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1. Introduction

This article offers a journey into semialgebraic statistics. By this we mean the systematic study of
statistical models as semialgebraic sets. We shall give a semialgebraic description of binary latent class
models in terms of binomials expressing supermodularity, and we determine the algebraic boundary
of this and related models. Our discussion is phrased in the language of nonnegative tensor factoriza-
tion [5,9].
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We consider real tensors P = [pi1 i2···in ] of format d1 × d2 × · · · × dn . Throughout this paper we
shall assume that n � 3 and d1,d2, . . . ,dn � 2. Such a tensor has nonnegative rank at most 2 if it can
be written as

P = a1 ⊗ a2 ⊗ · · · ⊗ an + b1 ⊗ b2 ⊗ · · · ⊗ bn, (1)

where the vectors ai,bi ∈ Rdi are nonnegative for i = 1,2, . . . ,n. The set of such tensors is a closed
semialgebraic subset of dimension 2(d1 + d2 + · · · + dn) − 2(n − 1) in the tensor space Rd1×d2×···×dn ;
see [14, §5.5]. We present the following characterization of this semialgebraic set.

Theorem 1.1. A nonnegative tensor P has nonnegative rank at most 2 if and only if P is supermodular and has
flattening rank at most 2.

Here, flattening means picking any subset A of [n] = {1,2, . . . ,n} with 1 � |A| � n − 1 and writ-
ing the tensor P as an ordinary matrix with

∏
i∈A di rows and

∏
j /∈A d j columns. The flattening rank

of P (also called the multilinear rank in the literature) is the maximal rank of any of these matrices.
Landsberg and Manivel [15] proved that flattening rank � 2 is equivalent to border rank � 2, which
for nonnegative tensors is equivalent to rank � 2 by [16, Proposition 6.2].

To define supermodularity, we first fix a tuple π = (π1,π2, . . . ,πn) where πi is a permutation of
{1,2, . . . ,di}. Then P is π -supermodular if

pi1i2···in · p j1 j2··· jn � pk1k2···kn · pl1l2···ln (2)

whenever {ir, jr} = {kr, lr} and πr(kr) � πr(lr) holds for r = 1,2, . . . ,n. We call a tensor P supermodu-
lar if it is π -supermodular for some π .

Theorem 1.1 says that every tensor of the form (1) is π -supermodular. Here, the tuple of permu-
tations π can be read off from the signs of the 2 × 2-minors of matrices Ai with two rows given by
ai and bi . In particular, for e = (id, . . . , id) the tensor P is e-supermodular if and only if these minors
are all nonnegative (see Lemma 3.3), or all nonpositive. While conditions such as (2) have appeared
before in the statistics literature, e.g. [12], the results in this paper are both fundamental and new.

Note that we are using multiplicative notation instead of the additive notation more commonly
used for supermodularity. To be specific, if d1 = d2 = · · · = dn = 2, π = (id, id, . . . , id), and P is strictly
positive, then P being π -supermodular means that log(P ) lies in the convex polyhedral cone [18, §4]
of supermodular functions 2{1,2,...,n} → R.

The set of π -supermodular nonnegative tensors P of flattening rank � 2 is denoted Mπ and called
a toric cell. The number of toric cells is d1!d2! · · ·dn!/2. Theorem 1.1 states that these cells stratify our
model:

M =
⋃
π

Mπ . (3)

The term model refers to the fact that intersection of (3) with the probability simplex, where all
coordinates of P sum to one, is a widely used statistical model. It is the mixture model for pairs of
independent distributions on n discrete random variables.

The Zariski closure S of a semialgebraic subset S of RN is the complex zero set in CN of all
polynomials that vanish on S . The boundary ∂S is the topological boundary of S inside S . We define
the algebraic boundary of S to be the Zariski closure ∂S of its topological boundary.

Our second theorem concerns the algebraic boundaries of the model M and of toric cells Mπ . We
regard these boundaries as hypersurfaces inside the complex variety of tensors of border rank � 2.
A slice of our tensor P is a subtensor of some format d1 × · · · × ds−1 × 1 × ds+1 × · · · × dn . Subtensors
of format d1 × · · · × ds−1 × 2 × ds+1 × · · · × dn are double slices.

Theorem 1.2. The algebraic boundary of M has
∑n

i=1 di irreducible components, given by slices having

rank � 1. The algebraic boundary of any toric cell Mπ has the same irreducible components plus
∑n

i=1

(di
2

)
additional components given by linearly dependent double slices.
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A double slice is linearly dependent if its two slices are identical up to a multiplicative scalar. In the
second component count of Theorem 1.2 we exclude the special case 2 × 2 × 2 because the “further
components” fail to be hypersurfaces. If n = 2 then the rank 1 constraint on slices is void, and the
algebraic boundary consists of the d1d2 coordinate hyperplanes in Rd1×d2 . This is consistent with the
fact [7, Example 4.1.2] that all nonnegative matrices of rank 2 have nonnegative rank 2.

This paper is organized as follows. In Section 2 we derive our two theorems for tensors of format
2 × 2 × 2. This extends results in [3,4,13,19,23] on this widely studied latent class model. Here, our
semialgebraic set M is full-dimensional in R2×2×2, and it consists of four toric cells that are glued
together. Any two cells intersect along the locus where one of the flattenings has rank one. The
common intersection of all cells is the independence model (tensors of rank 1). In Section 3 we prove
Theorems 1.1 and 1.2 for arbitrary d1,d2, . . . ,dn .

The set M above appears in phylogenetics as the general Markov model on a star tree with binary
states. Section 4 develops the extension of our results to phylogenetic trees other than star trees.
These models have another type of component in their algebraic boundaries, characterized by the
constraint that the ranks of certain matrix flattenings of P inconsistent with the tree topology drop
from 4 to 3. Supermodularity in this context was pioneered by Steel and Faller [22]. Our results refine
earlier work on the general Markov model in [2,3,13,23].

Section 5 concerns the challenges to be encountered when trying to extend our results to tensors
of higher rank. We present case studies of algebraic boundaries for one identifiable model (3 × 3 ×
2-tensors of rank 3) and one non-identifiable model (2 × 2 × 2 × 2-tensors of rank 3).

2. The base case

Let P = [pijk] be a real 2×2×2 tensor. Then P has nonnegative rank at most 2 if there exist three
nonnegative 2 × 2-matrices

A1 =
[

a11 a12
b11 b12

]
, A2 =

[
a21 a22
b21 b22

]
and A3 =

[
a31 a32
b31 b32

]

such that

pijk = a1ia2 ja3k + b1ib2 jb3k for i, j,k ∈ {1,2}. (4)

For π = (id, id, id), the binomial inequalities for supermodularity are

p111 p222 � p112 p221, p111 p222 � p121 p212, p111 p222 � p211 p122,

p112 p222 � p122 p212, p121 p222 � p122 p221, p211 p222 � p212 p221,

p111 p122 � p112 p121, p111 p212 � p112 p211, p111 p221 � p121 p211. (5)

Nonnegative 2 × 2 × 2 tensors P that satisfy these nine inequalities lie in the toric cell Mid,id,id =
M(12),(12),(12) . By label swapping 1 ↔ 2, we obtain three other toric cells Mid,id,(12) = M(12),(12),id,
Mid,(12),id = M(12),id,(12) , and M(12),id,id = Mid,(12),(12) . Thus, by definition, the semialgebraic set of
all supermodular 2 × 2 × 2-tensors is the union

M = Mid,id,id ∪Mid,id,(12) ∪Mid,(12),id ∪M(12),id,id. (6)

Theorem 1.1 states that P ∈ R2×2×2 has nonnegative rank at most 2 if and only if P lies in M. We
begin by proving the only-if direction.

Lemma 2.1. If P ∈ R2×2×2 has nonnegative rank at most 2, then P is supermodular. More precisely, define
π = (π1,π2,π3) by πi = id if det(Ai) � 0 and πi = (12) if det(Ai) < 0. Then P ∈Mπ .
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Proof. Let P be as in (4). The last six constraints in (5) specialize to

p112 p222 − p122 p212 = a32b32 det(A1)det(A2),

p121 p222 − p122 p221 = a22b22 det(A1)det(A3),

p211 p222 − p212 p221 = a12b12 det(A2)det(A3),

p111 p122 − p112 p121 = a11b11 det(A2)det(A3),

p111 p212 − p112 p211 = a21b21 det(A1)det(A3),

p111 p221 − p121 p211 = a31b31 det(A1)det(A2). (7)

First suppose that all 12 parameters aij and bij and the three determinants det(Ak) are positive. Then
the six expressions in (7) are positive. The first three constraints in (5) are also satisfied, as seen from

p111 p222 − p121 p212 = (
p111(p112 p222 − p122 p212) + p212(p111 p122 − p112 p121)

)
/p112.

(8)

Second, consider all tensors P where the parameters aij,bij and determinants det(Ak) are nonnega-
tive. These lie in the closure of the previous case, so the nine binomials will be nonnegative.

If P has nonnegative rank � 2 then π P = (pπ1(i)π2( j)π3(k)) also has nonnegative rank � 2, with
parameterization given by swapping the columns of Ai whenever πi = (12). This changes the sign of
det Ai . Hence, for some π we can assume that π P ∈ Mid,id,id. However, π P ∈ Mid,id,id if and only if
P ∈Mπ . �

We now prove Theorem 1.1 for 2 × 2 × 2 tensors. In this special case, the flattening rank is auto-
matically � 2, so there are no equational constraints, and our model M is a full-dimensional subset
of R2×2×2.

Proposition 2.2. Let P be a nonnegative 2 × 2 × 2-tensor. Then P has nonnegative rank � 2 if and only if P
is supermodular.

Proof. If P has nonnegative rank � 2, then P is supermodular by Lemma 2.1. For the converse, sup-
pose that P is supermodular. Define

U12 = p11+p22+ − p12+p21+,

U13 = p1+1 p2+2 − p1+2 p2+1,

U23 = p+11 p+22 − p+12 p+21, (9)

where a subscript + refers to summing over all values of the given index. For example, p22+ =
p221 + p222. Similarly, for i = 1,2, define

U i
12 = p11i p22i − p12i p21i,

U i
13 = p1i1 p2i2 − p1i2 p2i1,

U i
23 = pi11 pi22 − pi12 pi21. (10)

Our strategy is to first show that the following hold for P :

(i) U12U13U23 � 0,
(ii) U 1

i j and U 2
i j have the same sign as Uij for every i < j, and

(iii) if Uij = 0, then U 1
i j = U 2

i j = 0.
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Subsequently, in the second step, we will show that (i), (ii), (iii) imply that P has the form (4) with
A1, A2, A3 nonnegative. That second step will follow proofs of closely related results in [3,4,13,19,23].

Let e = (id, id, id). Since πMe = Mπ , and the conditions (i), (ii), (iii) are invariant under label
swapping, it suffices to consider P ∈Me . By definition of e-supermodularity, U 1

i j, U 2
i j � 0. We need to

show that Uij � 0 also. By symmetry it suffices to show that U12 � 0. We have

U12 = U 1
12 + U 2

12 + (p111 p222 + p221 p112 − p211 p122 − p121 p212). (11)

We show that the expression in parentheses is nonnegative for P ∈ Me . We write this expression as
R = f11 + f22 − f12 − f21, where

f11 = p111 p222, f12 = p121 p212, f21 = p211 p122, f22 = p221 p112.

Note that, by (5), we have f11 � max{ f12, f21}. This implies R � 0 if either pijk = 0 for some i, j,k,
or if f22 � min{ f12, f21}. Thus, we assume that f i j > 0 and f22 < min{ f12, f21}. The supermodular
inequalities p121 p211 � p111 p221 and p212 p122 � p222 p112 imply

f12 f21 = p121 p212 p211 p122 � p111 p222 p221 p112 = f11 f22.

Hence [ f i j] is supermodular itself. As a consequence, we have

f21

f11
− 1 � f22

f12
− 1 �

(
f22

f12
− 1

)
f12

f11
,

where the second inequality holds since f22 < f12 � f11.
After multiplying both sides by f11 we obtain

f21 − f11 � f22 − f12

or equivalently R � 0. It follows that U12 � 0 and, by symmetry, that Uij � 0 for all i < j; therefore
(i) and (ii) hold. The identity (11) and the inequality R � 0 together imply that (iii) holds as well.

We take up separately the cases where the product U12U13U23 is positive or is zero. Suppose first
that U12U13U23 > 0. A special role in our argument will be played by the hyperdeterminant,

Det(P ) = 4p111 p122 p212 p221 + 4p112 p121 p211 p222 + p2
111 p2

222 + p2
122 p2

211 + p2
112 p2

221

− 2p111 p112 p221 p222 − 2p111 p121 p212 p222 − 2p111 p122 p211 p222 + p2
121 p2

212

− 2p112 p121 p212 p221 − 2p112 p122 p211 p221 − 2p121 p122 p211 p212.

One can verify the identity

p2+++ Det(P ) = μ2 + 4U12U13U23, (12)

where

μ = p2+++p222 − p+++(p2++p+22 + p+2+p2+2 + p++2 p22+) + 2p2++p+2+p++2.

Then (12) implies Det(P ) > 0.
By [5, Proposition 5.9] we can write P in terms of real vectors ai,bi as in (4). We obtain the

identities

U12 = det A1 det A2(a31 + a32)(b31 + b32),

U13 = det A1 det A3(a21 + a22)(b21 + b22),

U23 = det A2 det A3(a11 + a12)(b11 + b12).

Since U12U13U23 is strictly positive, the coordinate sum of each vector ai,bi is nonzero. Hence our
model can be equivalently parametrized by
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P = sa1 ⊗ a2 ⊗ a3 + tb1 ⊗ b2 ⊗ b3, (13)

where s, t ∈ R and the coordinates of ai,bi sum to 1. We now show that (i)–(iii) ensures these pa-
rameters to be nonnegative. Note that

U12 = det A1 det A2st,

U 1
12 = det A1 det A2sta31b31,

U 2
12 = det A1 det A2sta32b32, (14)

and similar formulas hold for U13, U 1
13, U 2

13 and U23, U 1
23, U 2

23.
Under the specialization (13), the hyperdeterminant factors as

Det(P ) = (st det A1 det A2 det A3)
2.

This gives

st = U12U13U23

Det(P )
> 0,

and thus either s, t > 0 or s, t < 0. By (ii), U12, U 1
12, U 2

12 have the same signs. Hence a31b31 � 0 and
a32b32 � 0 by (14). This, together with the fact that [p++i] = sa3 + tb3 is a nonnegative vector, implies
that a3,b3 ∈ R2

�0 if s, t > 0 and a3,b3 ∈R2
�0 if s, t < 0. The same argument shows that a1,b1,a2,b2 ∈

R2
�0 if s, t > 0 and a1,b1,a2,b2 ∈ R2

�0 if s, t < 0. Hence, we obtain a nonnegative decomposition in
(13).

Suppose now that U12U13U23 = 0. Without loss of generality, assume U12 = 0. Hypothesis (iii)
implies U 1

12 = U 2
12 = 0. Regard the expressions in (9) and (10) as elements in the polynomial ring

Q[p111, p112, . . . , p222]. A computation reveals the prime decomposition
〈
U12, U 1

12, U 2
12

〉 = 〈
2 × 2-minors of Flat1|23(p)

〉 ∩ 〈
2 × 2-minors of Flat2|13(p)

〉
,

where Flat1|23(p) =
(

p111 p112 p121 p122
p211 p212 p221 p222

)
, and similarly for Flat2|13(p). Hence one of these two flat-

tenings of the tensor P ∈ Me has rank 1. Suppose it is the first. We can find v ∈ R2
�0 such that

pijk = vi · p+ jk for every i, j,k ∈ {1,2}. Since the 2 × 2-matrix (p+ jk) can be written as (p+ jk) =
a2 ⊗ a3 + b2 ⊗ b3 for some a2,b2,a3,b3 ∈ R2

�0, we obtain the desired nonnegative representation (13)
by setting a1i = b1i = vi . �

Theorem 1.2 tells us that the algebraic boundary of M equals

{p112 p222 = p122 p212} ∪ {p121 p222 = p122 p221} ∪ {p211 p222 = p212 p221}
∪ {p111 p122 = p112 p121} ∪ {p111 p212 = p112 p211}
∪ {p111 p221 = p121 p211}.

Each toric cell Mπ has exactly the same algebraic boundary because the linear dependence constraint
on double slices is void in the 2×2×2-case. The coordinate planes {pijk = 0} are not part of the alge-
braic boundary of M or Mπ . Indeed, the inverse image of {pijk = 0} under the parametrization lies
in the boundary. But, if any of the parameters aij or bij is zero then the tensor P has a rank 1 slice.
Hence, the set {pijk = 0} ∩M lies in the union above. Similarly, the hyperdeterminant {Det(P ) = 0} is
not a component in the algebraic boundary of M.

Example 2.3. It is instructive to look at a 3-dimensional picture of our 7-dimensional model M. We
consider the Jukes–Cantor slice given by[

p111 p112
p p

]
=

[
x y
z w

]
and

[
p211 p212
p p

]
=

[
w z
y x

]
.

121 122 221 222



E.S. Allman et al. / Linear Algebra and its Applications 473 (2015) 37–53 43
Fig. 1. Jukes–Cantor slice showing 2 × 2 × 2 tensors of nonnegative rank � 2. Each toric cell is bounded by three quadrics and
contains a vertex of the tetrahedron.

Under this specialization, the hyperdeterminant factors as

Det(P ) = (x + y + z + w)(x + y − z − w)(x − y + z − w)(x − y − z + w). (15)

Consider the tetrahedron {(x, y, z, w) ∈ R4
�0: x + y + z + w = 1/2}. Fixing the signs of the last three

factors in (15) divides the tetrahedron into four bipyramids and four smaller tetrahedra. Inside our
slice, the four toric cells of (6) occupy the bipyramids. Each toric cell is precisely the object in
[8, Fig. 1]. Redrawn on the right in Fig. 1, its convex hull is the bipyramid, and it contains six of the
nine edges. Any two of the toric cells meet in a line segment such as {x+ y−z− w = x− y+z− w = 0,

x − y − z + w � 0}. The algebraic boundary of each toric cell consists of the same three quadrics
{xy = zw}, {xz = yw} and {xw = yz}. Neither the three planes in (15) nor the four facet planes of the
tetrahedron are in the algebraic boundary. �
3. The general case

Before embarking on the general proofs of Theorems 1.1 and 1.2, let us briefly go over an example
that exhibits the general behavior.

Example 3.1. Consider the semialgebraic set M of 3 × 3 × 3-tensors of nonnegative rank � 2. The
Zariski closure M of M in R3×3×3

�0 has dimension 14 and is defined by 222 cubic equations [10,
Table 3], namely 3 × 3-minors of the 3 × 9-matrices Flat1|23(P ), Flat2|13(P ) and Flat3|13(P ). The model
M decomposes into 108 toric cells Mπ , each defined in M by 162 quadratic binomial inequalities
of the form (2).

A quick way to generate these inequalities, for π = (id, id, id), is to run the following code in the
computer algebra system Macaulay2 [11]:

R = QQ[p111,p112,p113,p121,p122,p123,p131,p132,p133,
p211,p212,p213,p221,p222,p223,p231,p232,p233,
p311,p312,p313,p321,p322,p323,p331,p332,p333];

S = QQ[a1,a2,a3,b1,b2,b3,c1,c2,c3];
f=map(S,R,{a1*b1*c1,a1*b1*c2,a1*b1*c3,a1*b2*c1,a1*b2*c2,a1*b2*c3,
a1*b3*c1,a1*b3*c2,a1*b3*c3,a2*b1*c1,a2*b1*c2,a2*b1*c3,a2*b2*c1,
a2*b2*c2,a2*b2*c3,a2*b3*c1,a2*b3*c2,a2*b3*c3,a3*b1*c1,a3*b1*c2,
a3*b1*c3,a3*b2*c1,a3*b2*c2,a3*b2*c3,a3*b3*c1,a3*b3*c2,a3*b3*c3});
gens gb kernel f
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Being π -supermodular means that each of the binomials in the resulting Gröbner basis, such as
p223*p312-p212*p323, must be nonpositive.

The algebraic boundary of M has nine irreducible components, corresponding to the nine slices
of P . It is instructive to see how our 162 hypersurfaces, like {p223 p312 = p212 p323} ∩ M, break into
these components. Each individual toric cell Mπ has 18 irreducible components in its algebraic
boundary: now also the 9 double slices kick in. The intersection of all 108 toric cells is the Segre
variety of rank 1 tensors, whose reverse lexicographic Gröbner basis we identified with (2). �

A marginalization of P is any tensor obtained from P by summing all slices for some fixed indices.
For instance, the 2 × 2-matrix (pij+) is a marginalization of the 2 × 2 × 2-tensor P = (pijk). The
following lemma, whose proof is delayed, will be useful in proving Theorem 1.1.

Lemma 3.2. All marginalizations of a supermodular tensor are supermodular, and ditto for e-supermodular
with e = (id, id, . . . , id). In addition, all flattenings of a supermodular tensor are supermodular.

In this lemma, and in the remainder of the paper, we use the term flattening to include all tensor
flattenings, not just the matrix flattenings described in the introduction. We now prove our first main
result.

Proof of Theorem 1.1. Suppose first that P has nonnegative rank � 2. Then P has the form (1)
with ai,bi ∈ R

di
�0. As tensor rank cannot increase under flattening, we conclude that P has flattening

rank � 2.
Consider the di × 2-matrix with columns ai,bi . By swapping rows we can make all 2 × 2-sub-

determinants of these n matrices (ai,bi) nonnegative. But swapping rows in these matrices corre-
sponds to acting on P by π , where π P := [pπ−1(i)] for i = (i1, . . . , in) and π−1(i) = (π−1

1 (i1), . . . ,

π−1
n (in)). Since P ∈Me if and only if π P ∈Mπ , it suffices to prove the following result.

Lemma 3.3. If P has the form (1) with aikbil � ailbik for every i and all k � l then P ∈Me .

To prove this we define an auxiliary 2 × d1 × · · · × dn tensor P̂ by

p̂1i1···in = a1i1a2i2 · · ·anin and p̂2i1···in = b1i1 b2i2 · · ·bnin .

We claim that P̂ is e-supermodular. For this, we need to check that

p̂i0i1···in p̂ j0 j1··· jn � p̂k0k1···kn p̂l0l1···ln , (16)

for all ir, jr such that kr = min{ir, jr}, lr = max{ir, jr}. This holds with equality if i0 = j0. If i0 	= j0 we
have two cases to consider, and our claim (16) is equivalent to the inequality

max{a1 j1 b1i1 · · ·anjn bnin ,a1i1 b1 j1 · · ·anin bnjn } � a1k1 b1l1 . . .ankn bnln .

Our assumption on the 2 × 2-subdeterminants of (ar,br) ensures

max{arjr brir ,arir br jr } � arkr brlr for every r ∈ [n].
This gives the desired inequality, and therefore P̂ is e-supermodular. But P is a marginalization of P̂
because pi1···in = p̂1i1···in + p̂2i1···in , so Lemma 3.2 then implies that P is e-supermodular.

For the converse, consider any supermodular d1 × · · · × dn tensor P of flattening rank � 2. Let Fi
be the flattening of P given by the partition {i}, [n]\{i}. Suppose rank(Fi) < 2 for some i, say i = 1.
Then P = v ⊗ P ′ for some v ∈ R

d1
�0 and P ′ = [p+i2···in ]. By Lemma 3.2, the marginalization P ′ is

supermodular with flattening rank � 2. By repeated application of this argument, we may reduce to
tensors P whose di × (d1 · · ·di−1di+1 · · ·dn)-flattenings Fi all have rank exactly 2.

We next reduce to tensors of format 2 × · · · × 2. Let P be a supermodular d1 × · · · × dn tensor
all of whose flattenings are of rank 2, and Li ⊆ Rdi the span of the columns of a flattening Fi . Two
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suitable columns of Fi give a nonnegative basis {a,b} of Li . We modify this basis to {a′,b′} so that,
after permuting entries, it is nonnegative and

a′ = (1,0,∗, . . . ,∗), b′ = (0,1,∗, . . . ,∗).

To obtain this nonnegative basis first set a′′ = a − tb, using the maximal t for which a′′ is nonnegative.
Then set b′′ = b− sa′′ with the maximal s for which b′′ is nonnegative. The vectors a′′,b′′ each have an
entry of 0 in a position where the other does not. Rescaling so the nonzero entries in these positions
become 1, and permuting entries to bring these positions to the first two, we obtain the desired a′,b′ .

Now every column of Fi is in the nonnegative span of a′,b′ . More concretely, we have Fi = C T
i · F ′

i ,
where Ci has rows a′,b′ , and F ′

i is the first two rows of Fi . On tensors, this is expressed by

P = P ′ ∗i Ci,

where P ′ is the double slice of P with ith index in {1,2} and P ′ ∗i Ci denotes the linear action of Ci
on the ith index of P ′ . Applying this construction in each index we find (after suitable relabellings)
that

P = P0 ∗ (C1, . . . , Cn), (17)

where P0 is the 2 × · · · × 2 subtensor of P obtained by restricting all indices to {1,2}, and the
2 × di -matrices Ci are real and nonnegative.

Our hypotheses ensure that P0 is supermodular with all flattening ranks 2. Moreover, if P0 has
nonnegative rank 2, then it follows from Eq. (17) that P also has nonnegative rank 2. Explicitly, if
P0 = a1 ⊗· · ·⊗an +b1 ⊗· · ·⊗bn is a nonnegative decomposition, then P = ã1 ⊗· · ·⊗ ãn + b̃1 ⊗· · ·⊗ b̃n
with ãi = ai Ci , b̃i = bi Ci nonnegative.

It remains to show the result for 2 × · · · × 2 tensors. Let P ′ denote the 2 × 2 × 2n−2 flattening
of P from the tripartition {1}, {2}, [n]\{1,2}. By Lemma 3.2, P ′ is supermodular. By Proposition 2.2,
each 2 × 2 × 2 subtensor of P ′ has nonnegative rank � 2. The argument of the last three paragraphs
implies that P ′ itself has nonnegative rank � 2, so

P ′ = a1 ⊗ a2 ⊗ a3 + b1 ⊗ b2 ⊗ b3,

with a1,a2,b1,b2 ∈ R2
�0, a3,b3 ∈ R2n−2

�0 . The matrices A = (a1,b1)
T and B = (a2,b2)

T are invertible,

by our assumptions on the 2 × 2n−1 flattening ranks of P . Acting on the tensor P by their inverses,
we get

P̃ = e1 ⊗ e1 ⊗ N1 + e2 ⊗ e2 ⊗ N2,

where N1, N2 are nonnegative tensors whose vector flattenings are a3,b3.
Consider any bipartition A, B of {3, . . . ,n}. The 2|A|+1 × 2|B|+1 flattening of P̃ using the bi-

partition {1} ∪ A, {2} ∪ B is block-diagonal, with blocks given by A|B flattenings of N1, N2. This
2|A|+1 × 2|B|+1-matrix has rank � 2, so either both flattenings of Ni have rank � 1, or one Ni is zero.
But Ni = 0 is impossible since that would mean some 2 × 2n−1 flattening of P has rank 1. Hence the
A|B flattenings of N1, N2 have rank 1. Since A, B were arbitrary, both Ni have (nonnegative) rank 1.
Consequently, P̃ has nonnegative rank 2, and so does P . �

It remains to prove Lemma 3.2. We shall use the Four Function Theorem of Ahlswede and Daykin [1],
here presented in a special case:

Proposition 3.4 (Ahlswede–Daykin). Fix n � 2 and a nonnegative d1 × · · · × dn-tensor P = [pi1...in ]. For any
collection C of indices i = (i1, . . . , in) in [d1] × · · · × [dn] define pC = ∑

i∈C pi . Suppose that

pi · pj � pi∨j · pi∧j for any two indices i, j, (18)

where ∨, ∧ are join and meet operations that gives [d1] × · · · × [dn] a lattice structure. Then for any two
collections C,C′ , we have
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pC · pC′ � pC∨C′ · pC∧C′ ,

where C ∨ C′ = {i ∨ j: i ∈ C, j ∈ C′} and C ∧ C′ = {i ∧ j: i ∈ C, j ∈ C′}.

Proof of Lemma 3.2. Let P be a supermodular d1 × · · · × dn-tensor. For the first assertion, it suffices
to show that P ′ = [p+i2···in ] is supermodular. The general statement for marginal tensors follows by
induction.

If P is π -supermodular, define the lattice structure on [d1] × · · · × [dn] by taking k = i ∧ j if and
only if π(k) is the coordinatewise minimum of π(i) and π(j). Similarly, l = i ∨ j if and only if π(l) is
the coordinatewise maximum of π(i) and π(j). Fix i′, j′ ∈ [d2] × · · · × [dn] and set

C = {(
i1, i′

)
: i1 ∈ [d1]

}
, C′ = {(

i1, j′
)
: i1 ∈ [d1]

}
.

We have pC = ∑
i∈C pi = p+i′ and pC′ = p+j′ . The tensor π P = (pπ−1(i)) is e-supermodular. Proposi-

tion 3.4 now gives

p+i′ · p+j′ � p+(i′∧j′) · p+(i′∨j′).

This means that P ′ is π ′-supermodular, where π ′ = (π2, . . . ,πn).
We now prove that every flattening of P is supermodular. Let Q = [qα1···αr ] be a flattening of

P corresponding to the partition A1, . . . , Ar of {1, . . . ,n}. Let hi = ∏
j∈Ai

d j , then α = (α1, . . . ,αr) ∈
[h1] × · · · × [hr]. Without loss of generality we can assume that αi indexes elements of

∏
j∈Ai

[d j]
ordered lexicographically. Every qα is equal to pi for some i, so that each α corresponds to a unique i.
Since P is supermodular, there exists π = (π1, . . . ,πn) such that for every i, j we have pi pj � pi∧j pi∨j ,
where i ∧ j and i ∨ j is as defined in the previous paragraph.

Define now α ∧ β and α ∨ β to be the r-tuples corresponding to i ∧ j and i ∨ j. The permuta-
tion π induces the corresponding r-tuple of permutations π̃ = (π̃1, . . . , π̃r) such that π(i) = π̃ (α).
By construction, we have pα pβ � pα∧β pα∨β , where π̃ (α ∨ β) � π̃ (α ∨ β). This implies that Q is
π̃ -supermodular. �

We now prove the second theorem stated in the introduction.

Proof of Theorem 1.2. The formula (1) defines a polynomial map

φ :R2(d1+d2+···+dn) →Rd1×d2×···×dn

such that M = φ(R
2(d1+···dn)
�0 ) is the set of tensors of nonnegative rank � 2. We modify the domain

by assuming the coordinate sums of all ai and bi are 1, while adding two mixture parameters s, t as
in (13). This does not change the image, but makes the map generically 2-to-1. More specifically, φ is
2-to-1 on the open set where st 	= 0 and each pair ai,bi is linearly independent. Since this open set
intersects the coordinate hyperplane {aij = 0} (or {bij = 0}), the map φ is generically finite on that
hyperplane. Hence the closure of the image φ({aij = 0}) is an irreducible subvariety of codimension
1 in M. Moreover, in any neighborhood of a point on {aij = 0} there are points with aij < 0 that
are not mapped into the interior of M. Indeed, generically the fiber containing such a point only
contains its image under label swapping, and thus all points in the fiber have a negative coordinate.
Thus φ({aij = 0}) is a component of the algebraic boundary of M.

By restricting to open subsets Uπ where the signs of all 2 × 2-minors of the matrices (ai,bi) are
fixed, we see that φ({aij = 0}) is also a component in the algebraic boundary of Mπ . Additional
pieces of the boundary of Uπ are the quadrics {aijbik = aikbi j}, on whose general points the map φ is
also 2-to-1. Therefore the varieties φ({aijbik = aikbi j}) are irreducible of codimension 1 in Mπ , and,
by the same argument as above, they are also components of the algebraic boundary of Mπ .

We next argue that there are no components in the algebraic boundary of M or Mπ other than
the two types we just identified. This follows from Theorem 1.1. Let P ∈ ∂Mπ . Consider the binomials
pi1 i2···in p j1 j2··· jn − pk1k2···kn pl1l2···ln that correspond to facets of the polyhedral cone of supermodular
functions. For such a facet binomial, the indices in the four appearing unknowns p• agree in all
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but two of the positions. All other binomials (2) admit representations such as (8). The expansion
of a facet binomial into parameters aij,bij factors into coordinates and 2 × 2-determinants as in (7).
Hence, at the two points in φ−1(P ), one of these factors must vanish, and this implies that P lies on
one of the hypersurfaces we already identified above.

We finally identify φ({aij = 0}) and φ({aijbik = aikbi j}) with the rank loci described in the state-
ment of Theorem 1.2. If the coordinate aij vanishes then the jth slice of P in the ith dimension drops
its rank from � 2 to � 1. Likewise, if aijbik = aikbi j , then the jth and kth slices of P in dimension
i becomes linearly dependent. Hence the irreducible components of the algebraic boundaries of M
and Mπ are uniquely characterized by lying in the following two types of rank loci:

(a) the variety of tensors P of border rank � 2 such that a particular slice has border rank � 1;
(b) the variety of tensors P of border rank � 2 such that a particular double slice is linearly depen-

dent.

This completes the proof of Theorem 1.2. �
We believe that the rank loci in (a) and (b) are irreducible varieties, and that their prime ideals are

generated by the relevant subdeterminants of format 2×2 and 3×3. At present we do not know how
to prove this. A similar issue for tree models appears in Conjecture 4.2. For the case of Example 3.1,
we proved irreducibility by computation:

Example 3.5. The variety M of 3 × 3 × 3 tensors of border rank � 2 has dimension 14 and degree
783. Using Macaulay2 [11], we verified that both (a) and (b) define irreducible subvarieties of di-
mension 13. The variety (a) has degree 882, and its prime ideal is minimally generated by 9 quadrics
and 187 cubics. The variety (b) has degree 342, and its prime ideal is minimally generated by 36
quadrics and 90 cubics. All ideal generators can be chosen from the relevant subdeterminants. �

One may ask how efficiently the model membership can be tested. The number of facets of the
submodular cone is a polynomial in the size of the tensor, and each facet inequality involves precisely
four of the unknowns. Hence supermodularity for positive tensors can be tested in polynomial time.
For instance, a 2 × 2 × · · · × 2-tensor has N = 2n cell entries, and the facets correspond to the 2-faces
of the n-cube (see the proof of Theorem 1.2), of which there are only n(n − 1)2n−3 = O (N1+ε).

4. Binary tree models

In this section we study the extension of our results to the general Markov model MT on a phylo-
genetic tree T with binary states [2,3,6,13,23]. The special case when T is a star tree, with only one
internal node, corresponds to 2 × 2 × · · · × 2-tensors of nonnegative rank � 2. For arbitrary trees T ,
Steel and Faller [22] showed that distributions in MT are supermodular, by a marginalization argu-
ment as in Lemma 3.2.

We assume that T has n � 3 leaves, E is the set of edges of T , and one of the |E| − n + 1 internal
nodes is the root of T . We specify each probability distribution P in the model MT by a nonnegative
root distribution π ∈ R2

�0, together with a 2 × 2 Markov matrix Me for each edge e, directed away
from the root. The entries of π and of each row of each Me sum to 1. These choices determine a
point θ = (π, (Me)e∈E) in the cube Θ = [0,1]2|E|+1. That cube serves as the domain for the model
parametrization φ :Θ �MT ⊂R2×2×···×2

�0 . This can be found in explicit form in [2, Eq. (1)]. The map

φ is locally identifiable. To be precise, each general fiber consists of 2|E|−n+1 points, corresponding
to label swapping on the internal nodes. Hence our binary tree model MT = φ(Θ) is a compact
semialgebraic set of dimension 2|E| + 1 inside the probability simplex of dimension 2n − 1. It is
known that MT is independent of the choice of the root node.

The prime ideal that defines the Zariski closure MT is known. It is generated by the 3 × 3-minors
of all flattenings of P that are compatible with T . Here, a split (A, Ac) of [n] is compatible with T
if the intersection of any path between two leaves in A with any path between two leaves in Ac is
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either empty or just one internal node. This was first shown set-theoretically for trivalent trees by
Allman and Rhodes [2]. The ideal-theoretic statement for arbitrary trees T is seen by combining the
result of Draisma and Kuttler in [6] with the result of Raicu in [20].

Our main result of this section concerns the algebraic boundary of the general Markov model MT

inside the phylogenetic variety MT .

Theorem 4.1. The algebraic boundary of the binary tree model MT has n + |E| irreducible components, two
for each of the n pendant edges, and one for each of the |E| − n internal edges. The components are closures of
images of facets of the cube Θ , as described below.

The components of the algebraic boundary of MT are as follows:

(1) For each pendant edge e with leaf 	, fix one row of the 2 × 2-matrix Me . (The other row gives
the same two components.) Nonnegativity of either entry determines a facet F of the cube Θ .
Then φ(F ) is a component. It has the following equational description inside MT . If the internal
node on e is r-valent, it gives a partition (L1 = {	}, L2, . . . , Lr) of [n]. Flatten P accordingly to a
2 × 2|L2| × · · · × 2|Lr | tensor. The rank of the 1 × 2|L2| × · · · × 2|Lr | slice selected by F drops to � 1
on φ(F ).

(2) For each internal edge e, fix any one entry of the 2 × 2-matrix Me . (The other three entries give
the same component.) Nonnegativity of that entry determines a facet F of the cube Θ . Then
φ(F ) is a component. It has the following equational description inside MT . Let T [e] be the tree
obtained from T by contracting e. For either matrix flattening of P that is compatible with T [e]
but not with T , the rank drops to � 3 on φ(F ).

At present we do not know whether the equational descriptions above (in terms of tensor rank)
are enough to cut out the codimension 1 subvarieties φ(F ) of MT . For this, it would suffice to prove
the following:

Conjecture 4.2. The rank varieties in (1) and (2) are irreducible.

We have a computational proof of Conjecture 4.2 in the smallest non-trivial case, the trivalent tree
on 4 taxa, which we discuss next.

Example 4.3. Let n = 4 and T the trivalent tree with split 12|34. The phylogenetic variety lives in P15

and it has dimension 11:

MT =

⎧⎪⎨
⎪⎩P ∈ P15: rank

⎡
⎢⎣

p1111 p1112 p1121 p1122
p1211 p1212 p1221 p1222
p2111 p2112 p2121 p2122
p2211 p2212 p2221 p2222

⎤
⎥⎦ � 2

⎫⎪⎬
⎪⎭ . (19)

The model MT is composed of eight 11-dimensional cells Mπ , where π = (π1,π2,π3,π4). As be-
fore, Mid,id,id,id = M(12),(12),(12),(12) . These cells are glued together along lower-dimensional models
corresponding to forests obtained by deleting edges of the tree. For instance Mid,id,id,id is glued to
Mid,id,(12),(12) along the model of two independent 2-leaf trees. It is also glued to Mid,id,id,(12) along
a model of a 3-leaf tree and an independent leaf, and similarly to 3 other cells. Finally, it is glued
to the remaining cells M(12),id,(12),id and M(12),id,id,(12) along even more degenerate models, of a
forest with one 2-leaf tree and two singleton leaves. All eight cells intersect in the model of four
independent leaves. The various strata correspond to P3 × P3, P7 × P1, P3 × (P1)2 and (P1)4.

The algebraic boundary of MT has eight irreducible components of type (1), such as{
P ∈ MT : rank

[
p1111 p1112 p1121 p1122
p1211 p1212 p1221 p1222

]
� 1

}
. (20)

The 2 × 2-minors of (20) and 3 × 3-minors of (19) generate a prime ideal.
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The ninth component of ∂MT comes from the internal edge and is of type (2). It is defined by the
4 × 4-determinant of either of the two flattenings other than (19). These two determinants are equal
and irreducible on MT , so they give the prime ideal of that component. �

To prove Theorem 4.1, we consider the singular locus Θsing of the parametrization φ. By definition,
Θsing is the closed subset of the cube Θ where the rank of the Jacobian matrix of φ drops to 2|E| or
below.

Lemma 4.4. Θsing is the subset of points in Θ where either the root distribution π has a zero entry, or some
Markov matrix Me is singular.

Proof. A tree Tn with n leaves is obtained by attaching a cherry to a leaf 	 of an (n−1)-leaf tree Tn−1.
Assuming the matrices Me on Tn−1 are non-singular and π has nonzero entries, then the distribution
for Tn−1 flattens on the edge incident to 	 to a 2 × 2n−2-matrix A of rank 2. Let a1,b1 be the rows
of A, and a2,b2 and a3,b3 the rows of the matrix parameters on the edges of the cherry. Then the
distribution for Tn , appropriately flattened, is a1 ⊗ a2 ⊗ a3 + b1 ⊗ b2 ⊗ b3.

We next show that the map

ψ : (a1,b1,a2,b2,a3,b3) �→ a1 ⊗ a2 ⊗ a3 + b1 ⊗ b2 ⊗ b3

where the entries of a2,b2,a3,b3 sum to 1, is non-singular precisely at points where all pairs ai,bi are
linearly independent. That ψ is singular at points where some pair ai,bi is dependent is straightfor-
ward. To show the rest of this claim, we allow arbitrary real entries in the vectors, to take advantage
of a group action.

Let G be the subgroup of GL(2n−2) × GL(2) × GL(2) consisting of matrix triples (g1, g2, g3) where
the rows of g2 and g3 sum to 1. The group G acts on both the domain and range of ψ , and intertwines
as

ψ(zg) = ψ(z)g, g ∈ G.

Hence the Jacobian matrix of ψ has constant rank on each orbit. But the orbit of any point with all
pairs ai,bi linearly independent is dense in the domain. Thus if ψ were singular at such a point, it
would be singular everywhere. Since ψ is generically 2-to-1, that is impossible.

Note that the statement of the lemma for the 3-leaf tree follows from the previous paragraphs.
Building the tree Tn inductively from Tn−1 writes the Jacobian of ψ as a product of block matrices of
smaller Jacobians. From this we see that Θsing consists of points where either π has a zero entry, or
some Me is singular. �
Lemma 4.5. If θ ∈ Θsing , then the fiber of θ intersects the boundary of Θ , i.e. there exists θ ′ ∈ ∂Θ with
φ(θ ′) = φ(θ). Moreover, θ ′ can be found in a facet of Θ where some entry of a Markov matrix is zero.

Proof. For a 3-leaf tree, rooted at the internal node, consider the parameters θ = (π, M1, M2, M3) ∈
Θsing. If πi = 0, then we may replace row i of any or all M j with (1,0) to obtain θ ′ . Otherwise,
suppose M3 is singular yet there are no zeros in the parameters. Define θ ′ by π ′ = π M1, M ′

1 =
the identity matrix, M ′

2 = diag(π ′)−1MT
1 diag(π)M2, and M ′

3 = M3. One checks that φ(θ ′) = φ(θ), and
M ′

1 has a zero entry.
The result is derived inductively for larger trees, by viewing them as built from 3-leaf trees by

attaching cherries. �
Proof of Theorem 4.1. Points in Int(Θ)\Θsing must map to points in the relative interior of the model
MT . Thus the boundary of MT is a subset of φ(∂Θ) ∪ φ(Θsing). By Lemma 4.5, this is contained in
φ(∂Θ).

To see that each of the components listed is a boundary component, we must show they have
codimension 1 in the model, and a Zariski dense subset of points in them are limits of points outside
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the model. Since the complement of Θsing intersects these facets of Θ in non-empty open sets, the
codimension is as needed. Since all elements of a fiber of the parameterization φ which contains
non-singular points are related by label swapping, even when the map is extended outside Θ , one
sees that non-singular points outside Θ cannot be mapped into the model, yet they are mapped
arbitrarily close to the claimed component.

We have discussed all but two of the 4|E| + 2 facets of Θ . The remaining two facets, where an
entry of the root distribution π is 0, contain only elements of Θsing, by Lemma 4.4. By Lemma 4.5,
they lie in fibers with points where some entry of a Markov matrix is zero. Thus they are mapped
into a component of the boundary already identified.

It remains to be shown that the equational descriptions given in (1) and (2) are valid on the
respective components of the boundary of MT .

For a pendant edge e as in (1), we can assume that the root of the tree is located at the non-leaf
end of e. The sets L j span subtrees that intersect only at the root, and for each j there is a 2 ×
2|L j |-matrix A j , dependent only on the Markov matrices on edges of the subtrees, which expresses
the joint probabilities of states at the leaves in L j , conditioned on the root. In particular, A1 = Me .
Denoting the rows of A j by a j,b j , the r-dimensional flattening of our distribution is

π1 · a1 ⊗ a2 ⊗ · · · ⊗ ar + π2 · b1 ⊗ b2 ⊗ · · · ⊗ br .

If a1i = 0 (or b1i = 0) then the ith slice in the first index has rank � 1.
For an internal edge e as in (2), assume the root of the tree is located at one end, and the Markov

matrix on the edge is Me , with rows ae,be . Let L1, L2 and L3, L4 be the leaves of the subtrees attached
to the respective ends of e. Then the 2|L1∪L3| × 2|L2∪L4|-matrix flattening incompatible with T can be
expressed as

AT diag(π1ae,π2be)B, (21)

where A, B are 4 × 2|L1∪L3| and 4 × 2|L2∪L4|-matrices, respectively. The entries of A depend on the
parameters on the subtrees on L1 and L3, while those of B depend on the parameters on the subtrees
on L2 and L4. Thus if Me has a zero entry, then the 4 × 4-matrix diag(π1ae,π2be) is singular, and
hence the flattening (21) has rank at most 3. �

Several recent works found semialgebraic descriptions of the 2-state general Markov model on
trees that is considered here. In [23] a different coordinate system is used, but [3] follows the same
framework as this paper. Although some of the inequalities given in [3] hint at the form of the al-
gebraic boundary determined in Theorem 4.1, those inequalities are considerably more complicated
than our description here. While the inequalities provide tests for model membership, the relative
simplicity of the algebraic boundary is expected to be advantageous for other purposes, such as un-
derstanding the geometry of log-likelihood functions over MT , and studying the limit behavior of
iterative methods for parameter estimation such as Expectation Maximization (EM).

5. Towards higher rank

There are formidable obstacles to extending our results to tensors of rank r > 2. First of all, we
do not know how to generalize the supermodular constraints. Second, we run into problems of non-
identifiability, even in the case of matrices (n = 2). Recall also (e.g. from [7, Example 4.1.2]) that a
nonnegative matrix of rank 3 need not have nonnegative rank 3. The topological analysis given by
Mond et al. [17] illustrates well the difficulties involved in obtaining a characterization of the semial-
gebraic set of d1 × d2-matrices of nonnegative rank � 3.

On the other hand, for tensors of dimension n � 3, rank decompositions are often identifiable when
r is small relative to d1,d2, . . . ,dn . In such situations, when the model is identifiable, one might hope
for results similar to Theorems 1.2 and 4.1. However, a third obstacle arises: in order to characterize
algebraic boundaries, one needs a version of Lemma 4.4 for the singular locus Θsing of the model
parameterization φ.
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In what follows, we illustrate these issues for two rank 3 examples.

Example 5.1. Consider the set M of 3 × 3 × 2 tensors of nonnegative rank � 3. This is a smallest
format for which rank 3 decompositions are generically unique, up to label swapping. Normalizing
the tensor entries to sum to 1, we obtain M as the image of the map

φ :Θ → �17,

(π ;a1,a2,a3;b1,b2,b3; c1, c2, c3)

�→ π1 · a1 ⊗ a2 ⊗ a3 + π2 · b1 ⊗ b2 ⊗ b3 + π3 · c1 ⊗ c2 ⊗ c3,

where π ∈ R3
�0, ai,bi, ci ∈ R3

�0 for i = 1,2, and a3,b3, c3 ∈ R2
�0 all have coordinate sum 1. The

domain is the polytope Θ = �2 × (�2 × �2 × �1)
3. The facets of Θ are given by parameters being 0.

This map is generically 6-to-1, so φ(Θ) = M is full-dimensional in the simplex �17. The Zariski
closure M is the entire projective space P17 of 3 × 3 × 2 tensors.

The algebraic boundary ∂M has eight irreducible components:

(a) Two components φ({a3k = 0}) = φ({b3k = 0}) = φ({c3k = 0}), for k = 1,2, given by the 3 × 3-slice
Pk = [p∗∗k] having rank � 2.

(b) Three components given, for i = 1,2,3, by the 3 × 3-matrix P1 · (P2)
−1 having an eigenvector

with zero ith coordinate.
(c) Three components given, for j = 1,2,3, by the 3 × 3-matrix P T

1 · (P2)
−T having an eigenvector

with zero jth coordinate.

The two components (a) are the cubic hypersurfaces given by the determinants of P1 and P2. The six
components (b) and (c) are hypersurfaces of degree 6. For instance, the polynomial K that defines the
(b) component φ({a13 = 0}) = φ({b13 = 0}) = φ({c13 = 0}) equals

K = p111 p212 p2
321 p2

332 − 2p111 p212 p321 p322 p331 p332 + p111 p212 p2
322 p2

331

− p111 p222 p311 p321 p2
332 + p111 p222 p311 p322 p331 p332 − p111 p222 p312 p322 p2

331

+ p111 p222 p312 p321 p331 p332 + p111 p232 p311 p321 p322 p332 − p112 p211 p2
321 p2

332

− p111 p232 p311 p2
322 p331 + p111 p232 p312 p321 p322 p331 − p111 p232 p312 p2

321 p332

+ 2p112 p211 p321 p322 p331 p332 − p112 p211 p2
322 p2

331 + p112 p221 p311 p321 p2
332

− p112 p221 p311 p322 p331 p332 − p112 p221 p312 p321 p331 p332 + p112 p221 p312 p322 p2
331

− p112 p231 p311 p321 p322 p332 + p112 p231 p311 p2
322 p331 + p112 p231 p312 p2

321 p332

− p112 p231 p312 p321 p322 p331 − p121 p212 p311 p321 p2
332 + p121 p212 p311 p322 p331 p332

+ p121 p212 p312 p321 p331 p332 − p121 p212 p312 p322 p2
331 + p121 p222 p2

311 p2
332

− 2p121 p222 p311 p312 p331 p332 + p121 p222 p2
312 p2

331 − p121 p232 p2
311 p322 p332

+ p121 p232 p311 p312 p321 p332 + p121 p232 p311 p312 p322 p331 − p121 p232 p2
312 p321 p331

+ p122 p211 p311 p321 p2
332 − p122 p211 p311 p322 p331 p332 − p122 p211 p312 p321 p331 p332

+ p122 p211 p312 p322 p2
331 − p122 p221 p2

311 p2
332 + 2p122 p221 p311 p312 p331 p332

− p122 p221 p2
312 p2

331 + p122 p231 p2
311 p322 p332 − p122 p231 p311 p312 p321 p332

− p122 p231 p311 p312 p322 p331 + p122 p231 p2
312 p321 p331 + p131 p212 p311 p321 p322 p332

− p131 p212 p311 p2
322 p331 − p131 p212 p312 p2

321 p332 + p131 p212 p312 p321 p322 p331

− p131 p222 p2
311 p322 p332 + p131 p222 p311 p312 p321 p332 + p131 p222 p311 p312 p322 p331
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− p131 p222 p2
312 p321 p331 + p131 p232 p2

311 p2
322 − 2p131 p232 p311 p312 p321 p322

+ p131 p232 p2
312 p2

321 − p132 p211 p311 p321 p322 p332 + p132 p211 p311 p2
322 p331

+ p132 p211 p312 p2
321 p332 − p132 p211 p312 p321 p322 p331 + p132 p221 p2

311 p322 p332

− p132 p221 p311 p312 p321 p332 − p132 p221 p311 p312 p322 p331 + p132 p221 p2
312 p321 p331

− p132 p231 p2
311 p2

322 + 2p132 p231 p311 p312 p321 p322 − p132 p231 p2
312 p2

321.

This polynomial was found using the reduced Kalman matrix in [21, Eq. (1.5)]. Under the
parametrization, this expression factors as

K = π2
1 π2

2 π2
3 a13b13c13(a31b32 − a32b31)(a31c32 − a32c31)(b31c32 − b32c31)

× det[a1,b1, c1]det[a2,b2, c2]2

To prove that there is nothing else in ∂M, we proceed as in Lemma 4.5. We examine the Jacobian
of φ, which has rank 17 at generic points of Θ . Using symbolic computation, we find that its singular
locus Θsing, where the rank drops, decomposes into three types of components:

(1) points with π having a zero entry, at which the rank of the Jacobian is generically 12,
(2) points with two of a3,b3, c3 equal, at which the rank of the Jacobian is generically 15,
(3) points with a1,b1, c1 (or with a2,b2, c2) linearly dependent, at which the rank of the Jacobian is

generically 14.

We now show that every point of Θsing lies in a fiber of φ that intersects the boundary of the
polytope Θ . For singular points of type (1), if say π1 = 0, one may replace an ai with any other
vector to obtain another point in the fiber, so this is clear. For type (2), if say b3 = c3, then

π2 · b1 ⊗ b2 ⊗ b3 + π3 · c1 ⊗ c2 ⊗ c3 = A ⊗ b3

for a 3 × 3-matrix A of nonnegative rank 2. Since one can find a nonnegative rank 2 decomposition
of A with zeros in some vector entry, we can construct the desired boundary point in the fiber.

For type (3) singular points we argue as follows. Suppose P is the image of parameters where
a2,b2, c2 are dependent. Let d be a nonzero, nonnegative vector in the span of a1,b1 and consider
the line of tensors

B(t) = P − π3 · (c1 + td) ⊗ c2 ⊗ c3 = a1 ⊗ a2 ⊗ a3 + π2 · b1 ⊗ b2 ⊗ b3 − tπ3 · d ⊗ c2 ⊗ c3.

The sets {a1,b1,d}, {a2,b2, c2} and {a3,b3, c3} are dependent, so the three matrix flattenings of B(t)
have rank � 2. Thus for all t , the tensor B(t) has border rank � 2. Also, B(0) has nonnegative rank 2.

Since B(t) fails to have nonnegative rank 2 for t � 0, there exists t0 � 0 such that B(t0) lies on
the boundary of the tensors of nonnegative rank 2. By Theorem 1.2, B(t0) has a nonnegative rank 2
decomposition with a zero coordinate in some parameter vector. Since

P = B(t0) + π3(c1 + t0d) ⊗ c2 ⊗ c3,

the tensor P has a nonnegative rank 3 decomposition with a zero parameter. Hence P lies in one of
the eight varieties seen in (a), (b), (c).

We note that a distribution P with invertible slices Pi lies in M if and only if all eigenvalues and
eigenvectors of the 3 × 3-matrices P1 · (P2)

−1 and P T
1 · (P2)

−T are nonnegative. Here, one should be
able to pass to the closure and infer a nice semialgebraic description of M. �
Example 5.2. Let M be the set of 2 × 2 × 2 × 2 tensors of nonnegative rank � 3. As in the previous
example, we normalize tensors to have entries summing to one. This model is not identifiable: the
generic fiber of its stochastic parametrization φ is a curve. Facets of the parameter polytope Θ =
�2 × (�1)

12 are mapped into subsets of the model M that are Zariski dense in M. We note that the
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13-dimensional variety M is a complete intersection of degree 16 = 4 · 4 in P15. It is defined by the
determinants of any two of the three 4 × 4-flattenings of P .

Components of the algebraic boundary ∂M might now be obtained from codimension 2 faces of
the polytope Θ . For instance, write

P = π1a1 ⊗ a2 ⊗ a3 ⊗ a4 + π2b1 ⊗ b2 ⊗ b3 ⊗ b4 + π3c1 ⊗ c2 ⊗ c3 ⊗ c4,

and consider the face {a11 = b22 = 0} of Θ . Then φ({a11 = b22 = 0}) is suspected to be a component
in ∂M. This variety has dimension 12 and degree 56 in P15. It is defined, as a subscheme of M, by
55 polynomials of degree 8 in the 16 unknowns pijkl . The smallest of these degree 8 polynomials has
96 terms, and we shall resist the temptation to list them. The semialgebraic geometry of M deserves
further analysis. �
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