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Abstract Phylogenetic mixture models are statistical models of character evolution
allowing for heterogeneity. Each of the classes in some unknown partition of the char-
acters may evolve by different processes, or even along different trees. Such models
are of increasing interest for data analysis, as they can capture the variety of evolu-
tionary processes that may be occurring across long sequences of DNA or proteins.
The fundamental question of whether parameters of such a model are identifiable is
difficult to address, due to the complexity of the parameterization. Identifiability is,
however, essential to their use for statistical inference.

We analyze mixture models on large trees, with many mixture components, show-
ing that both numerical and tree parameters are indeed identifiable in these models
when all trees are the same. This provides a theoretical justification for some current
empirical studies, and indicates that extensions to even more mixture components
should be theoretically well behaved. We also extend our results to certain mixtures
on different trees, using the same algebraic techniques.

Keywords Phylogenetic mixture model · Parameter identifiability

1 Introduction

The earliest statistical models used to infer phylogenetic trees from DNA or pro-
tein sequence data assumed a common process of character evolution at all sites
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in the sequence. These models were subsequently modified to include rate vari-
ation across the sites, and capturing such heterogeneity is now viewed as stan-
dard for improved recovery of trees (Felsenstein 2004). When several genes are
used to infer a single tree, one generally allows different models for each gene,
as substitution patterns can vary greatly. But even within a gene, allowing a mix-
ture of models (with no explicit partitioning of the sequence) could potentially
capture important variation that affects tree inference. For longer sequences, in
which genes and noncoding regions may both be present, heterogeneity is likely
to be even greater. Thus there has been growing interest in phylogenetic mix-
ture models, from both empirical (Huelsenbeck and Suchard 2007; Le et al. 2008;
Pagel and Meade 2004, 2005; Wang et al. 2008) and theoretical (Allman et al. 2008,
2010; Allman and Rhodes 2006, 2008; Chai and Housworth 2011; Matsen et al. 2008;
Matsen and Steel 2007; Mossel and Vigoda 2005; Štefankovič and Vigoda 2007)
perspectives. For instance, the Bayesian nonparametric analysis of Huelsenbeck and
Suchard (2007) allowed a variable number of mixture components, with a Dirichlet
process prior specifying a mean of as many as 20.

Mixture models have been implemented in software several times. However, sta-
tistical inference with any model is only rigorously justified if the parameters of in-
terest are shown to be identifiable; that is, a probability distribution arising from the
model must uniquely determine the parameters that produced it. For example, it is
well known that identifiability is a necessary condition for statistical consistency of
maximum likelihood estimation (Felsenstein 2004, Chap. 16). For Bayesian infer-
ence as well, identifiability plays an important role (Rannala 2002). Though output
of inference software may hint at whether a model is identifiable or not, nonidentifi-
ability is not always apparent, and only a theoretical analysis can firmly answer the
question.

In phylogenetics, parameters of interest include the discrete tree parameter and
numerical parameters specifying substitution processes on the edges of the tree. For
the simplest phylogenetic models, identifiability of both tree and numerical parame-
ters have long been established (Chang 1996). But for more elaborate models, with
both the combinatorial description of trees and the underlying number of numer-
ical parameters increasing, the question of identifiability is far from settled. For
instance, only recently has it been shown that most choices of parameters of the
widely-used GTR + I + � rate-variation model are identifiable (Chai and Housworth
2011), although for a certain type of rate matrix even that question remains open.
For more general mixtures, in which there is less commonality to the substitution
process among the classes, only the simplest phylogenetic mixture models have been
proven to be identifiable, typically where the number of mixture components and
parameters are small. The papers Allman et al. (2008, 2010), Allman and Rhodes
(2006, 2008), Štefankovič and Vigoda (2007) contain previous results on identifiabil-
ity of such models, of various sorts.

Our goal in this paper is to prove identifiability of phylogenetic mixture models
that are considerably more complex than in previous works. In particular, we in-
vestigate the identifiability of phylogenetic models with many mixing components.
A consequence of our methods is the following theorem.
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214 J.A. Rhodes, S. Sullivant

Theorem 1.1 For an r-component identical tree mixture of the general Markov
model of character evolution with κ-state random variables on an n-leaf binary phy-
logenetic tree, both the tree parameter and the numerical parameters are generically
identifiable if r < κ�n/4�−1.

By an identical tree mixture model, we mean a mixture of probability distribu-
tions coming from the same topological phylogenetic tree. More complicated mix-
ture models might have each distribution arising from a different topological tree.
Generic identifiability means that the parameters are identifiability except possibly
on a proper algebraic subvariety of the parameter space (see Sect. 3.3 for the defi-
nition of a variety). In particular, the parameters are identifiable except on a set of
measure zero.

Theorem 1.1 quantifies the intuition that larger taxon sets should allow for iden-
tifiability of more complex models, and is an exponential improvement over earlier
results. Previously, for the general Markov model, it was only known that the tree pa-
rameter is generically identifiable, and then only in the case that r < κ (work of All-
man and the first author (Allman and Rhodes 2006)). Štefankovič and Vigoda (2007)
showed identifiability of the tree parameter in identical tree mixtures with arbitrary
numbers of mixture components, but only in the restrictive case of the Jukes–Cantor
and Kimura 2-parameter models. The approach of Štefankovič and Vigoda (2007) is
not amenable to investigating identifiability of numerical parameters, while Allman
and Rhodes (2006) simply did not study that question.

Štefankovič and Vigoda (2007) used linear tests to establish their results, and also
pointed out that the existence of these is necessary for tree identifiability in identical
tree mixtures with an arbitrarily number of mixture components. The key geometric
insight behind this was given by Kim (2000): Such arbitrary mixture distributions are
the elements of the convex hull of all probability distributions arising on a specific
tree. Unless the two sets of all probability distributions arising from different tree
topologies can be separated by a hyperplane, then their convex hulls will intersect,
and some mixtures will be non-identifiable.

Unfortunately, this convexity observation may give the false impression than mod-
els without linear tests, which includes most of those currently used in data analysis,
will necessarily be nonidentifible in mixtures. This is not the case, however, if one
limits the number of mixture components appropriately, as shown by Theorem 1.1
above. To obtain such a result, we use methods that go beyond linear considerations,
taking into account the nonlinear geometric structure of the set of probability distri-
butions arising on a tree, as captured by higher degree polynomial equations these
distributions, and their mixtures, must satisfy. Convexity thus plays no role in our
arguments.

While deciding on a reasonable number of mixture components to use in a data
analysis can be difficult, one typically assumes enough commonality across the data
that a moderate number of components offers a reasonable approximation to reality.
Indeed, allowing an extremely large number of components is unwise, as this results
in a model with a very large number of parameters, and any type of parameter es-
timation from a finite data set is likely to be poor. With even a moderate number of
taxa, the bound given in Theorem 1.1 is quite large, and likely sufficient to justify any
reasonable choice of number of mixture components.
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Identifiability of Large Phylogenetic Mixture Models 215

Since our theorems only concern identifiability for generic choices of general
Markov parameters, they do allow the possibility of rare instances (with probabil-
ity zero) of non-identifiability. It would, of course, be desirable to either show these
instances do not exist, or to understand them fully. This remains a difficult problem,
though a work in preparation by Allman and the authors will begin to address it.

Our strategy of proof is to combine two techniques coming from the algebraic
study of phylogenetic models. First, we use the representation of probability distribu-
tions in a phylogenetic model as tensors with small tensor rank and employ a theorem
of Kruskal to uniquely identify components of that tensor. Second, we use phyloge-
netic invariants as tools to identify deeply embedded features of phylogenetic trees,
and to “untangle” probability distributions that have been shuffled together by the
tensor analysis. While each technique by itself is only able to make a small advance
on the identifiability problem, when combined they give dramatically stronger re-
sults. Background on these general techniques appears in Sect. 3, and the proofs of
the main theorems are in Sect. 4.

Our techniques actually extend to mixtures from different trees provided they all
share a certain type of common substructure. It is in this generality that we prove our
main results, Theorems 4.6 and 4.7, with Theorem 1.1 arising as a corollary.

The assumption of any common substructure in the trees is of course false in
some biological situations modeled by mixtures. For instance, if the mixture is due
to the coalescent process modeling incomplete lineage sorting on a species tree of
populations, then components will be present from all topological gene trees (Degnan
and Salter 2005; Wakeley 2008). However, one might also model lateral gene transfer
at a number of (unknown) locations in a tree as a mixture, and for this the assumption
of common substructure could be quite plausible.

2 Preliminaries

2.1 Mixture Models

Consider the general Markov model (Chang 1996) of κ-state character evolution,
GM(κ), on n-taxon trees (e.g., κ = 4 corresponding to DNA sequences). We assume
the taxa labeling the leaves are identified with [n] = {1,2, . . . , n}. Then for each
rooted leaf-labeled tree T , there is a parameterization map ψT giving the joint dis-
tribution of states at the leaves of the tree T as functions of continuous parameters,
which specify the state distribution at the root and the transition probabilities on the
edges. Let ST denote the continuous parameter space of GM(κ) on T , which is a full
dimensional subset of some R

m. Then

ψT : ST → Δκn−1,

where Δ�−1 ⊆ [0,1]� denotes the probability simplex comprised of nonnegative real
vectors summing to 1. The image of this map is the phylogenetic model MT ⊆
Δκn−1.
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216 J.A. Rhodes, S. Sullivant

The associated r-component mixture model has the following parameterization:
For every r-tuple of trees T = (T1, T2, . . . , Tr ) on the same taxa [n], let ST = ST1 ×
· · · × STr × Δr−1 and let

ψT : ST → Δκn−1,

be defined by

ψT(s1, . . . , sr ,π) = π1ψT1(s1) + · · · + πrψTr (sr ).

Thus, π is the vector of mixing parameters; each πi gives the proportion of i.i.d. sites
that evolve along tree Ti with parameter vector si . The r-component mixture model
on T is the image of the map ψT, and is denoted

MT = MT1 ∗ MT2 ∗ · · · ∗ MTr .

Clearly, MT depends only on the unordered multiset of the trees in T. In the case
where Ti = T for all i, we call this an r-component identical tree mixture model
on T .

We focus on the mixture models built from the basic model GM(κ) in this paper,
as these are quite general algebraic models, for which the maps ψT are naturally de-
fined by polynomial formulas. Many models which are not polynomial (in particular,
those built from the general time-reversible model) can be embedded in them. The
polynomial structure of algebraic models allows them to be studied using techniques
from algebraic geometry.

2.2 Identifiability of Parameters

For algebraic models, it is convenient to slightly weaken the notion of identifiability
of parameters to generic identifiability. The word “generic” is used to mean “except
on a proper algebraic subvariety” of the parameter space. (See Sect. 3.3 for a for-
mal definition of variety.) Although it is sometimes possible to be explicit about this
subvariety, we usually are not, since the key point in interpretation is that a proper
subvariety is a closed set of Lebesgue measure 0 inside the larger set. Thus regard-
less of the precise subvariety involved, “randomly” chosen points are generic with
probability 1.

On an unmixed GM(κ) model on a single tree T , there are several well-understood
issues with generic identifiability of parameters. First, at any internal node of the tree,
in a phenomenon called label swapping, one may permute the names of the state
space of the corresponding hidden variable (permuting the columns or rows of the
Markov matrices on edges leading to or from the node) with no effect on the proba-
bility distribution. Second, while the standard parameterization of the GM(κ) model
on a tree T requires specification of the root of T , for generic choices of parameters
one can relocate the root (with an appropriate uniquely determined change to the pa-
rameters, up to label swapping) with no effect on the probability distribution. Third,
if any internal nodes of T have degree 2, they may be suppressed and the Markov
matrices on incident edges combined, with no effect on the probability distribution.
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Thus, one generally assumes trees have no such nodes. For simplicity, we do not al-
ways explicitly refer to these issues in our formal statements in this article. However,
we will occasionally use the second fact to choose a convenient location for a root of
a tree in our arguments.

That these are the only issues for parameter identifiability for the unmixed model is
the content of the following theorem, which was essentially shown in Chang (1996).

Theorem 2.1 For the GM(κ) model on a single tree,

(1) The unrooted tree parameter is generically identifiable, in the class of binary
trees.

(2) For a fixed binary tree T , the numerical parameters of the GM(κ) model on T

are generically identifiable, up to label swapping at internal nodes of the tree,
and an arbitrary choice of a node as the root.

In dealing with mixture models, identifiability of numerical parameters can never
hold except at best generically. To see this, observe that if two mixture components
arise from the same numerical parameters si = sj on the same tree Ti = Tj , and
thus are both ψTi

(si) = ψTj
(sj ), then all weighted sums πiψTi

(si) + πjψTj
(sj ) with

the same total weight πi + πj will be identical. In this circumstance, the individual
parameters πi and πj will be nonidentifiable.

An additional issue for identifiability of r-tree mixtures is component swapping:
Interchanging the trees along with their parameters, while permuting the mixing pa-
rameters in the same way, has no effect on the resulting distribution. A useful notion
of identifiability must allow for this.

Definition 2.2 The tree parameters of the r-tree mixture are generically identifiable
if for any binary trees T = (T1, . . . , Tr ) on the same set of taxa, and generic choices
of parameters s1, . . . , sr ,π ,

ψT(s1, . . . , sr ,π) = ψT′(s′
1, . . . , s

′
r , π

′)

implies that T = σ · T′ for some σ ∈ Sr , the symmetric group of permutations.

We also investigate identifiability of tree parameters when restricting to specific
classes of r-tuples of trees. For example, Theorem 1.1 concerns identifiability of tree
parameters among all sets T = {T1, . . . , Tr}, where T1 = · · · = Tr . Our main results,
Theorems 4.6 and 4.7 concern identifiability in the class of r-tuples of trees that all
contain a specified deep common substructure, whose precise definition will be given
in Sect. 4.

Definition 2.3 The continuous parameters of an r-tree mixture on T are generically
identifiable if for generic choices of s1, . . . , sr and π ,

ψT(s1, . . . , sr ,π) = ψT(s′
1, . . . , s

′
r , π

′)

implies that there is a permutation σ ∈ Sr such that σ · T = T, s′
i = sσ(i), and π ′

i =
πσ(i) for i = 1, . . . , r .
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218 J.A. Rhodes, S. Sullivant

Fig. 1 Since the node of degree
4 in this tree can be resolved 3
ways, it leads to 3 compatible
splits, in addition to those
arising from edges in the tree in
the standard way

Note this definition only allows the swapping of continuous parameters si , πi with
sj ,πj when Ti = Tj .

2.3 Splits and Tripartitions

We will use the combinatorial notion of a split of the leaves of a tree associated to an
edge in a binary tree, as well as the analog of this concept for a node of the tree.

Definition 2.4 A split of [n] is a bipartition A|B of [n] with two nonempty elements.
A split is said to be compatible with a tree T if it arises as the partition of leaves
induced by an edge in some binary resolution of T .

Similarly, a tripartition of A|B|C of leaves is said to be compatible with T if it
arises as the tripartition induced by an interior vertex in some binary resolution of T .

A collection of trees is said to have a common split (or tripartition) if the split (or
tripartition) is compatible with every tree in the collection.

A collection of trees has a common tripartition A|B|C if, and only if, it also the
three common splits A|B ∪ C, B|A ∪ C, and C|A ∪ B . For a binary tree, these are
the splits associated to the edges radiating from the vertex inducing the tripartition.

Note also that our definition of compatible splits differs from the standard def-
inition (e.g., in Semple and Steel 2003) in the case of trees with polytomies. For
example, the tree of Fig. 1 has only two nontrivial splits, 12|3456, 1234|56 by the
standard definition, but by the definition above has three additional ones, 123|456,
124|356, and 1256|34. Our notion is more useful when studying geometric proper-
ties of phylogenetic models.

3 Tensors and Invariants

The two main tools we use to prove our results are Kruskal’s theorem on uniqueness
of tensor decompositions and phylogenetic invariants. In this section, we describe
these tools. Both are connected to the notion of a flattening of the probability distri-
bution arising from a phylogenetic model.
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3.1 Tensors and Unique Decomposition

By a tensor, we mean simply an n-way rectangular array of numbers. A 2-way tensor
is thus a matrix.

For j = 1,2,3, let Mj be an r×κj matrix with ith row mj
i = (m

j
i (1), . . . ,m

j
i (κj )).

Let [M1,M2,M3] denote the 3-way κ1 × κ2 × κ3 tensor defined by

[M1,M2,M3] =
r∑

i=1

m1
i ⊗ m2

i ⊗ m3
i .

In other words, [M1,M2,M3] is an κ1 × κ2 × κ3 array whose (u, v,w) entry is

[M1,M2,M3]u,v,w =
r∑

i=1

m1
i (u)m2

i (v)m3
i (w).

Every 3-way tensor can be expressed in this way, for sufficiently large r . A nonzero
tensor of this form with r = 1 is said to have tensor rank 1. More generally, the
minimal r such that a 3-way tensor can be decomposed as such a sum is called its
tensor rank. A natural question is when this expression is essentially unique.

Note there are two basic operations on the matrices M1,M2,M3 which leave
unchanged the tensor [M1,M2,M3]: one can simultaneously permute the rows of
the three matrices M1,M2, and M3, or taking three numbers a1, a2, a3 such that
a1a2a3 = 1, one can replace the ith rows mj

i by aj mj
i . Kruskal’s theorem (Kruskal

1976, 1977) describes a situation where these operations lead to the only variants in
a tensor decomposition.

Given an r × κ matrix M , its Kruskal rank, denoted rankK(M), is the largest
value k such that every subset of k rows of M is linearly independent. Note that
rankK(M) ≤ rank(M).

Theorem 3.1 (Kruskal 1976, 1977) Let Ij = rankK(Mj ), where Mj is r × κj . If

I1 + I2 + I3 ≥ 2r + 2

then [M1,M2,M3] uniquely determines M1,M2,M3 up to simultaneous permutation
and scaling of the rows.

See Landsberg (2011) and Rhodes (2010) for two recent simplified proofs of this
fundamental result. Kruskal’s theorem has proven useful for proving identifiability
results of numerical parameters for both phylogenetic models (Allman and Rhodes
2009) and for other statistical models with hidden variables (Allman et al. 2009,
2011). We will show how to combine this with other algebraic techniques to also
deduce identifiability of tree parameters.

3.2 Flattenings

While Kruskal’s theorem concerns 3-way tensors, the tensors arising in phylogenetics
are usually n-way κ ×· · ·×κ tensors, corresponding to the n leaves of a phylogenetic
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220 J.A. Rhodes, S. Sullivant

tree. We will make frequent use of flattenings of n-way tensors to lower order tensors.
A flattening of a n-way tensor is simply a reorganization of that tensor as a k-way
tensor, with k < n, of larger dimensions. We take a κ1 × · · · × κn tensor M , with
typical entry M(u1, . . . , un), and a partition A1|A2| · · · |Ak of [n], and we represent
this as a

∏

a∈A1

κa × · · · ×
∏

a∈Ak

κa

tensor M̃ . The (u1, . . . , un) entry of M becomes the ((ua)a∈A1, . . . , (ua)a∈Ak
) en-

try of M̃ . That is, the indices for the new tensor M̃ are vectors of indices from the
tensor M .

Given a partition A1|A2| · · · |Ak of [n], we denote the corresponding flattening of
M by FlatA1|A2|···|Ak

(M).

Example 3.2 Let κ = 2, and consider the 4-way tensor M = (M(u1, u2, u3, u4)). The
flattening Flat{1,3}|{2,4}(M) is the 4 × 4 matrix:

Flat{1,3}|{2,4}(M) =

⎛

⎜⎜⎝

M(1,1,1,1) M(1,1,1,2) M(1,2,1,1) M(1,2,1,2)

M(1,1,2,1) M(1,1,2,2) M(1,2,2,1) M(1,2,2,2)

M(2,1,1,1) M(2,1,1,2) M(2,2,1,1) M(2,2,1,2)

M(2,1,2,1) M(2,1,2,2) M(2,2,2,1) M(2,2,2,2)

⎞

⎟⎟⎠ .

3.3 Invariants, Phylogenetic and Otherwise

We begin with a little background on algebraic geometry (see Cox et al. 1997 for
more detail). Let R[p1, . . . , pm] be the set of all polynomials in the variables (or
indeterminates) p1,p2, . . . , pm, with coefficients in the real numbers, R. Algebraic
geometry studies the zero sets of collections of polynomials. That is, to a collection
of polynomials f1, f2, . . . , fk ∈ R[p1, . . . , pm] we associate the variety

V (f1, . . . , fk) = {
a ∈ R

m : f1(a) = f2(a) = · · · = fk(a) = 0
}
.

The fact that these geometric sets arise from polynomials vanishing implies they have
important structural features.

Varieties arise in studying statistical models through describing models implicitly,
rather than parametrically. For a fixed statistical model M ⊆ Δm−1, an invariant of
M is a polynomial f ∈ R[p1, . . . , pm] such that f (a) = 0 for all a ∈ M. In the
case where M is a phylogenetic model, such a polynomial is called a phylogenetic
invariant.

Our main use in this paper for phylogenetic invariants is their connection to
generic identifiability, through the following basic proposition from algebraic geom-
etry.

Proposition 3.3 Let V0 and V1 be two irreducible algebraic varieties, such as those
arising from parameterized statistical models. Suppose f0 is an invariant for V0, and
there exists a point p1 ∈ V1 with f0(p1) 
= 0. Then V1 
⊆ V0, and the variety V0 ∩ V1
is of lower dimension than V1. That is, generic points on V1 lie off of V0.
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Among the most important and elementary phylogenetic invariants are the ones
that arise from edge flattenings of tensors.

Definition 3.4 Let A|B be a split compatible with the tree T . An edge invariant for
T is a phylogenetic invariant that can be expressed as a minor (i.e., the determinant
of a submatrix) of the matrix FlatA|B(P ).

As an indication of how edge invariants can be used to identify combinatorial
information on the tree underlying a phylogenetic model, we recall the following
theorem concerning models on a single tree. While this statement is well known in
the phylogenetic invariants literature (see, for example, Eriksson 2005), Lemma 4.1
of this article provides a more general extension to mixture models.

Theorem 3.5 Suppose that T0 and T1 are two n-leaf trees such that for i = 0,1,
Ai |Bi is a split compatible with Ti and incompatible with T1−i , and let Mi denote the
κ-state general Markov model GM(κ) on Ti . Then the (κ +1)-minors of FlatAi |Bi

(P )

vanish on MTi
and do not simultaneously vanish on MT1−i

, and thus are edge in-
variants for the first model but not the second. In particular, edge invariants can be
used to generically identify the tree topology.

Edge invariants have been the phylogenetic invariants most interesting for tree
identifiability in the past, and contain enough information to reconstruct the combi-
natorial type of a single tree in some situations. However, we need some more com-
plicated invariants to get more information in the case of the phylogenetic mixture
models considered here. We describe these invariants, discovered in several different
contexts (Allman and Rhodes 2003; Strassen 1983), in matrix form.

Theorem 3.6 Let P be a κ × κ × κ tensor giving a distribution from the GM(κ)

model on a 3-leaf tree. For i = 1, . . . , κ , let P(i) be the matrix slice P(i) =
(P (i, u, v))u,v . Then

P(i)

(
adjP(j)

)
P(k) − P(k)

(
adjP(j)

)
P(i) = 0.

Here, adjA denotes the classical adjoint of A, which is given by polynomial ex-
pressions in the entries of A. In the case of nonsingular A, adj(A) = det(A)A−1.

4 Identifiability of Mixture Models with Common Substructure

In this section, we prove our main result, that both tree parameters and numerical
parameters are generically identifiable in a phylogenetic mixture model provided that
we restrict to multisets T of trees that all share a certain substructure. More precisely,
we require that all trees in T have two splits in common. The number of mixing
components that can be identified via our techniques will depend on the sizes of the
sets in these splits. As a corollary, we deduce Theorem 1.1, after showing that if all
trees are the same, there is a “deep” internal vertex with two of its incident edges
giving the requisite splits.
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222 J.A. Rhodes, S. Sullivant

Before proceeding to the statements and proofs of the main theorems, we prove
three lemmas.

Lemma 4.1 (Edge invariants for tree mixtures)
Consider the GM(κ) mixture model on r trees T = (T1, . . . , Tr ). Let A|B be a

bipartition of the taxa, with r < min(κ#A−1, κ#B−1).

(1) If A|B is compatible with all trees in T, then all (rκ + 1)-minors of FlatA|B(P )

vanish for all distributions P arising from the model.
(2) If A|B is not compatible with at least one tree in T, then for generic distributions

P arising from the model at least one (rκ + 1)-minor of FlatA|B(P ) does not
vanish.

Proof The claims concerning (non)vanishing of minors are equivalent to claims that
FlatA|B(P ) has rank at most rκ in case (1), and generically has rank greater than rκ

in case (2). Therefore, we focus on investigating ranks of flattenings.
If A|B is compatible with all trees in T, then, by passing to binary resolutions of

the Ti , we may assume it is a split associated to edge ei = (ai, bi) in Ti . Then one
sees that

FlatA|B(P ) = Mt
AQMB.

Here, Q is the rκ × rκ block-diagonal matrix whose ith κ × κ block gives the joint
probability distribution of states for the random variables at ai and bi , weighted by
the component proportion πi . The matrices MA, MB are stochastic, of sizes rκ ×
κ#A, rκ × κ#B , with entries in the ith block of κ rows giving probabilities of states
of variables in A,B conditioned on states at ai , bi . This factorization implies the
claimed bound on the rank.

Suppose next that A|B is not compatible with at least one of the trees in T, say T1.
To show that FlatA|B(P ) generically has rank greater than rκ , it is enough to give a
single choice of parameters producing such a rank. Indeed, this follows from Propo-
sition 3.3, applied to the model and the variety of matrices of rank at most rκ .

To simplify this choice, for each Ti with i > 1, we choose all Markov matrices for
all internal edges of Ti to be the identity, Iκ . Since T1 is not compatible with A|B , by
Theorem 3.8.6 of Semple and Steel (2003), it has an edge e = (c, d), with associated
split C|D, such that all four sets A ∩ C, A ∩ D, B ∩ C, B ∩ D are nonempty. For
all internal edges of T1 except e, choose Markov matrices to be Iκ as well. Since the
effect of an identity matrix on an edge is the same as contracting that edge, with these
choices we need henceforth argue only in the following special case: for i > 1, Ti is
a star tree with central node ai , and T1 has the form of two star trees, on C and on D,
that are joined at their central nodes by e.

Now express the distribution P = P1 + P ′ where P1 is the mixture component
from T1, and P ′ the sum of the components on the star trees T2 = · · · = Tr . Then one
can write

M2 := FlatA|B(P ′) = Nt
ARNB,

with R an (r − 1)κ × (r − 1)κ diagonal matrix giving the distribution of states at ai

in components 2, . . . , r weighted by the πi , and NA, NB are stochastic matrices of
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sizes (r − 1)κ × κ#A, (r − 1)κ × κ#B with entries giving conditional probabilities of
states of variables in A, B conditioned on states/components at the ai . By choosing
positive root distributions at the nodes ai , and positive πi , we ensure R will have
positive diagonal entries, and hence have full rank. Furthermore, the rows of NA,NB

are formed from the tensor product of corresponding rows of the Markov matrices on
the edges of the star trees, and are thus generalized Vandermonde matrices. (Recall
that if f1, . . . , ft are a linearly independent set of polynomials, and u1, . . . , us are
points, the generalized Vandermonde matrix is the matrix s × t matrix with i, j entry
fj (ui). Here, the polynomials fj are determined by the formulae for the entries in
the tensor product of the rows, and the ui by the entries in the Markov matrices.)
A generalized Vandermonde matrix has full rank for generic choices of u1, . . . , us .
Since (r − 1)κ < min(κ#A,κ#B), for generic parameters M2 has rank (r − 1)κ .

On the other hand, consider P1, where we choose all matrices on pendant edges
of T1 to be Iκ , and both the root distribution at c and Me to have all positive entries.
Then

M1 := FlatA|B(P1) = Nt
1,AR1N1,B,

where R1 is a κ2 × κ2 diagonal matrix with entries giving the joint distribution at
c and d weighted by π1, and N1,A,N1,B have all zero entries except for a single 1
in each row, and full row rank. Thus, M1 has rank κ2. Moreover, it has at most one
nonzero entry in each row and column, so both im(M1) and ker(M1) are coordinate
subspaces.

Since FlatA|B(P ) = M1 + M2, our goal is to show that rank(M1 + M2) > rκ for
generic choices of the parameters not yet specified (the Markov matrices on the trees
T2, . . . , Tr ). Without loss of generality assume that #A ≥ #B , so to do this it is enough
to make

rank(M1 + M2) = min
(
(r − 1)κ + κ2, κ#B

)
. (1)

We use the following facts about matrices: Let X and Y be s × t matrices. With
im(X),ker(X) denoting the image and kernel of X as a linear transformation from
R

t to R
s , then im(X) ∩ im(Y ) = 0 implies ker(X + Y) = kerX ∩ kerY . Also,

if nullity(X + Y) = nullity(X) + nullity(Y ) − t , then by the rank/nullity theorem
rank(X + Y) = rank(X) + rank(Y ).

First consider the case where (r − 1)κ + κ2 ≤ κ#B . By the preceding paragraph,
to show (1) it suffices to choose parameters so that im(M1) ∩ im(M2) = 0 and
dim(ker(M1) ∩ ker(M2)) = nullity(M1) + nullity(M2) − κ#B .

Since generically NA and NB have full rank, it follows that im(M2) = im(Nt
A) and

ker(M2) = ker(NB). But im(M1) is a coordinate subspace, so it intersects im(Nt
A)

nontrivially if and only the submatrix of Nt
A obtained by deleting rows corresponding

to those coordinates has nontrivial kernel. That submatrix is a (κ#A − κ2) × (r − 1)κ

generalized Vandermonde matrix with κ#A − κ2 ≥ κ#B − κ2 ≥ (r − 1)κ , so it has full
column rank. This proves that im(M1) ∩ im(M2) = 0 generically.

Since ker(M1) is also a coordinate subspace, its intersection with ker(M2) =
ker(NB) is isomorphic to the kernel of the submatrix of NB obtained by deleting
the columns corresponding to required zero entries in vectors in ker(M1). Since this
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submatrix is a (r −1)κ ×(κ#B −κ2) generalized Vandermonde matrix, the dimension
of this kernel is

κ#B − κ2 − (r − 1)κ = (
κ#B − κ2) + (

κ#B − (r − 1)κ
) − κ#B.

Thus, dim(ker(M1) ∩ ker(M2)) = nullity(M1) + nullity(M2) − κ#B, so rank(M1 +
M2) = (r − 1)κ + κ2.

In the case where (r − 1)κ + κ2 > κ#B, the same arguments as above apply after
modifying our choices so all but κ#B − (r −1)κ of the entries of R1 are zero. Then we
deduce that we can choose M2 so that rank(M1 +M2) = (r −1)κ +κ#B − (r −1)κ =
κ#B . �

Picking any internal vertex of a binary tree, the induced tripartition of the leaf
variables allows us to create 3 agglomerate variables. In this way, we can view a
phylogenetic model as one to which we can apply Kruskal’s theorem. More specif-
ically, consider a probability distribution P in the GM(κ) mixture model on trees
T = (T1, . . . , Tr ), where the Ti share a common tripartition A|B|C of the leaves, aris-
ing from the vertices vi . Suppose Pi is the weighted mixture component from Ti in P .
Then from the parameters on Ti , one can give κ × κ#A, κ × κ#B , κ × κ#C stochas-
tic matrices Mi,A, Mi,B , Mi,C of conditional probabilities of states at the leaves in
A, B , C, given the state at vi . Letting M̃i,A be the matrix obtained from Mi,A by
multiplying rows by the corresponding entry of the root distribution at vi and by the
weight πi , one checks that

FlatA|B|C(Pi) = [
M̃i,A,Mi,B,Mi,C

]
.

Let MA denote the rκ × κ#A matrix obtained by stacking the M̃i,A. Similarly, let MB

and MC be matrices obtained by stacking the Mi,B and Mi,C , respectively. Then

FlatA|B|C(P ) = [MA,MB,MC].
To apply Kruskal’s theorem to this flattening, we must first show that the technical

conditions on Kruskal rank of the matrices apply, at least generically.

Lemma 4.2 Consider an r-fold GM(κ) mixture model on trees T = (T1, . . . , Tr ) with
a common tripartition A|B|C of the leaves. Then

FlatA|B|C(P ) = [MA,MB,MC]
for some matrices MA,MB,MC with rκ rows. Moreover, for generic choices of the
numerical parameters these matrices all have full Kruskal rank (i.e., Kruskal row
rank equal to their smaller dimension).

Proof The first claim was established in the discussion preceding the lemma.
For the second, by similar reasoning as was used in Lemma 4.1, it is enough to

show one choice of parameters gives these matrices full Kruskal rank. By choosing
matrix parameters on all internal edges of every Ti to be the identity matrix, we
may essentially assume every Ti is the star tree, rooted at central node vi . Choosing
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positive root distributions at vi , and positive mixing parameters πi , it then suffices to
only consider one set of leaves, say A.

Now, as in the discussion of NA in the proof of Lemma 4.1, one sees that MA

is a generalized Vandermonde matrix. Since all its submatrices are also generalized
Vandermonde matrices, it generically has full Kruskal rank. �

The next lemma allows us to tease apart distributions which arise from mixing
together slices of distributions from different trees. After we have applied Kruskal’s
theorem via Lemma 4.2, it will be used to identify which rows of the matrices arise
from the same mixture component of the model.

Lemma 4.3 (No Shuffling Lemma) Let T , T1, . . . , Tr be trees with n ≥ 3 leaves, or
n ≥ 4 leaves if κ = 2. For i = 1, . . . , r , let Pi be a generic probability distribution
from the GM(κ) model on the tree Ti , scaled by positive constants πi . For a fixed
choice of j ∈ [n], let A|B = {j}|([n] � {j}) and form the flattenings FlatA|B(Pi).
Form a new matrix from any κ rows from these flattenings (with repeats allowed),
and define Q so that FlatA|B(Q) is this matrix. Then Q does not satisfy all the phy-
logenetic invariants for T unless the chosen rows come from a single Pi and T is a
refinement of Ti .

Proof Note that the multiplication by the πi has no effect on whether the tensor sat-
isfies non-trivial invariants, because the phylogenetic varieties for the GM(κ) model
are invariant under the action of the general linear group at any leaf (Allman and
Rhodes 2008).

Consider first the case that n = 3, and κ ≥ 3. Suppose Q is constructed from rows
which come from at least two different Pi . Without loss of generality, we assume
j = 1, so that in the notation of Theorem 3.6, the slices Q(i) contain the entries of Q

arising from a single row of the flattening. We will show that Q does not satisfy the
invariants of that theorem.

For the time being, treat two of these slices Q(1),Q(2) as fixed, and the third slice
Q(3), which we may assume does not come from the same Pi as either Q(1) or Q(2),
as a variable. Generically, the matrix equation

Q(1)

(
adjQ(2)

)
Q(3) − Q(3)

(
adjQ(2)

)
Q(1) = 0 (2)

then gives nonzero, linear constraints on the entries of Q(3).
However, for an arbitrary matrix Q(3) with positive entries whose sum is less than

1, we can find a Pj that has Q(3) as any designated slice. This shows that there exist
such slices not satisfying (2), and hence, by Proposition 3.3, that the generic slice
does not.

When κ = 2 and n = 3, there are no nontrivial invariants for GM(κ) (those of
Theorem 3.6 are identically zero), hence we consider n = 4, and use the edge invari-
ants of Theorem 3.5. But for any choice of 4-leaf tree, and choice of index j ∈ {1,2},
we can find a Pi in the tree model so that FlatA|B(P ) has any desired generic vector
as its j th row. Now Q is built from two such rows. If the P1 and P2 that we take
these slices from are not the same, then generically, we can choose those slices to
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be arbitrary vectors. But then the flattening of Q with respect to the split of T will
generically be a rank 4 matrix, and hence Q will not satisfy the invariants for tree T .

For larger n, the result follows from the cases above by marginalization to 3- or
4-leaf trees. �

First we prove a theorem on the generic identifiability of numerical parameters in
trees with a known common tripartition.

Theorem 4.4 Suppose the trees T = (T1, . . . , Tr ) have a known common tripartition
A|B|C, with #A ≥ #B ≥ #C, and r ≤ κ#B−1. If κ = 2 also suppose #A ≥ 3. Then
both T and the numerical parameters of the GM(κ) mixture model on T are generi-
cally identifiable.

Proof Since the trees in T share a common tripartition A|B|C, by Lemma 4.2 if a
distribution P arises from generic parameters of the model then

FlatA|B|C(P ) = [MA,MB,MC],
where MA, MB , and MC all have full Kruskal row rank, which will be min(rκ, κ#A),
min(rκ, κ#B), and min(rκ, κ#C), respectively. According to Theorem 3.1, these ma-
trices are uniquely determined up to simultaneous permutation and scaling of the
rows provided

min
(
rκ, κ#A

) + min
(
rκ, κ#B

) + min
(
rκ, κ#C

) ≥ 2rκ + 2. (3)

Since κ ≥ 2 and #C ≥ 1, this inequality holds for all r ≤ κ#B−1.
At this point, we have recovered the matrices MA,MB, and MC up to scaling and

permuting the rows. Each of the rows of the recovered MA will have entries from a
scaled slice from a tree distribution on a subtree of one of the Ti (the subtree span-
ning the vertex vi and all the leaves A). We need to group these rows by the mixture
components they come from. However, the No Shuffling Lemma 4.3 says that gener-
ically it is possible to do this. Since ordering the rows of MA determines an order
of the rows of MB,MC , we can then reassemble the flattened mixture components
Pi as the product [Mi,A,Mi,B,Mi,C] of appropriate submatrices Mi,A,Mi,B,Mi,C of
MA,MB,MC .

From Pi , we recover the mixing weight πi via

πi =
∑

(j1,...,jn)∈[κ]n
Pi(j1, . . . , jn).

Then, by Theorem 2.1, the tree Ti and the numerical parameters on it can be identified
from Pi/πi . �

Now, we proceed to prove identifiability of the numerical parameters and tree
parameters in our most general class of r-tree mixture models, the j -deep class.

Definition 4.5 For a positive integer j , the j -deep class of r-tuples of trees T con-
sists of all r-tuples of binary trees such that there exists a tripartition A|B|C with
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Fig. 2 The form of trees with
compatible splits A|B ∪ C and
A ∪ C|B , possibly after passing
to a binary resolution

#A,#B ≥ j , #C ≥ 1, such that the splits A|B ∪ C and A ∪ C|B are compatible with
all trees in T.

Note that this definition does not require that C|A ∪ B be compatible with any
of the trees in T, so the full tripartition need not be associated to vertices in the Ti .
The trees must only share two splits, each sufficiently deep in the tree. (See Fig. 2 for
a schematic depiction of the form of such trees.) Furthermore, if T is in the j -deep
class, we do not assume the tripartition is known, only that it exists.

We now prove our main theorems on identifiability of parameters in r-tree mix-
tures. We state two versions, one for when a j -deep tripartition is known (including
the case of when all the trees are known), and one for when it is not. The second of
these requires a slightly stronger hypothesis on the number of mixture components.

Theorem 4.6 Suppose T is in the j -deep class via a known tripartition A|B|C. Then
both T and the numerical parameters of the GM(κ) mixture model associated to T
are generically identifiable provided r ≤ κj−1 and either κ > 2, or κ = 2 and #A ≥ 3.

Proof Fix some c ∈ C, let D(c) = A ∪ B ∪ {c}, and let Pc = P |D(c) be the marginal-
ization of P to the leaves in D(c). This is a probability tensor for the mixture of
induced trees T|D(c), with numerical parameters obtained by restricting to these in-
duced trees. Note that the trees in T|D(c) share the common tripartition A|B|{c}.
Thus, Theorem 4.4 applies to identify the trees T|D(c) and numerical parameters on
them. Then by Lemma 4.2, we may write

FlatA|B|{c}(Pc) = [MA,MB,Mc],
and for generic choices of the numerical parameters, these matrices all have full
Kruskal row rank. We may further specify that the rows of these matrices, in par-
ticular MA, have been ordered into r blocks of κ rows, corresponding to the various
mixture components.

Note that since the matrix MA has full Kruskal row rank and is rκ × κ#A with
rκ ≤ κ#A, it has full row rank. Thus, we may compute a left inverse QA, with
MAQA = Irκ , the rκ × rκ identity.

Returning to the consideration of the full distribution P and trees T, we use QA

to disentangle the mixture components. In each Ti let wi be the node in the subtree
spanning A through which this subtree is connected to all other leaves. Then

FlatB∪C|A(P ) = Mt
B∪C	M̃A,

where M̃A,MB∪C are stochastic matrices of probabilities of states at the leaves in A,
B ∪ C conditioned on components and states at the wi , and 	 is a diagonal matrix
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with entries the product of the mixing weights, πi , and the root distributions at wi .
While the ordering of the mixture components and root states in these matrices is
arbitrary, we may assume it is the same as in the rows of MA. Then

MA = RM̃A,

where and R is a block diagonal matrix whose ith block gives conditional probabili-
ties of state changes from vi to wi on Ti , and is generically invertible.

Thus

FlatB∪C|A(P )QA = Mt
B∪C	R−1MAQA = Mt

B∪C	R−1.

This shows that by taking the columns of FlatB∪C|A(P )QA in blocks of κ we obtain
entries associated to only one mixture component at a time. Moreover, multiplying
a block of these columns by the corresponding block of rows of MA = RM̃A, we
obtain a flattened form of a single mixture component πiPi .

Summing the entries of πiPi identifies πi , and hence Pi . Then by Theorem 2.1 the
tree Ti and the numerical parameters on it are identifiable. �

Theorem 4.7 Suppose T is in the j -deep class. Then both T and the numerical pa-
rameters of the GM(κ) mixture model associated to T are generically identifiable
provided r < κj−1.

Proof Since the T is in the j -deep class and rκ < κ#A,κ#B , for generic parameters
we can use the edge invariants of Lemma 4.1 to find two splits A|B ∪C and B|A∪C

compatible with all trees in T, with #A ≥ #B ≥ j , #C ≥ 1, simply by testing for all
splits of an appropriate size.

If κ = 2, then 2 ≤ r < κj−1 implies j ≥ 3, so #A ≥ 3. Thus, for any κ ≥ 2, Theo-
rem 4.6 applies to give the conclusion. �

We are now in a position to deduce Theorem 1.1, which will follow from Theo-
rem 4.7 and the following lemma.

Lemma 4.8 Let T be an unrooted binary tree with n ≥ 3 leaves. Then there exists
an internal vertex v in T inducing a tripartition A|B|C such that two of the three
components contain at least �n/4� leaves of T .

Proof According to Exercise 1.5 in Semple and Steel (2003), every tree has a cen-
troid v, which is an internal node such that each component of T \ v has at most
|V |/2 vertices where |V | is the number of vertices of T . This same statement holds if
we replace |V | with n and vertices with leaves in the definition of the centroid. Since
the tree T is binary and v is an internal vertex, there are three components of T \ v.
The largest component has at least �n/3� leaves and at most �n/2�. Thus, there are at
least �n/2� leaves remaining between the other two components, which implies that
in the most balanced case, one of the other two components has at least �n/4� leaves.
Since �n/3� ≥ �n/4� this proves the claim. �

Simple examples show the bound �n/4� in this lemma is the best possible.
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Proof of Theorem 1.1 According to Lemma 4.8, there is an internal vertex of T

inducing a tripartition A|B|C such that #A ≥ #B ≥ �n/4� and #C ≥ 1. Thus,
T = (T , . . . , T ) is in the �n/4�-deep class. Theorem 4.7 then applies. �

5 Further Directions

This paper is concerned with generic identifiability results for mixtures of the general
Markov model. In practice, most data analysis is currently performed with some ver-
sion of a general time reversible (GTR) model, in which a common rate matrix is used
to model the instantaneous substitution process across the entire tree. While a GTR
model is embedded within the GM model, the transition matrices on edges of the trees
necessarily commute, and thus their entries satisfy polynomial equations defining a
subvariety. Our strong intuition is that this subvariety is unrelated to the ones arising
in our proofs which determine the exceptional set of nonidentifiable parameters. This
would imply that mixtures of GTR models are also generically identifiable, though
we emphasize that we have not formally established that claim. While in simpler
situations (Allman and Rhodes 2006, 2009) formal arguments have been developed
to fill a similar gap, they involved many technical details that we have not consid-
ered here. While our theorems provide circumstantial evidence that GTR mixtures
are identifiable, it still remains to complete the argument in that case.

The techniques employed in this paper have been primarily concerned with, and
are effective for, the generic identification of parameters in mixture models where the
underlying trees share large common substructures. Establishing generic identifiabil-
ity of either numerical or tree parameters in situations where there is no common-
ality between the trees remains an open problem. Generic identifiability of trees in
such two-tree mixtures was established for the Jukes–Cantor and Kimura 2-parameter
models in Allman et al. (2010). But in the case of general Markov mixtures, even on
two 4-leaf trees, little is understood: First, in the case of two different tree topologies
being mixed, it is unknown if the tree parameters are generically identifiable. Second,
if the two trees are given, it is unknown if numerical parameters are generically iden-
tifiable. These problems might be addressed by finding stronger versions of the tensor
rank results we have employed (e.g., a strengthened version of Kruskal’s theorem).
But it also seems likely that a solution to these problems will require the development
of new mathematical techniques.
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