previously been shown for some species trees that the number of
coalescent histories can be larger for a nonmatching, noncaterpillar
tree than for a matching tree, although the smallest trees for
which this occurs have 7 taxa (Rosenberg and Degnan, 2010).
Eq. (2) shows that gene trees with more coalescent histories
than the matching tree are never caterpillars, which presents a
combinatorial analog to the result that caterpillar gene trees can
never be AGTs.

4. Anomalous ranked and unrooted gene trees

Recently, the concept of anomalous gene trees has also been
extended to ranked gene trees (Degnan et al., 2012a; Disanto and
Rosenberg, in press) and unrooted gene trees (Degnan, 2013).

A ranked gene tree topology encodes the relative timing of the
branches, so that, as an example, the ranked gene tree topologies in
Fig. 1(A) and (B) are distinct because the ordering of the (a, b) and
(c, d) coalescences are reversed, even though the unranked gene
tree topologies are the same. An anomalous ranked gene tree (ARGT)
is a ranked gene tree that is more probable than the ranked gene
tree that matches the ranked species tree (Degnan et al., 2012a).
The ranked gene tree in Fig. 1(A) matches the ranked species tree,
while the ranked gene tree in Fig. 1(B) does not. In spite of the
results of this paper, caterpillar gene trees can be ARGTs (Degnan
et al., 2012a), i.e., a caterpillar gene tree can bemore probable than
a matching ranked gene tree, even though it must be less probable
than the matching unranked gene tree.

On the other hand, neither caterpillar nor pseudo-caterpillar
species trees have ARGTs (Degnan et al., 2012a). (A pseudo-
caterpillar tree is one obtained from a caterpillar by attaching
two edges to each leaf in the caterpillar’s cherry. The species
trees in Fig. 1 are pseudo-caterpillars.) Therefore, extending the
concept of a wicked forest to ranked gene trees, there are no
Fig. 3. A ranked wicked forest. The two trees have the same unranked topology
but have different rankings since, for example, (d, e) has the most recent common
ancestor for the left tree, while (a, b) has the most recent common ancestor
in the right tree. Subtrees in rectangular shaded boxes have ARGTs, shown in
corresponding circular shaded regions in the facing tree. For the subtrees in
rectangular regions, there are relatively long branches separating the two- and
three-taxon clades. Subtrees that are not in boxes have low probability for any
particular sequence of coalescences because all branches are short. These subtrees
have short branches separating two- and three-taxon clades.

caterpillars or pseudocaterpillars in a wicked forest for ranked gene
trees (a nonempty setW of distinct species trees where the ranked
topology each member is an ARGT for all other members). An
example of a wicked forest for ranked gene trees using 10 taxa is
shown in Fig. 3. The smallest number of taxa needed for a wicked
ranked forest is unknown.

The gene tree probabilities for Fig. 3 are most easily approxi-
mated by assuming that the branches between the root and the
shaded regions are very long, so that coalescence of all available
lineages is virtually guaranteed on these branches. Then probabil-
ities for the left and right shaded subtrees can be obtained using
formulas from Degnan et al. (2012b). For the tree on the left in
Fig. 3, let the subtree in the rectangular box be σ 1

�, and the tree
in the circular shaded region be σ 1

◦
, so that the overall species tree

is σL = (σ 1
� : λ1, σ

1
◦

: λ2), where λ1 and λ2 are very large. Sim-
ilarly, the tree on the right of Fig. 3 is σR = (σ 2

� : λ3, σ
2
◦

: λ4).
Here σ 1

� and σ 2
◦
are species trees on X1 = {a, b, c, d, e} and σ 1

◦

and σ 2
� are species trees on X2 = {f , g, h, i, j}. We let T i

� and T i
◦
be

the matching ranked gene trees for σ i
� and σ i

◦
, respectively. Let TL

and TR denote thematching ranked gene trees for the left and right
trees, respectively.

From Degnan et al. (2012b), branch lengths can be chosen so
that if σL is the species tree, then with probability arbitrarily close
to 2/8, the ranked gene tree restricted to taxa X1 is T 1

�, and with
probability arbitrarily close to 3/8 is T 2

◦
. Branch lengths can also be

chosen so that for taxa X2, the ranked gene tree restricted to taxa
X2 has nearly equal probability of being either T 1

◦
or T 2

�. Therefore,
for some choices of branch lengths,

PσL(TR)
PσL(TL)

≈
3
2
.

Similar arguments show that TL can be approximately 1.5 times
as probable as TR when σR is the species tree. In this example, the
wicked forest contains two species trees with identical unranked
topologies but different ranked topologies. Examples of wicked
forests for ranked gene trees that contain trees with different
topologies can also be constructed. For example, one could swap
taxa b and c in σL but not σR and still obtain a wicked forest for
ranked gene trees.

Probabilities of unrooted gene trees can be obtained by
summing over the probabilities of all rooted gene trees with the
same unrooted topology. An unrooted caterpillar tree is a binary
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Fig. 4. (a) Two rooted caterpillar species trees constituting a wicked forest for
unrooted gene trees. For these species trees, the two shorter internal branches have
branch length 0.05 coalescent units while the longer one has length 0.5 coalescent
units. (b) The unrooted gene tree on the left is themost probable unrooted gene tree
given the species tree on the left in (a). The unrooted gene tree on the right in (b) is
the most probable unrooted gene tree given the species tree on the right in (a).

tree where every internal node is connected by an edge to a leaf
node. Unrooted caterpillar gene trees can be anomalous unrooted
gene trees (AUGTs), i.e., more probable than the unrooted gene
tree with the same unrooted topology as that of the species tree.
Fig. 4 shows a wicked forest for unrooted gene trees, which we
define as a nonempty set W of rooted species trees such that for
σi, σj ∈ W , Pσi(u(Tj)) > Pσi(u(Ti)) for i ≠ j, where u(Ti) is the
unrooted topology of Ti, and Ti has the same rooted topology and
σi. This example shows that caterpillars can be in a wicked forest
for unrooted trees.

5. Future work on AGTs

The fact that caterpillar gene trees cannot be AGTs fits the intu-
ition that AGTs are more easily found among gene trees with more
balanced topology than the species tree (Degnan, 2013; Rosenberg,
2013). For unbalanced species trees, choosing sufficiently short
branch lengths gives gene trees with a higher amount of tree bal-
ance greater probability (Degnan and Rosenberg, 2006). However,
the fact that even perfectly balanced species trees can have AGTs
(Degnan and Rosenberg, 2006) suggests that it is difficult to char-
acterize all AGTs. Thus, there is still an open question: for a given
species tree topology, which gene tree topologies can be AGTs?

The strategy of Degnan (2013) can be used to predict many
of the AGTs for a given species tree: First one considers a
smaller species tree induced by taking a subset of taxa. If this
smaller tree has AGTs, then ones for the larger tree can be pre-
dicted by re-grafting the removed taxa onto the smaller AGTs.
As an example, for the species tree (((a, b), (c, d)), e), called
a pseudo-caterpillar by Rosenberg (2007), removing taxon c re-
sults in the caterpillar (((a, b), d), e), which can have AGTs
((a, b), (d, e)), ((a, d), (b, e)), and ((a, e), (b, d)). Placing c back
on these AGTs results in ((a, b), ((c, d), e)), ((a, (c, d)), (b, e)) and
((a, e), (b, (c, d))). While this perhaps suggests that the 5-taxon
pseudo-caterpillar species tree cannot have a pseudo-caterpillar
AGT, the verification of that fact currently depends on a detailed
calculation of gene tree probabilities (Rosenberg and Tao, 2008).

While it would be desirable to have an efficient way of
determining which topologies can be AGTs for a given species
tree, potentially more valuable would be methods for determining
the set of species trees for which a given gene tree can be most
probable. Such candidate species trees could then be used to
reduce the search space for the optimal species trees to explain a
set of gene trees (Fan and Kubatko, 2011).
Further results on AGTs may also be helpful in interpreting
results of species trees inference by concatenation of gene
sequences. In particularly, simulations (Kubatko and Degnan,
2007; DeGiorgio and Degnan, 2010) as well as theoretical results
(Roch and Steel, 2015) have shown thatwhenmaximum likelihood
is used to infer a tree based on concatenated DNA sequences, the
inferred tree can be misleading, in the sense that concatenating
more genes can be more likely to lead to an erroneous inferred
species tree. In simulations where concatenation has been
misleading, the returned tree is often an AGT. Simulations also
suggest that concatenation performs better when the true species
tree is balanced (Leaché and Rannala, 2011), and thus AGTs
are less common (Degnan and Rosenberg, 2006; Rosenberg and
Tao, 2008; Degnan, 2013). Studies are needed to determine
whether in larger trees inferred from empirical data, certain tree
shapes inferred from concatenation tend to be more reliable than
others.
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