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Abstract.—Phylogenetic mixture models, in which the sites in sequences undergo different substitution processes along the
same or different trees, allow the description of heterogeneous evolutionary processes. As data sets consisting of longer
sequences become available, it is important to understand such models, for both theoretical insights and use in statistical
analyses. Some recent articles have highlighted disturbing “mimicking” behavior in which a distribution from a mixture
model is identical to one arising on a different tree or trees. Other works have indicated such problems are unlikely to occur
in practice, as they require very special parameter choices. After surveying some of these works on mixture models, we give
several new results. In general, if the number of components in a generating mixture is not too large and we disallow zero
or infinite branch lengths, then it cannot mimic the behavior of a nonmixture on a different tree. On the other hand, if the
mixture model is locally overparameterized, it is possible for a phylogenetic mixture model to mimic distributions of another
tree model. Although theoretical questions remain, these sorts of results can serve as a guide to when the use of mixture
models in either maximum likelihood or Bayesian frameworks is likely to lead to statistically consistent inference, and
when mimicking due to heterogeneity should be considered a realistic possibility. [Phylogenetic mixture models; parameter
identifiability; heterogeneous sequence evolution.]

As phylogenetic models have developed, there has
been a trend toward allowing increasing heterogeneity
of the evolutionary processes from site to site. For
instance, the standard general time-reversible (GTR)
model is now usually augmented by across-site rate
variation, and the inclusion of invariable sites. Recently,
interest has expanded to more general mixture models,
in which processes vary more widely. Much of this
work has focused on developing models that might
be useful for data analysis and has therefore involved
gaining practical experience with inference from data
sets, and investigating theoretical questions of parameter
identifiability, which is necessary for establishing that
inference is statistically consistent.

Among the results emerging from theoretical
considerations, however, has been the construction
of some explicit examples of mixture models on one
tree that “mimic” standard models on another tree,
for certain parameter choices (Matsen and Steel 2007;
Štefankovič and Vigoda 2007a, b). While it should not be
surprising that a highly heterogenous processes could
produce data indistinguishable from a homogeneous
process on a different tree, the simplicity of these
examples, and the limited heterogeneity they require,
is perhaps more worrisome. If such examples were
widespread, then there would be severe theoretical
limits on our ability to detect when a heterogeneous
process is acting. Moreover, heterogeneous processes
on one tree might routinely mislead us into thinking
data arose on a different tree. We have encountered
researchers who, not surprisingly, find this possibility
alarming.

In discussing mixture models, it is useful to
distinguish between single-tree mixture models, in which
all sites evolve along the same topological tree but

perhaps with different branch lengths, rate matrices,
and base distributions, and multitree mixture models, in
which sites may evolve along different topological trees
(as is appropriate when recombination, hybridization,
or lateral gene transfer, occurs). Although the explicit
examples mentioned above are single-tree mixtures,
mimicking by multitree mixtures is of course also a
possibility.

In this work, we investigate the possibility of
mimicking, with the intent of understanding its origin
and whether it should be a major concern. Because
the question of whether mimicking occurs is closely
related to the question of identifiability of parameters
for mixture models, we begin with a review of the
literature addressing the latter. Next, we establish
that a limited amount of heterogeneity in a single-
tree mixture cannot mimic evolution on a different
tree in most relevant circumstances. We show how
known examples of nonidentifiability of trees due to
mixture processes arise from a readily understood
issue of local overparameterization. Finally, for certain
group-based models (Jukes-Cantor [JC] and Kimura 2-
parameter [K2P]), we also obtain results indicating that
if mimicking does occur for multitree mixtures, then it
is not entirely misleading. In the case of fully resolved
trees, any mimicking distribution can only agree with
a distribution coming from one of the topological trees
appearing in the mixture.

MIXTURE MODELS AND IDENTIFIABILITY

Model-based phylogenetic inference from sequence
data requires compromises between simplicity
and biological realism. Typical current modeling
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assumptions include that all sites evolve on a single
tree, according to the same substitution process, often
with a simple �-distributed scaling of rates across
the sites. Although one can easily formulate models
allowing more complexity, the additional parameters
this introduces can be problematic. Not only is software
likely to require longer runtimes but one also risks
“overfitting” of finite data sets and thus interpreting
stochastic variation as meaningful signal.

As larger data sets become more common, one might
be less concerned with the threat of overfitting, and
thus attracted to the use of more complex models.
However, there are theoretical problems that can also
prevent a complex model from being useful for inference,
no matter how much data one has. If 2 or more
distinct values of some parameter—the topological tree
relating the taxa, for instance—can lead to exactly the
same expectations of data, then that parameter fails
to be identifiable. Without identifiability, even given
access to unlimited data generated exactly according
to the model, no method of inference will be able
to dependably determine the true parameter value. In
contrast, if a parameter is identifiable, then under very
mild additional assumptions, the standard frameworks
of maximum likelihood (ML) and Bayesian inference can
be shown to be statistically consistent. That is, assuming
again that the model faithfully describes the data
generation process, as the size of a data set is increased,
the probability of these methods leading to an accurate
estimate of the parameter approaches 1.

Of course the notion of statistical consistency says
nothing about how statistical inference will behave
when the process generating the data is not captured
fully by the model chosen to analyze it (i.e., when the
model used in the analysis is misspecified). Nonetheless,
consistency is generally viewed as a basic prerequisite
for choosing an inference method, because without
it a method is not sure to give good results even
under idealized circumstances. As no tractable statistical
model is likely to ever capture the full complexity
of the processes behind sequence evolution, some
model misspecification will always be with us. The
inference task then depends on formulating models with
enough complexity to capture the main processes we
believe to be at work (thus minimizing misspecification),
but which have identifiable parameters (so that in a
more perfect world our inference methods would not
fail).

Unfortunately, it is not hard to conceive of data sets
for which the modeling assumptions underlying today’s
routine analyses are strongly violated. For instance,
different parts of a single-gene sequence might undergo
rather different substitution processes, perhaps due
to different substructures of the protein they encode.
Alternatively, lateral transfer of genetic material may
have resulted in sequences that are amalgams of those
evolving on different trees. Analyzing such data under
a standard model simply assumes that neither of these
has occurred, and so is an instance of misspecification.
Although one would hope there would be some

indication of this as the analysis is conducted—perhaps
by a poor likelihood score or poor convergence of a
Bayesian MCMC run—there is no guarantee that an
obvious sign will appear.

An alternative is to consider mixture models, which
explicitly allow for such heterogeneity in the data.
Mixtures consider several classes of sites which might
each evolve according to a distinct process, either on
the same topological tree (a single-tree mixture model) or
on possibly different trees (a multitree mixture model).
In both cases, the use of a mixture model differs from
a partitioned analysis of data, in which the researcher
imposes a partitioning of the sites into classes, each of
which must evolve according to a single standard model.
For a mixture model, there is no a priori partitioning;
instead, the class to which a site belongs is treated as
a random variable. The probability that any site is in a
given class is then a parameter of the model, and thus to
be inferred.

The single-tree GTR+�(+I) model is a familiar, but
highly restricted type of mixture, with few parameters,
that is commonly used in data analysis. Only recently,
Chai and Housworth (2011) completed a rigorous
proof that the parameters of this model, including
the tree topology, are identifiable from its probability
distributions in most cases, and thus that it gives
consistent inference under ML. However, the special case
of the F81+�+I submodel remains open (Allman et al.
2008; Steel 2009).

On the other hand, a single-tree rate-variation model
in which the rate distribution was allowed to be
arbitrary was one of the earliest mixture models seen
to be problematic, as every tree can produce the same
distribution of site patterns (Steel et al. 1994). The
no-common-mechanism (NCM) model introduced by
Tuffley and Steel (1997) provides another example of
a mixture in which distributions do not identify trees.
However, these models are rather unusual, in that the
number of their parameters grows with sequence length.
This extreme overparameterizaton is well understood,
as is the implication that these models do not lead to
statistically consistent inference under a ML framework.
(Steel (2011) offers a more complete and subtle discussion
of NCM models and inference.) Of course, these models
were introduced to elucidate theoretical points and were
not intended for data analysis.

Much recent work on mixture models has focused
on those with a finite (though perhaps large) number
of mixture components, allowing more heterogeneity
among the classes than the simple scaling of the
rate-variation models. Several papers have shown that
inference from data generated by a mixture process
can be poor if the analysis is based on a misspecified
nonmixture model (Kolaczkowski and Thornton 2004;
Mossel and Vigoda 2005, 2006). The examples in these
works indicate that we may be misled if we ignore the
possibility of such heterogeneity. This point is further
underscored by Matsen and Steel (2007), who discuss
why analysis with a misspecified nonmixture can lead
to erroneous inference in some specific circumstances.
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As there is no general reason why one should expect
good inference with a misspecified model, to our mind
these works primarily indicate the importance of further
study of mixture models, so that they may be applied
intelligently when substantial heterogeneity is possibly
present.

However, several works have indicated that models
with a finite number of mixture classes may have
theoretical shortcomings as well. Working with no
restriction on the number of classes, Štefankovič and
Vigoda (2007a, b) emphasize that unless a model is
special enough that there are linear inequalities (which
they call linear tests) distinguishing between unmixed
distributions arising on different trees, then there will be
cases in which tree topologies cannot be identified from
single-tree mixture distributions. Matsen et al. (2008)
explore this more particularly for the Cavender–Farris–
Neyman (CFN) 2-state symmetric model.

Although there is no doubt that certain mixtures
are problematic due to the failure of identifiability for
some parameter choices, whether this is really of great
practical concern is in fact not at all clear from the
results mentioned so far. Thoughtful use of mixture
models for data analysis has seemed to perform well
for a number of research groups (Evans and Sullivan
2012; Huelsenbeck and Suchard 2007; Le et al. 2008; Pagel
and Meade 2004, 2005; Ronquist and Huelsenbeck 2003;
Wang et al. 2008). Although publication bias against
failed analyses could be responsible for a lack of reports
of difficulties with mixture models in the literature,
we also have not heard of such problems through our
professional interactions. Of course this does not rule
out the possibility that data are produced by even more
heterogeneous processes that mimic those assumed in
the analysis, and thus mislead us into believing an
adequate model has been chosen.

Several articles (Allman et al. 2011; Allman and Rhodes
2006; Rhodes and Sullivant 2012) have given a strong
theoretical indication that problematic mixtures, for
which trees are nonidentifiable, are quite rare. Using
algebraic techniques building on the idea of phylogenetic
invariants, these works show in a variety of contexts
that mixture distributions cannot mimic distributions
arising on other trees, for generic choices of numerical
parameters. “Generic” here has a precise meaning that
informally can be expressed as “if the model parameters
are chosen at random, and thus do not have any
special values or relationships among themselves.” More
formally, the set of exceptional parameters leading to
nonidentifiability is of strictly smaller dimension than
the full parameter space. Thus, if the true parameters
were chosen by throwing a dart at the parameter space,
with probability 1 they would lie off that exceptional
set. Rhodes and Sullivant (2012) give an upper bound
on the number of classes that, for a quite general model,
ensures generic identifiability of the trees in all single-
tree and in many multitree mixtures. This bound is
exponential in the number of taxa, and likely to be larger
than the number of classes one would actually use in
data analysis.

Although these positive theoretical results indicate
one should seldom encounter problems with the
judicious use of a mixture model in data analysis,
one may still worry about the possible exceptions.
The exceptional cases are generally not explicitly
characterized in these articles, and the arguments used
to establish that they form a set of lower dimension
are rather technical. The intuition of the authors is that
the potential exceptional set one could extract from
these works is likely to be much larger than the true
exceptional set, as an artifact of the techniques of proof.
Moreover, experience with other types of statistical
models outside of phylogenetics (e.g., hidden Markov
models and Bayesian networks) with similar exceptional
sets of nonidentifiability has shown they can still be
quite useful and are generally not problematic for data
analysis.

MIMICKING AND IDENTIFIABILITY

Considering models with a small number of mixture
classes, Štefankovič and Vigoda (2007a, b) and Matsen
and Steel (2007) give explicit examples of parameter
choices in certain 2-class CFN single-tree mixture models
that lead to exactly the same unmixed probability
distributions as a standard model on a different tree.
Because the unmixed model is a special case of a 2-class
single-tree mixture (in which one class does not appear,
due to a mixing parameter of 0, or alternatively in which
the 2 classes behave identically), one interpretation of
this result is a failure of tree identifiability for 2-class CFN
single-tree mixtures. Indeed, this example shows one
cannot have identifiability across all of parameter space
for this model, and thus that the generic identifiability
mentioned in the last section is the best one can establish.

Another interpretation of the example, emphasized
by the term “mimicking” used by Matsen and Steel
(2007), is that we could not distinguish data produced
by the heterogeneous model from that produced by the
unmixed one, and thus would have no indication that
we should consider a mixture process as underlying the
data. The simpler unmixed model would already fit data
well, and we might not even consider the possibility of
heterogeneity misleading us. (Of course performing an
analysis of such data under the mixture model would
not help us anyway, as the tree is not identifiable under
it for the specific numerical parameters generating the
data.)

Simpler models are nested within those allowing more
heterogeneity and, as this example shows, the possibility
of mimicking arises because identifiability may not hold
for all parameter values of the more complex model. The
results of Allman et al. (2011); Allman and Rhodes (2006)
and Rhodes and Sullivant (2012), which establish generic
identifiability of mixture models, therefore indicate that
mimicking should be a rare phenomenon, requiring
very special parameter choices in the more complex
model. If a heterogeneous model has been shown to
have generically identifiable parameters, then provided
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its parameters are chosen at random the probability
of it mimicking a submodel is 0. Nonetheless, if only
generic identifiability of parameters of a mixture model
is known, without an explicit characterization of those
special parameter choices leading to nonidentifiablity,
then we still have a less-than-solid understanding of
when mimicking can occur.

In subsequent sections, we give mathematical
justification—with no cryptic assumptions of genericity
of parameters—that a limited amount of heterogeneity
in a single-tree mixture cannot mimic evolution on a
different tree in most relevant circumstances. We also
show how examples of nonidentifiability of trees due to
mixture processes can arise from a readily understood
issue of local overparameterization. This explains the 2-
class mimicking examples of Štefankovič and Vigoda
(2007a, b) and Matsen and Steel (2007), which are
constructed for 2-state models whose parameter space
is of larger dimension than the distribution space for a
4-taxon tree. However, this is not the setting in which
most data analysis is likely to take place. For 4-state
models, encompassing those such as the GTR which
are in common use, we show even 3-class mixtures
cannot mimic nonmixtures. Although these positive
identifiability results do not encompass the large number
of mixture components allowed for generic parameters
in the identifiability results of Rhodes and Sullivant
(2012), by excluding the possibility of exceptions they
are, in some sense, more complete. Finally, for certain
group-based models (JC and K2P), for which linear
tests exist, we also obtain results indicating that if
mimicking does occur for multitree mixtures, then it
is not entirely misleading. In the case of fully resolved
trees, any mimicking distribution can only agree with
a distribution coming from one of the topological trees
appearing in the mixture.

The mathematical tools we use to obtain our results
involve the polynomial equalities called phylognetic
invariants, which have been extensively studied for
both the group-based models and the general Markov
model, and mixtures built from them. However, we
supplement these with some polynomial inequalities.
Although the potential usefulness of inequalities was
made clear even in the seminal paper of Cavender
and Felsenstein (1987) which introduced invariants,
their study unfortunately remains much less developed
than the study of invariants. Although a deeper
understanding of inequalities for both unmixed and
mixture models would be highly desirable, here we make
do with a few ad hoc ones.

PHYLOGENETIC MIXTURE MODELS

In this section, we describe the class of phylogenetic
models that we study. Our definition of an unmixed
phylogenetic model is broad, encompassing most
standard phylogenetic models such as the GTR, as well
as those studied by Štefankovič and Vigoda (2007a, b),

Matsen and Steel (2007), and Matsen et al. (2008).
Informally, we consider continuous-time models, but do
not require time reversibility or stationarity and allow
the substitution process to change at a finite set of points
on the tree. Such relaxations of the usual modeling
assumptions have appeared in several works (Galtier and
Gouy 1998; Yang and Roberts 1995; Yap and Speed 2005).

We assume that the random variables modeling
characters have �≥2 states, the most important values
being �=4 (DNA models), �=2 (purine/pyrimidine
models), and �=20 (protein models).

By a rate matrix for a state substitution process,
we mean a �×� matrix with nonnegative off-diagonal
entries, whose row sums are all zero. (To fix a scaling, one
may also impose some normalization convention.) Such
a rate matrix Q= (qij) generates a continuous-time �-state
Markov chain. Associated with Q is a directed graph,
GQ, on nodes {1,2,...,�} representing states, which has
an edge i→ j if, and only if, qij �=0. The process defined by
Q is said to be irreducible if GQ is strongly connected, that
is, there is a directed path from node i to node j for all
i,j. Informally, this means it is possible to transition from
any state to any other state, by possibly passing through
other states along the way. Irreducibility guarantees that
for all t>0, the discrete-time Markov transition matrix
exp(Qt) has strictly positive entries. Of course exp(Qt) is
the identity matrix when t=0, and so has zero entries.

Consider an unrooted, combinatorial, phylogenetic
tree, T, in which we allow polytomies. Then, by
the general continuous-time model on T, we mean the
following: First, possibly introduce a finite number of
degree 2 nodes (in order to model a root, and points
where the state substitution process changes) along any
of the edges of T to obtain T′. Then, choose some node to
serve as a root of T′ and make any assignment of a strictly
positive �-state distribution π at the root. Irreducible rate
matrices Qi and edge lengths ti ∈R≥0 are assigned to
each edge i of T′. This notion is more general than is
often used in most practical data analysis, since 1) π need
not be the stationary distribution of any Qi, and 2) the
Qi may be different for each edge; we do not assume a
common process across the tree. We at times restrict to
considering only irreducible rate matrices of a certain
form (e.g., Jukes–Cantor (JC) or GTR) and specialized π,
in order to draw conclusions about submodels.

If numerical model parameters are specified as above,
then the Markov transition matrix on edge i of T′ is
Mi =exp(Qiti). If T′′ denotes the tree obtained from T′
by suppressing nonroot nodes of degree 2, and edges
i,i+1,...,i+r of T′ become a single edge of T′′, then one
defines a Markov matrix on that edge of T′′ as the product
MiMi+1 ···Mi+r. From the assumption of irreducibility of
rate matrices, we immediately obtain the following.

Lemma 1 Consider any choice of general continuous-time
model parameters on a phylogenetic tree T. Then, the Markov
transition matrices associated to the edges of T′ and T′′ are
each either the identity matrix, or a nonsingular matrix with
strictly positive entries.
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The root distribution and collection of edge transition
matrices on T′′ determine the probabilities of any site
pattern occurring in sequence data. For instance, in a
5-taxon case of DNA sequences, the 45 site patterns
AAAAA, AAAAG, …, TTTTT will be observed with
probabilities that can be computed from the base
frequencies (the entries of π), and probabilities of
various base substitutions over edges of the tree (the
entries of the Mi). The probability distribution for a choice
of general continuous-time model parameters for a fixed
tree T is then just the vector of the probabilities of
all such site patterns. In the 5-taxon DNA case, for
example, it is an ordered list of 45 numbers describing
expected frequencies of site patterns assuming the given
parameter values.

By MT we denote the set of all probability
distributions arising on T for all choices of general
continuous-time parameters. One can think of this
object as encapsulating descriptions of all the infinite
data sets that might be produced on the topological
tree T, regardless of the specific base distribution, rate
matrices, and edge lengths used. It is thus a basic
theoretical object relating the general continuous-time
substitution process on T to data, without regard to
specific numerical parameters. We therefore refer to
MT as the general continuous-time model on T. (Later in
this article, we use the same notation for a submodel
obtained by restricting parameters to a specific form,
such as JC, but the distinction will be clear from the
context.)

The open phylogenetic model, M+
T ⊆MT , is the subset

of distributions obtained by requiring that no internal
branch lengths are zero, that is all ti >0 except possibly
for pendant edges. Because we allow trees to have
polytomies, any distribution in MT is contained in
the open model for a possibly different tree; one
merely contracts all internal edges of T which were
assigned branch length zero, thus introducing new
polytomies.

If T ={T1,...,Tr} is a multiset of topological trees, then
the mixture model on T is the set MT of all probability
distributions of site patterns of the form

s1p1 +s2p2 +···+srpr,

where pi ∈MTi is a probability distribution arising on Ti
and the si ≥0 are mixing parameters with s1 +s2 +···+sr =
1. The si can be interpreted as the probabilities that any
given site is in class i, while pi is the vector of site pattern
probabilities for that particular class. The open mixture
model M+

T is defined similarly, with pi ∈M+
Ti

. Note that in
the open mixture model, we allow all mixing parameters,
so that some mixture components may in fact not appear
if an si =0. If all mixing parameters are required to
be strictly positive, we denote the set of distributions
by M++

T .

RESULTS

Single-tree Mixture Models

Matsen and Steel (2007) and Štefankovič and Vigoda
(2007b) showed that under the CFN model, it is possible
for a 2-class mixture on a single topological tree (i.e.,
T ={T,T}) to produce distributions matching those of an
unmixed model on a different tree. Matsen et al. (2008)
showed that this is possible if, and only if, the trees
involved differ by a single NNI move.

Our main result in this setting shows that these
possibilities are essentially a “fluke of low dimensions,”
tied to the 2-state nature of the CFN model. Models
with larger state spaces, such as the 4 states of
DNA models, cannot exhibit such mimicking behavior
with such a small number of mixture components.
In a subsequent section, a further analysis will show
that this CFN mimicking is a consequence of local
overparameterization.

Theorem 1 Consider the �-state general continuous-time
phylogenetic model. Let T consist of �−1 copies of tree T1,
and S consist of a single-tree T2. Then, MT and M+

S have no
distributions in common, and thus mimicking cannot occur,
unless T1 is a refinement of T2.

Note that while the mixture on T in this theorem
has all classes evolving on the same topological tree,
no further commonality across classes is assumed. The
individual classes may not only have different edge
lengths associated to the tree but also different base
distributions and rate matrices.

A closely related identifiability result was already
known to hold for generic choices of parameters in
a slightly broader setting (Allman and Rhodes 2006),
so the contribution here is to remove the generic
assumption. Note that for the important case of �=4,
corresponding to DNA models, this implies that we
cannot have a 2- or 3-class mixture mimic the distribution
on a single tree unless we allow zero length branches
in the mixture components. This indicates the examples
of Matsen and Steel (2007) and Štefankovič and Vigoda
(2007a, b) cannot be generalized to 4-state models,
without passing to at least a 4-class mixture.

Local Over-parameterization
Note that the examples of Matsen and Steel (2007)

and Štefankovič and Vigoda (2007b) are allowed by
Theorem 1, because they are constructed for a model
with �=2 and T a 2-element multiset. To see why the
existence of such examples should not be too surprising,
it is helpful to first consider an unrooted 4-leaf tree T and
perform a parameter count for the CFN model. A 2-class
single-tree mixture on T can be specified by 11 numerical
parameters: for each class, there are 5 Markov transition
matrices with 1 free parameter (the edge length) each,
and 1 additional mixing parameter. However any 4-
taxon CFN mixture distribution on any 4-taxon tree lies
in a certain 7-dimensional space, due to the symmetry
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of the model. An 11-dimensional parameter space is
thus collapsed down to a subset of a 7-dimensional
distribution space. Although this does not prove every
distribution with such symmetry must arise from this
2-class mixture, the excess of parameters suggests that it
is likely that many do. As a result, one suspects at least
some nonmixture distributions on trees different from T
are likely to be mimicked by this 2-class mixture. This
suspicion is then confirmed by explicit examples.

When a tree has many more leaves, however, a similar
parameter count for the 2-class CFN mixture can fail
to indicate potential problems, because the number of
model parameters grows linearly with the number of
leaves, whereas the number of possible site patterns
grows exponentially. However, we show below that one
can extend mimicking examples on small trees to larger
trees, thus creating what might at first appear to be
more unexpected instances of mimicking. We refer to
such examples, where mimicking is produced first on a
small tree by allowing an excessive number of mixture
components, and then extended to larger trees, as
arising from local overparameterization. This notion can be
used to produce many new examples of the mimicking
phenomenon, on single- or multitree mixtures.

We distinguish here between 3 types of mimicking, of
different degrees of severity. For notational convenience,
we use M∗

T to denote any of the models MT ,M+
T , or

M++
T .

Definition A mixture model M∗
T weakly mimics

distributions in M∗
S if M∗

T and M∗
S have distributions

in common, that is, if M∗
T ∩M∗

S �=∅. A mixture model
M∗

T strongly mimics distributions in M∗
S if dimM∗

T ∩
M∗

S =dimM∗
S . A mixture model M∗

T completely mimics
distributions in M∗

S if M∗
S ⊆M∗

T .

Thus, weak mimicking requires only a single instance
of probability distributions arising on S and T
matching, for a single pair of parameter choices for the
models. Strong mimicking requires a neighborhood of
distributions arising on S to be matched by ones arising
on T , so that all parameter choices near a specific pair
lead to mimicking. Complete mimicking requires every
distribution arising on S to be matched by one arising on
T , so that mimicking occurs for all parameter choices.

More informally, weak mimicking that is not strong
can be viewed as unlikely to be problematic in practice,
because it does not occur over a range of parameter
values. Similarly, strong mimicking that is not complete
may be a serious problem on parts of parameter space,
but is limited in not affecting all choices of parameters.
Complete mimicking, however, means it is impossible to
determine if any data fit by the mimicked model actually
arose from the mimicking one.

To make the idea of local overparameterization
precise, we need the concept of a fusion tree, as depicted
in Figure 1. Informally, one considers a “core” tree with
only a few leaves, and then enlarges it to relate many

FIGURE 1. The fusion tree TB is constructed from a tree T with
leaf set X ={a,b,c,d} and a set B={Ba,Bb,Bc,Bd} of fusion ends for X.
The construction using B could be applied to any of the quartet trees
with leaf set X, yielding fusion trees differing by an NNI move from
the TB shown here. This process underlies the extension of mimicking
examples on small trees to larger ones.

more taxa, by attaching rooted trees to the leaves. Let T
be the core tree relating taxa X. For each x∈X, let Bx be
a rooted tree with taxon set Ax, where the Ax have no
elements in common. A set of such trees B={Bx :x∈X}
is called a set of fusion ends for X. The fusion tree TB, with
leaf set ∪x∈XAx, is obtained from T and B by identifying
each leaf x of T with the root of Bx. In short, the fusion
tree TB is obtained by fusing the trees in B onto the
leaves of T.

If T is a collection of trees with the same leaf set X,
and B={Bx :x∈X} is a set of fusion ends for X, let T B

be the multiset T B ={TB :T ∈T } of fusion trees. Thus, all
trees in T B display the same topological structure for the
subtrees of the fusion ends, but can differ in their cores.
The following propositions allow us to pass mimicking
properties from small trees to large trees.

Proposition 1 Suppose for a taxon set X that M∗
T weakly

mimics M∗
S , and that B is a set of fusion ends. Then, M∗

T B
weakly mimics M∗

SB .

Proof . Any distribution q∈M∗
T ∩M∗

S arises from
parameters on the trees in T , as well as from parameters
on the trees in S. Retain these parameters on the
corresponding edges of the trees in T B and SB. Choose
a length and rate matrix for each edge of each tree in
B, thus determining probabilities of site patterns at the
leaves of the fusion ends conditioned on root states.
Use these choices for the corresponding edges in the
individual fusion subtrees in T B and SB. With the same
mixing parameters as led to q, these parameters give rise
to a distribution qB ∈M∗

T B ∩M∗
SB . �

Under an additional assumption that the mimicked
model M∗

S is unmixed, more can be said.

Proposition 2 Let S ={T}, be a single tree, and suppose that
M∗

T strongly mimics (or completely mimics) M∗
S . Then, for

any set B of fusion ends for X, M∗
T B strongly mimics (or

completely mimics) M∗
SB .
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Proof . This follows from the same argument as was
given for Proposition 1, with the additional observation
that the parameters assigned to edges in the fusion
ends can be varied arbitrarily. Because S consists of
a single tree, this will give a give a full-dimensional
set of distributions in M∗

SB which are mimicked by
distributions in M∗

T B . If M∗
T completely mimics M∗

S ,
note that every distribution in M∗

SB arises from our
construction so that M∗

T B completely mimics M∗
SB . �

These propositions allow the construction of explicit
examples of mimicking behavior on large trees from
those found on small trees. A typical result of this type,
using quartet trees as the core, is

Theorem 2 Let T consist of r copies of the quartet tree T12|34,
and S consist of s copies of the quartet tree T13|24. Let T and
T′ be trees with at least 4 leaves that differ by an NNI move,
T ′ consist of r copies of T, and S ′ consist of s copies of T′.

If M∗
T weakly mimics M∗

S then M∗
T ′ weakly mimics M∗

S ′ .
Furthermore, if M∗

T strongly (or completely) mimics M∗
S and

s=1, then M∗
T ′ strongly (or completely) mimics M∗

S ′ .

Proof . Two trees differ by an NNI move if, and only
if, they are obtained from applying fusions to 2 differing
quartet trees. Hence, we can apply Propositions 1
and 2. �

In particular, Theorem 2 implies that if quartets
give mimicking behavior, then we will have mimicking
behavior on trees of arbitrary size. (Note conversely that
Theorem 31 of Matsen et al. (2008) shows that the only
way 2-class single-tree CFN mixtures can mimic CFN
nonmixtures on large trees is through such a process
applied to quartet overparameterization.)

Consider now the general continuous-time model on
a 4-leaf tree. With 5 edges, a distribution is specified by
≈5�2 numerical parameters. Because there are no linear
tests for this model, and the probability distribution lies
in a space of dimension �4 −1, we expect that a mixture
of more than ≈�2/5 components will include an open
subset of the probability simplex. Hence, such a model is
likely to display mimicking behavior. Thus, some sort of
mimicking seems unavoidable for even moderately sized
mixtures. To illustrate, with DNA sequences and �=4, an
unmixed model is specified by 63 parameters, so the 4-
class mixture model has enough parameters (4×63+3=
255) that it is likely to include a full-dimensional subset
(since �4 −1=255) and produce mimicking.

Note that mimicking of the sort produced by local
overparameterization need not be limited to that arising
from quartet trees as in the specific example above. With
enough mixture components, for some models it may be
possible for a mixture on a relatively small tree to mimic
a distribution from another tree, differing by more than
a single NNI move. This mimicking would again extend
to larger trees, using the fusion process of Propositions 1
and 2.

From a practical perspective, however, mimicking
through local overparameterization seems unlikely to
be much of an issue in most data analyses, because the
mixture parameters leading to it require that the mixed
processes differ only on a small part of the tree and
are identical elsewhere. Researchers studying biological
situations in which this might be plausible should,
however, be aware of the possibility.

Finally, we emphasize that we have not shown that
local overparameterization is the only possible source
of mimicking. It would be quite interesting to have
examples of mimicking of other sorts or extensions of
Theorem 31 of Matsen et al. (2008) to other models and
more mixture components.

Models with Linear Tests
An early motivation for the study of linear invariants

for phylogenetic models was that they are also invariants
for mixture models on a single tree, and thus offered
hope for determining tree topologies even under
heterogeneous processes across sites. Although poor
practical performance (Huelsenbeck 1995) even in the
unmixed case led to their abandonment as an inference
tool, they remain useful for theoretical purposes.
However, among the commonly studied phylogenetic
models, the JC and K2P models are the only ones which
possess phylogenetically informative linear invariants.

Štefankovič and Vigoda (2007a) used these linear
invariants and the observation that they can be used to
give linear tests, to show that if S and T are multisets
each consisting of a single repeated n-leaf binary (fully
resolved) tree, and these trees are different, then M+

T
and M+

S have no distributions in common, regardless
of the number of mixture components. We next explore
the extent to which these results can be extended to
nonidentical tree mixtures for the JC and K2P models.

Theorem 3 Consider the JC and K2P models. Let S be a
multiset of many copies of tree T1 on X, and T an arbitrary
multiset of trees on X. If MS and M++

T contain a common
distribution, then for every four element subset K ⊆X, and for
all T ∈T , either T|K is an unresolved (star) tree, or T|K =T1|K.
Thus, all trees in T have T1 as a binary resolution.

Furthermore, if all trees T ∈T are binary, and T1 /∈T then
MS and M+

T have no distributions in common.

Informally, the last statement of this theorem states
that arbitrary multitree phylogenetic mixtures on fully
resolved trees cannot mimic mixtures on a single tree,
unless that tree appears in some component of the
mixture. Thus, if one erroneously assumed such a
mimicking distribution was from a single-tree mixture,
the single tree one would recover would in fact reflect
the truth for at least one mixture component.

In the case that S ={T1}, so MS is not a mixture but
rather a standard model, for the JC and K2P models,
this again rules out any mimicking examples of the sort

 at R
asm

uson L
ibrary on M

ay 14, 2013
http://sysbio.oxfordjournals.org/

D
ow

nloaded from
 

http://sysbio.oxfordjournals.org/


Copyedited by: ES MANUSCRIPT CATEGORY: Article

[12:53 1/10/2012 Sysbio-sys064.tex] Page: 1056 1049–1059

1056 SYSTEMATIC BIOLOGY VOL. 61

Matsen and Steel (2007) and Štefankovič and Vigoda
(2007b) give for CFN, unless one allows zero length
branches. This clearly indicates the special nature that
any such exceptional cases must have.

Our final theorem shows that the special case of
mimicking allowed by Theorem 3 actually occurs for the
JC model. We provide a construction of such mimicking,
where T contains nonbinary trees that are degenerations
of the tree T.

Theorem 4 Let T be a tree with internal vertex v which is
adjacent to 3 other vertices u1,u2, and u3. For i=1,2, let
Ti be the tree obtained from T by contracting the edge uiv.
Let S ={T} and T ={T1,T2}. Then, under the JC model M∗

T
completely mimics M∗

S .

CONCLUSION

Interest in the analysis of datasets produced by
heterogeneous evolutionary processes is likely to grow,
as larger datasets are more routinely assembled. With
the increased complexity of heterogeneous models,
however, comes the potential loss of ability to validly
infer even the tree (or trees) on which the models
assume evolution occurs. Such a failure can happen
not because data are insufficient to infer parameters
well, but rather due to theoretical shortcomings such as
nonidentifiability of parameters or mimicking behavior.
Extreme instances of mixture models, such as the “no
common mechanism” model, are known to exhibit such
flaws.

Although one might wish that software allowing the
use of mixture models could warn one if a chosen
model is theoretically problematic, this is of course
asking too much. A programmed algorithm applied to
a nonidentifiable model still runs and produces some
output. Programming decisions that have no effect on
the output when an identifiable model is used may
result in certain biases under a nonidentifiable one, so
that, under a ML analysis for instance, it appears that
a particular parameter value has been inferred even
though other values produce the same likelihood. In
the same vein, a Bayesian MCMC analysis may have
poor convergence, and the posterior distribution may be
highly sensitive to the choice of prior. Thus, theoretical
understanding of identifiability issues are essential.

Establishing which phylogenetic mixture models have
few, or no, theoretical shortcomings has proven difficult,
but a collection of results has now emerged that can at
least guide a practitioner. Rhodes and Sullivant (2012)
provide the largest currently known bound on how many
mixture components can be used in a model before
identifiability may fail, a bound that is exponential in
the number of taxa. However, this bound is established
only for generic choices of parameters. Although similar
generic results for complex statistical models outside
of phylogenetics are generally accepted as indications
a model may be useful, it is still desirable to understand
the nature of possible exceptions.

Explicit examples have shown exceptions do indeed
exist for phylogenetic mixtures, and in particular that the
mimicking of an unmixed model by a mixture can occur,
even with fairly limited heterogeneity. However, the
structure of known examples is quite special, depending
on what we have called local overparameterization. We
have also shown here that local overparameterization
provides a general means by which examples of lack of
identifiability or mimicking can be constructed in the
phylogenetic setting. Although a simple check that the
number of parameters of a complex model exceeds the
number of possible site patterns can serve as a indication
of a failure of identifiability in other circumstances,
this check may not uncover problems due to local
overparameterization.

Although we do not believe problems due to
mimicking through local overparameterization are at all
common in data analysis, those analyzing data which
could plausibly be produced by heterogeneous processes
should be aware of the possibility. Mimicking due to
local overparameterization arises because of excessive
heterogeneity of a mixture on a small core part of the
tree, combined with homogeneity elsewhere in the tree.
The plausibility of this occurring must be judged on
biological grounds. If a mixture remains heterogeneous
over the entire tree, then by our understanding of generic
identifiability of model parameters, mimicking should
not occur, with probability 1.

Under more assumptions than those of Rhodes and
Sullivant (2012), we have shown here that it is possible to
rule out some undesirable model behavior. If the number
of mixture components is small (3 or fewer for DNA
models) then there can be no mimicking of an unmixed
model by a single-tree mixture of general continuous-
time models. Attempting to raise this bound would
likely require carefully cataloging exceptional cases,
including those arising from local overparameterization
and other causes (if they exist). The technical challenges
of doing this may mean that theorems indicating exact
circumstances under which a given mixture model may
lack parameter identifiability will elude us for some time.

Finally, in the even more specialized setting of certain
group-based models, previous work had shown that
mixtures on one tree topology could not mimic those on
another, even if arbitrarily many mixture components
are allowed. We extended this in Theorem 3 to show
that a mixture on many different trees could not mimic
that on a single tree unless there are strong relationships
between the tree topologies. Although investigations
with these models have little direct applicability to
current practice in data analysis, the insights gained
provide some indications of how more complicated
models might behave.
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Steel M., Sźekely L., Hendy M. 1994. Reconstructing trees when
sequence sites evolve at variable rates. J. Comput. Biol. 1:153–163.

Steel M. 2009. A basic limitation on inferring phylogenies by pairwise
sequence comparisons. J. Theor. Biol. 256:467–472.

Steel M. 2011. Can we avoid “SIN” in the house of “No Common
Mechanism”? Syst. Biol. 60:96–109.

Tuffley C., Steel M. 1997. Links between maximum likelihood and
maximum parsimony under a simple model of site substitution.
Bull. Math. Biol. 59:581–607.
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APPENDIX

Mathematical Arguments
To prove Theorem 1, we first handle the special case of

4-leaf trees. We need the following definition.

Definition If P is a probability distribution for a �-state
phylogenetic model on a n-taxon tree, we view it as an n-
dimensional �×�×···×� tensor, or array, of probabilities,
P= (pi1i2...in ), where the index il refers to the state at leaf l.
Then, given any bipartition of the leaves into nonempty subsets
{1,2,...,n}=A
B, the A|B flattening of P is the �|A|×�|B|
matrix FlatA|B with the same entries as P but with rows
indexed by state assignments to leaves in A, and columns
indexed by state assignments to leaves in B.

Lemma 2 Consider 4-leaf trees T1 with split 12|34, and T2
either the tree with split 13|24 or the star tree. Then, the
statement of Theorem holds. That is, MT ∩M+

S =∅ unless
T2 is the star tree.

Proof . Let p denote a probability distribution p∈MT ,
which we consider as a 4-dimensional tensor. Consider
the {1,2}|{3,4} flattening Flat12|34(p), which is a �2 ×�2

matrix. From (Allman and Rhodes, 2006) or (Eriksson,
2005), it is known that if p∈MT then the rank of
Flat12|34(p) is at most �(�−1).

On the other hand, if T2 =13|24 and q∈M+
S =M+

T2
,

then the matrix Flat12|34(q) has a factorization as

Flat12|34(q)= (M1 ⊗M2)diag(N)(M3 ⊗M4), (1)

where Mi,1≤ i≤4 are the transition matrices associated
with the leaf edges in the tree, and N =diag(π)M5 where
M5 is the transition matrix associated to the internal edge
and we have assumed the tree root is at one end of that
edge. Here, diag(N) denotes a �2 ×�2 diagonal matrix
constructed with the entries of N on its diagonal in an
appropriate order. By Lemma 1, all transition matrices
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for the model MT2 are nonsingular. Thus, the �2 ×�2

matrices M1 ⊗M2 and M3 ⊗M4 are nonsingular. Also by
Lemma 1, for the open model M+

T2
, the matrix diag(N)

is nonsingular because all the entries of π and M5 are
nonzero. Thus, if q∈M+

T2
, Flat12|34(q) has rank �2.

If T2 is the star tree, then formula (1) still holds if one
sets M5 = I. In this case, the matrix diag(N) is singular,
and the rank of Flat12|34(q) is �.

These conditions on the rank of Flat12|34(q) now imply
the desired conclusion. �

Proof of Theorem 1 If T1 is a refinement of T2, then one
checks that M+

S ⊂MT , by choosing the mixing weights
as a standard unit vector, and setting edge lengths equal
to zero on the edges appearing in T1 but not T2.

So assume that T1 is not a refinement of T2, yet
MT ∩M+

S is nonempty. We may also assume that T1
is a binary tree, by passing to a refinement, as this only
enlarges the mixture model. There exists a subset K of 4
taxa such that the induced quartet trees T1|K and T2|K are
different. Marginalizing to K, because (MT )|K =M(T |K)
and (MS )|K =M(S|K), we have that M(T |K) ∩M+

(S|K) is
nonempty.

Now, by Lemma 1, the transition matrices that arise
in the resulting quartet trees will be products of
nonsingular matrices that either are the identity, or have
all positive entries. Thus, each quartet tree transition
matrix is nonsingular and can have zero entries if, and
only if, it is the product of identity matrices. We now
apply Lemma 2 to deduce that all the edge lengths
along the internal edge of T2|K must be zero. But this
contradicts the fact that we were working with the open
model M+

S . �

To prove Theorem 3, we recall a number of
results about the JC and K2P models, including their
descriptions in Fourier coordinates and properties of
linear invariants/tests for these models.

The JC, K2P (and K3P) models are group-based
models, with a special structure governed by the finite
abelian group G=Z2 ×Z2. We associate nucleotides with
elements of this group through

A= (0,0), C= (0,1), G= (1,0), T = (1,1).

The discrete Fourier transform (also called Hadamard
conjugation in this context) (Evans and Speed 1993;
Hendy 1989) is an invertible linear transformation that
simplifies the parameterization of a group-based model.
In Fourier coordinates, qg1...gn , the parameterization is
described as follows: to each of the tree T’s splits A|B,
we associate a collection of parameters aA|B

g where g∈G.
Then,

qg1...gn =
{∏

A|BaA|B∑
i∈A gi

if
∑

gi =0
0 otherwise.

. (2)

Proposition 3 Suppose that a transition matrix has the form
exp(Qt) where Q is a rate matrix for a Z2 ×Z2 group-based
model, t>0, and Q defines an irreducible Markov chain. Then,
the Fourier parameters satisfy the constraints:

aA|B
A =1,

aA|B
C ≥aA|B

G aA|B
T ,

aA|B
G ≥aA|B

C aA|B
T ,

aA|B
T ≥aA|B

C aA|B
G ,

with aA|B
C ,aA|B

G ,aA|B
T ∈ (0,1). When t=0, all parameters

equal 1.
Additionally, under the K2P model, aA|B

G =aA|B
T , and

under the JC model aA|B
C =aA|B

G =aA|B
T .

Proof . Let Q be a rate matrix of K3P format and H
the associated 4×4 Hadamard matrix, that is, for some
�,�,�≥0, �=−�−�−�,

Q=
⎡
⎢⎣

� � � �
� � � �
� � � �
� � � �

⎤
⎥⎦ and H =

⎡
⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎦.

The Fourier coordinates for this model consist of
the eigenvalues of the matrix exp(Qt). The matrix H
consists of the eigenvectors of the matrix Q, and hence
of exp(Qt). We compute that H−1QH is the diagonal
matrix diag(0,−2(�+�),−2(�+�),−2(�+�)). From this,
we deduce that the Fourier coordinates for this model
are then

aA|B
A =1, aA|B

C =exp(−2t(�+�)), aA|B
G =exp(−2t(�+�)),

aA|B
T =exp(−2t(�+�)).

Because Q gives an irreducible Markov chain, at most
one of �,�, and � can be zero, which implies that all of
aA|B

C ,aA|B
G ,aA|B

T <1 when t>0. Furthermore, we see that
the claimed inequalities hold, for example,

aA|B
C =exp(−2t(�+�))≥exp(−2t(�+2�+�))=aA|B

G aA|B
T .

Note also that the K2P model consists of all rate matrices
where �=�, which implies that aA|B

G =aA|B
T , and the

JC models consists of all rate matrices where �=�=�,
which implies that aA|B

C =aA|B
G =aA|B

T . �

Proposition 4 Let T1 =T12|34, T2 =T13|24, and T3 =T14|23.
Then, under the JC and K2P models, the polynomial

l(q)=qGGGG −qGGTT

satisfies the following properties:

1. l(q)=0 for all q∈MT1 ,

2. l(q)≥0 for all q∈MTi , i=2,3,
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3. l(q)>0 for all q∈M+
Ti

, i=2,3, and

4. if q∈MTi , for i=2 or 3, and l(q)=0, then the branch
length of the internal edge is zero.

Proof . To evaluate the polynomial l(q), we substitute
for q the parametric expressions given in equation (2).
Denoting parameters for trivial splits {i}|({1,2,3,4}�{i})
by ai

g, for q∈MT1 , we have

l(q)=qGGGG −qGGTT =a1
Ga2

Ga3
Ga4

Ga12|34
A −a1

Ga2
Ga3

Ta4
Ta12|34

A .

Because aA|B
G =aA|B

T in the JC and K2P models, the first
claim follows.

If q∈MT2 , to establish the remaining claims note

l(q)=qGGGG −qGGTT =a1
Ga2

Ga3
Ga4

Ga13|24
A −a1

Ga2
Ga3

Ta4
Ta13|24

C .

Because aA|B
G =aA|B

T for the JC and K2P models, and

a13|24
A =1, this expression factors as

l(q)=a1
Ga2

Ga3
Ga4

G(1−a13|24
C ).

By Proposition 3 all aA|B
g ∈ (0,1] , so l(q)≥0. Moreover,

if all branch lengths are strictly positive, so is l(q). On
the other hand, the only way this expression can equal
zero with q∈MT2 is if a13|24

C =1. But then Proposition 3
implies the length of the internal branch is zero.

Similar arguments show the claims for T3. �

Proof of Theorem 3 Let K be any 4 element subset of
the taxa. If MT ∩M+

S �=∅, then when we marginalize
to mixture models on the leaf set K the corresponding
intersection is also nonempty. Because the claims of the
theorem concern quartets, it suffices to restrict attention
to the case of n=4 taxa.

First, suppose that the tree T1 is fully resolved. By
symmetry, we may assume it is T12|34. By Proposition 4,
l(q)=0 if q∈MT12|34 , while l(q)>0 if q∈M+

T13|24
or M+

T14|23
.

By the linearity of l, this implies l(q)=0 if q∈MS , while
l(q)>0 for q∈M++

T provided T contains at least one of
the resolved trees T13|24 or T14|23. This implies that if
q∈MS ∩M++

T , then no quartet incompatible with tree
T1 can appear among the trees of T .

If T1 is the star tree, then from each of its 3 resolutions,
we obtain inequalities analogous to those for l(q). These
imply that T can only contain star trees.

Finally, in the case that all T ∈T are binary and T1 /∈T ,
if q∈MS ∩M+

T then by replacing T by a subset T ′ we
have q∈MS ∩M++

T ′ . From the argument above, it follows
that for all T ∈T ′ and all quartets K, T|K =T1|K . Thus,
we obtain the contradiction that T =T1, and conclude no
such q exists.

Proof of Theorem 4 We first consider the case that T is a
3-leaf tree, and T1 and T2 are 2 of its contractions where
one leaf has become an internal vertex.

The model on a 3-leaf tree under the JC model
has precisely 3 nontrivial Fourier parameters, one per
edge. We set the parameterization of that model, with
edge parameters a,b,c∈ (0,1], equal to the one for the
mixture on T1 and T2, with edge parameters d,e and
f ,g, respectively, and mixing parameter �. This gives us,
for fixed a,b,c, the following system of 4 equations in 5
unknowns:

ab= (1−�)d+�f ,

ac= (1−�)de+�g,

bc= (1−�)e+�fg,

abc= (1−�)de+�fg.

It is not difficult to see that the values

d=0, e=bc, f =b, g=c, �=a (3)

give a solution to this system of equations. For the open
models, however, we seek solutions where d,e,f ,g,�∈
(0,1) for fixed a,b,c∈ (0,1). A computation of the Jacobian
of the system of equations at the values in equations (3)
allows us to apply the implicit function theorem, and
treat d as an independent variable in a neighborhood
of the above solution. Hence, if we perturb d to d′,
with 0<d′ �1, we obtain parameters in (0,1) solving
the system of equations. This shows that there is
complete mimicking for the open models in the 3-leaf
case.

Finally, we apply Proposition 2: Because any trees of
the type specified in the statement of the theorem can be
obtained by attaching fusion ends to the 3-leaf tree and
its 2 degenerations, we deduce the general result.
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