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The Identifiability of Tree Topology for Phylogenetic
Models, Including Covarion and Mixture Models
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ABSTRACT

For a model of molecular evolution to be useful for phylogenetic inference, the topology of
evolutionary trees must be identifiable. That is, from a joint distribution the model predicts,
it must be possible to recover the tree parameter. We establish tree identifiability for a
number of phylogenetic models, including a covarion model and a variety of mixture models
with a limited number of classes. The proof is based on the introduction of a more general
model, allowing more states at internal nodes of the tree than at leaves, and the study of the
algebraic variety formed by the joint distributions to which it gives rise. Tree identifiability
is first established for this general model through the use of certain phylogenetic invariants.

Key words: phylogenetics, tree identifiability, covarion model, mixture model, rate variation,
phylogenetic invariants.

1. INTRODUCTION

In phylogenetics, probabilistic models of the evolution of biological sequences (DNA or proteins, for
example) are used to infer evolutionary history.
The parameters of such a model typically include such things as the topology of the rooted tree depicting

the temporal ordering of speciation events, the elapsed time between these events, and the rates at which
different types of substitutions (e.g., A → C, A → G) occur between events. While any of these parameters
might be of interest in a particular study, the tree topology is often the one of greatest interest (and one
on which the very definition of the others depends).

A basic question concerning any statistical model is whether it is identifiable: Given a distribution of
observations that the model predicts, is it theoretically possible to recover the parameters of the model?
Understanding what parameters are identifiable for a model is crucial to understanding what we may
reasonably hope to infer from data.

In particular, identifiability of the tree topology is essential for any model that is to be used in inferring
evolutionary histories from data. If a tree is not uniquely determined by an expected joint distribution,
then one has no hope of using the model to infer trees well from data. Indeed, proofs of the statistical
consistency of an inference method such as maximum likelihood begin by establishing identifiability of
parameters.

Identifiability of tree topologies has been investigated for a number of models. See, for example, Chang
and Hartigan (1991), Steel et al. (1994), Chang (1996), Waddell and Steel (1997), Baake (1998), Steel
et al. (1998), and Rogers (2001) for both positive and negative results. However, much remains to be
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done. As pointed out in Bryant et al. (2005), for mixture models that allow several classes of sites in
sequences to evolve at different rates, “[n]othing has been proved in the general context yet.” In fact, most
proofs of tree identifiability for various models have been based on notions of phylogenetic distances and
the four-point condition of Buneman (1971), and for general mixture models no such distance is known.
For related work illustrating nonidentifiability of edge lengths for mixture models, see Evans and Warnow
(2004).

Nonetheless, fairly general mixture models have already been introduced for practical phylogenetic
analysis by Pagel and Meade (2004), and have shown promising indications of good performance. For data
composed of long aligned sequences, such as obtained by concatenating many gene sequences, mixture
models allowing more complexity than the common �-distributed rates-across-sites formulation are quite
natural, and can be expected to be increasingly important.

In this paper we establish a general identifiability result applicable to many mixture models, albeit with
a limited number of classes. As further motivation for our work, however, we choose to highlight the
covarion model, for which the question of identifiability of trees has also been open.

A covarion model of character evolution describes characters with states that are only partially observable.
Such a model can be viewed as a type of hidden Markov model on a tree, where not only are character
states at all internal nodes of the tree hidden, as in simpler phylogenetic models, but even at the leaves
full information is not available.

For instance, in the covarion model of Tuffley and Steel (1998) for the evolution of DNA sequences, each
site in the sequences is a character. As evolution proceeds over a tree, this character is in one of the eight
states Aon, Aoff , Gon, Goff , Con, Coff , Ton, Toff , where the subscript on denotes the site is currently free to
undergo base substitution, and off denotes that it is currently invariable. The off-states indicate functional
or other biological constraints temporarily preventing substitutions. Importantly, as evolution proceeds over
the tree, sites may pass from on-states to off-states and vice versa. However, when we observe sequences
from currently extant taxa, we can only observe A, C, G, or T ; we obtain no information as to whether a
site is currently on or off.

That constraints to nucleotide substitution might change over a tree is a biologically plausible hypothesis
which makes covarion models attractive. A covarion model might be viewed as a type of single-site rate
variation model, as a character described by the model may be in on- and off-states for different amounts
of time in different parts of the tree. This ‘switching’ between on- and off- states, allowing a character to
behave differently in one part of a tree from another, is a crucial distinction from standard approaches to
rate variation where a character has a fixed substitution rate throughout the tree. Of course more elaborate
covarion models, with more than the two hidden rate-classes of the example above, are easily devised. For
instance there might be off-, slow-, and fast-states, with the opportunity for a character to pass in and out
of each as evolution proceeds over the tree.

Though originally proposed by Fitch and Markowitz (1970), it was not until the work of Tuffley and
Steel (1998) that a covarion model was mathematically formalized and the first steps were taken in its
theoretical analysis. Galtier (2001), implemented a maximum likelihood inference package using a covarion
model, and reported improved fits to data over standard rate-variation models. Recently, Ané et al. (2005)
have developed simple statistical tests for covarion structure in data, and used them to infer that such
a process may have played an important role in the evolution of plastid genomes. For a more thorough
overview and arguments in support of the use of such models, see Penny et al. (2001).

Although the covarion model is appealing for biological reasons, it is less well understood theoretically.
For instance, many basic questions of identifiability of model parameters have been open. Indeed, much
of Tuffley and Steel (1998) is focused on showing that in some circumstances a covarion model is distin-
guishable from a rate-variation model, and that some features of the tree topology are identifiable provided
one has prior knowledge of some clades.

Motivated by the covarion model, in this paper we first prove a result on identifiability of tree topologies
for a more general phylogenetic model. The model is introduced in Section 2, and the result proved in
Section 4. We also show how the result specializes to establish identifiability of the tree topology for more
specific models of greater direct interest for applications, including the covarion model and certain mixture
models. In Section 3 we describe some of these models, and in Section 5 we apply the general result to
deduce tree identifiability under certain assumptions.
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Actually, our results require some mild restrictions on model parameters—it is better to say that tree
topology is identifiable for generic parameters. Informally this means if parameters are chosen “at random,”
then the topology can be identified. More precisely, our use of the word “generic” is as in algebraic
geometry: We say a property holds for generic parameters if it holds for all parameters off a proper
subvariety of the parameter space. By “subvariety” we might mean either an algebraic subvariety, defined
by the vanishing of a set of multivariable polynomials, or, more generally, an analytic subvariety, defined
by the vanishing of analytic functions. Since in either circumstance a proper subvariety is a closed set of
lower dimension than the ambient space, generic parameters form an open, dense subset of the parameter
space.

As the last paragraph hints, our approach throughout is algebraic, and provides a good illustration of the
value of an algebraic viewpoint for statistical models. Within phylogenetics, this approach began with the
introduction of the idea of phylogenetic invariants by Cavender and Felsenstein (1987) and Lake (1987).
Notable contributions for group-based models appeared in Evans and Speed (1993) and Székely et al.
(1993), building on an idea first introduced in Hendy (1989). It has been pursued in a number of recent
works focused on phylogenetics, such as Chor et al. (2000, 2003), Allman and Rhodes (2003, 2004, 2005b,
2005c), Eriksson et al. (2005), Sturmfels and Sullivant (2005), Casanellas et al. (2005), Casanellas and
Sullivant (2005), and Eriksson (2005), and more broadly for biological application in the recent volume
(Pachter and Sturmfels, 2005).

Though our emphasis here is on theory, practical methods of identifying tree topologies from data are also
needed. For instance, the notions of phylogenetic distance that play a key role in theoretical identification
of tree topologies for simpler models also provide useful tools for tree inference. Whether one wishes to
base inference on a distance-based method, or merely view such methods as fast heuristic means of finding
good candidate trees to begin a more elaborate search of tree space, the value of distances is clear. For
models where no distance formulas are known, the explicit polynomials our results yield, whose vanishing
on a joint distribution identifies the tree topology, might play a similar role. It will be interesting to see
if these polynomials might be exploited for practical inference, either heuristically or on a more solid
statistical basis.

Finally, we thank Cécile Ané for first suggesting to us that the covarion model might be tractably studied
by our methods.

2. THE (λ, κ)-STATE GENERAL MARKOV MODEL

In this section we introduce a phylogenetic model which allows more states at internal nodes of the
tree than at leaves. Though motivated by the covarion model of Tuffley and Steel (1998), our model is
much more general. We emphasize that we introduce this model not because we feel it precisely captures
any biological phenomena, but rather because its generality encompasses a variety of models of more
direct biological interest. It will allow us to make the key algebraic ideas in our subsequent arguments on
identifiability clear, and obtain results which can then be applied to more specialized models.

Throughout, suppose T is a trivalent (i.e., binary) tree. Choosing some internal vertex r as a root, denote
the resulting rooted tree by T r . Corresponding to each leaf of the tree we have an observed random variable
with state space [κ] = {1, 2, . . . , κ}, while for each internal vertex we have a hidden (unobserved) variable
with state space [λ]. The states of observed variables might represent the bases at a site in DNA sequences
(κ = 4) from extant taxa, while states of hidden variables might represent ancestral bases together with
additional features, such as how rapidly a site currently undergoes mutation, or even whether it is currently
invariable. With this interpretation in mind, we will always assume λ ≥ κ .

A λ-element row vector π r describes the probability distribution of the states for the root variable.
For each internal edge e of the tree, with e directed away from the root, a λ × λ Markov matrix Me

describes transition probabilities. For each pendant edge e, a λ× κ Markov matrix Me describes transition
probabilities. Thus Me(i, j) is the conditional probability of state j at the end of e given state i at its start.
Stochastic assumptions ensure that all entries are non-negative, the entries of π r sum to 1, and the entries
in any row of any of the Me sum to 1. With no further restrictions imposed on either the root distribution
or the Markov matrices, we call this the (λ, κ)-state general Markov model on the rooted tree T r .
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In the case λ = κ , this model is the usual general Markov model with κ states. We are therefore
particularly interested in cases where λ > κ . For instance, a generalization of the on-off covarion model
described in the introduction has λ = 2κ .

For a fixed n-leaf rooted tree T r , we may make some choice of entries in π r and each row of the Me

to view as independent variables, using the condition that rows sum to 1 to determine the remaining entry.
Since T r has n pendant edges and n − 3 internal edges, the stochastic parameter space S for this model
can thus be identified with a subset of [0, 1]L where L = (λ− 1)+ nλ(κ − 1)+ (n− 3)λ(λ− 1).

The probabilities of observing each of the κn possible patterns (i.e., assignments of states) of leaf
variables can then be given as polynomial expressions in the parameters. That is, there is a polynomial
map, the parameterization map,

φT r : S → [0, 1]κn,
which gives the joint distribution of observed states at the leaves of T r as a function of the parameters.
We extend this to a polynomial map CL → Cκ

n
which we also denote by φT r , and refer to CL as the

complex parameter space.
The phylogenetic variety for the (λ, κ)-state model on T r is the algebraic variety defined as

VT r ,λ,κ = φT r (CL),

where the bar denotes the (Zariski and standard) topological closure in Cκ
n
.

Lemma 1. Let T be an n-leaf trivalent tree, and r1, r2 any two internal nodes. Then VT r1 ,λ,κ = VT r2 ,λ,κ ,
so this variety may be denoted by VT,λ,κ .

Proof. This is proved similarly to the corresponding result for the general Markov model, as in Steel
et al. (1994) or Allman and Rhodes (2003).

3. ALGEBRAIC AND ANALYTIC SUBMODELS OF THE (λ, κ)-STATE
GENERAL MARKOV MODEL

To further motivate our introduction of the (λ, κ)-state general Markov model, we note that many
models of molecular evolution can be viewed as submodels of it, in that they simply place more restrictive
assumptions on the allowable parameter values. In this section we indicate some of these submodels of
interest.

We also introduce the idea of an analytic (λ, κ)-state model, which will allow us not only to deal with
parameterization maps in which joint distributions are expressed by polynomial formulas in the parameters,
but a wider class that encompasses the “rate matrix” models that are so commonly used in applications.

Some specific examples of models that can be viewed as submodels of the general (λ, κ)-state model
include the following:

1. GM: As already stated, the κ-state general Markov model results from λ = κ .
2. GM+I: This model allows two classes of sites in sequences; one class mutates according to the general

Markov model, and another is held invariable. A parameter f denotes the proportion of sites in the
first class, with 1 − f in the second. If the root distribution vectors for the two classes are π1 and π2,
let π r = (fπ1, (1 − f )π2). For an internal edge e, if Ne is the κ × κ matrix describing transition
probabilities for the first class along that edge, let

Me =
(
Ne 0
0 I

)
,

a 2κ × 2κ matrix. For pendent edges e, let

Me =
(
Ne
I

)
,
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a 2κ × κ matrix. Thus the model results from simply restricting parameters in the general (2κ, κ)-state
model so that all Markov matrices have a particular form.

The restricted parameter space can be identified with CM , where M = (2κ − 1)+ (2n− 3)κ(κ − 1).
Note the parameterization map giving joint distributions as a function of parameters for this model is
still a polynomial one, given by restriction of the map for the general (2κ, κ)-state model to a smaller
domain.

3. GM+GM+· · · +GM: We consider m classes of sites, each evolving independently according to a
different GM model. To view this as a submodel of our more general model, for each internal edge of
the tree we create an mκ ×mκ block-diagonal Markov matrix, with each of the m κ × κ blocks giving
transition probabilities for a particular class. On pendant edges we ‘stack’ the blocks, giving mκ × κ

matrices. The root distribution is similarly obtained by concatenating the root distributions for each
class, weighted by additional parameters describing the relative frequencies of the classes. Thus we are
dealing with a restriction of the (mκ, κ)-state model, with parameter space identified with CM where
these “mκs” are correct as they are M = (mκ − 1)+ (2n− 3)mκ(κ − 1). Again, the parameterization
map for this model is polynomial.

4. Other algebraic models: In the previous examples, we can replace an occurrence of GM by a submodel,
such as the Jukes-Cantor, Kimura 2-parameter, Kimura 3-parameter, or Strand Symmetric, defined by
further restriction of parameters. Allowing arbitrary matrices of these types on each edge (so that we
do not assume a common rate matrix), we again have a polynomial parameterization map with domain
CM for some M .

The previous examples all lie fully within an algebraic framework, but in fact many of the models used
for inference in current applications are not of this sort. Rate matrix models assume more commonality
to the substitution process on the various edges of the tree. Typically, one fixes a rate matrix Q with
non-negative off-diagonal entries and rows summing to 0. Then each edge of the tree is assigned a scalar
edge length te, and the Markov matrix Me = exp(Qte) gives transition probabilities for that edge.

5. GTR: A submodel of the general (κ, κ)-state model, the general time-reversible model assumes a root
distribution π r and rate matrix Q such that π rQ = 0 and diag(π r )Q is symmetric. Pairs π r ,Q with
these properties can be parameterized by (κ−1)+(κ)(κ−1)/2 scalars. Since we may normalize so one
edge length is 1, the parameter space for the full model is of dimension M = (κ − 1)+ κ(κ − 1)/2 +
(2n − 4). Notice the parameterization map giving joint distributions is not polynomial, as it involves
a composition of matrix exponentials with the general Markov parameterization. Nonetheless, it is an
analytic map.

6. GTR+rate-classes: Let π r ,Q be as in the GTR model. Assuming m different classes of sites, we assign
each a relative frequency fi and a scalar rate parameter λi , with λ1 = 1. Then the ith class undergoes
substitutions on an edge e according to Ne = exp(Qλite). For internal edges of the tree we embed the
Ne as blocks in a larger block-diagonal matrix Me, while for pendant edges we stack them, obtaining
an expression of this model as a submodel of the general (mκ, κ)-state model. The parameter space is
of dimension M = (κ − 1) + κ(κ − 1)/2 + 2(m − 1) + (2n − 4). Again we have an analytic, but not
polynomial, parameterization map.

Note that our formulation requires a finite number of rate classes. While current literature often refers
to a continuous distribution of rates (usually with a � distribution), in practice inference is always done
with a discretization of the distribution, producing finitely many rate classes as here.

7. GTR+I+rate-classes: This model is simply the last, with the further assumption λ2 = 0.
8. Covarion: As formulated in Tuffley and Steel (1998), the Tuffley-Steel covarion model hypothesizes a

common 2κ × 2κ rate matrix Q of a particular form. Let π , R be a root distribution and rate matrix
for the κ-state GTR model. Let s1, s2 > 0, and set σ1 = s2

s1+s2 , σ2 = s1
s1+s2 . Then

Q =
(
R − s1I s1I

s2I −s2I
)

is the rate matrix for a 2κ state time-reversible process, stationary on the root distribution vector
π r = (σ1π , σ2π). In the language of the introduction, the first κ states represent bases that are on, and
the last κ states bases that are off.
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The covarion model then associates to each internal edge e of the tree the Markov matrix Me =
exp(Qte), and to a pendant edge e the matrix Me = exp(Qte)(Iκ×κ Iκ×κ)T . This model is therefore a
submodel of the (2κ, κ)-state model.

Since the parameters for the covarion model can be viewed as (π , R, s1, s2, {te}), the parameter
space is of dimension M = (κ − 1)+ κ(κ − 1)/2 + 2 + (2n− 4). As with all rate matrix models, the
parameterization map is analytic, though not polynomial.

9. The model referred to as the SSRV in Galtier (2001) generalizes the covarion model to m rate classes,
sharing the same rate matrix R, with switching allowed between the classes. It can similarly be seen
to be a submodel of the (mκ, κ)-state model, with an analytic parameterization map.

Naturally, many more variations are possible. The reader familiar with other basic models will have
no trouble modifying the examples above, adding rate classes if desired, or even mixing several different
models as separate classes.

To formalize a notion of submodel of the (λ, κ)-state model that encompasses the above and other
examples, we introduce some new terminology.

By a submodel of the (λ, κ)-state general Markov model on a tree T r we mean a restriction of parameters
to a subset of the full parameter space CL. Suppose the set of (λ, κ)-state general Markov model parameters
s ∈ CL allowed in the submodel is ψ(U), the image under some analytic map ψ : U → CL of an open set
U ⊆ RM . Then we say the submodel is an analytic (λ, κ)-state model with parameter space U and Markov
map ψ . The parametrization map for the analytic model is then φT r ◦ψ , where φT r is the parameterization
map for the general (λ, κ)-state model:

U
ψ−→ CL

φrT−→ Cκ
n

.

Thus, for instance, the covarion model is an analytic (2κ, κ)-state model, as is the GM+I model. Note
that algebraic submodels, with polynomial Markov maps, are included among the analytic ones. Analyticity
of the Markov map will be important for our arguments in Section 5.

While all of the enumerated models above are analytic (λ, κ)-state models, they in fact have additional
structure in common. First note that in each λ = mκ for some m. Moreover, the set of states [λ] at each
internal node is naturally identified with the set [κ] × [m]. Under this identification, if we refer to the
observable states in [κ] as ‘bases’, then a state (i, j) represents ‘base i’ and ‘class j ’. Here ‘class’ might
refer to ‘rate class’, or some other characteristic, such as the on/off feature in the covarion model. Finally,
in all of these models the Markov matrices on pendant edges of the tree have a form

M̃ = M(I I . . . I )T ,

where M is an mκ ×mκ Markov matrix of the sort allowed on internal edges. Essentially this means the
model hides all class information, so only bases are observable at leaves. We refer to such an analytic
(mκ, κ)-state model as an analytic κ-base, m-class model.

4. IDENTIFIABILITY OF THE TREE TOPOLOGY FOR THE GENERAL
(λ, κ)-STATE MODEL

Returning to consideration of the (λ, κ)-state general Markov model, in this section we establish our
main technical result on generic identifiability of tree topologies.

We first consider identifiability of the tree topology from a joint distribution of states at the leaves in
the case of a 4-leaf tree. Let the three possible trivalent trees with leaves a, b, c, d be denoted by

T1 = Tab|cd , T2 = Tac|bd , T3 = Tad|bc,

where the subscript uv|wx denotes leaves u, v are adjacent to a common internal node, as are leaves w, x.
Focusing on T1, denote the internal nodes by r, f , so that the root r is adjacent to the leaves a and b.

For s ∈ CL, the complex parameter space, let the corresponding vector and matrix parameters (with rows
summing to 1) be π r ∈ Cλ, Mrf ∈ Mλ×λ(C), Mra,Mrb,Mfc,Mfd ∈ Mλ×κ(C).
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Then P = φT1(s) can be expressed as a κ × κ × κ × κ tensor whose entries P(i, j, k, l) give the
‘probability’ of observing states i, j, k, l at leaves a, b, c, d, respectively, and are given by the following
formula:

Let A = diag(π r )Mrf , a λ× λ matrix. Then define a λ× λ× λ× λ tensor Q by

Q(i, j, k, l) =
{
A(i, k) if i = j and k = l,

0 otherwise.

Finally, let each of the Mra,Mrb,Mfc,Mfd act in the consecutive indices of Q to yield P , i.e.,

P(i, j, k, l) =
λ∑

i′,j ′,k′,l′=1

Q(i′, j ′, k′, l′)Mra(i
′, i)Mrb(j

′, j)Mfc(k
′, k)Mfd(l

′, l). (1)

To motivate Equation (1), and our subsequent arguments, one should think of the matrix A as expressing
the joint distribution of states at the vertices r and f . The tensor Q then represents the joint distribution
for a (λ, λ)-state model on a quartet tree where no state changes occur along the pendant edges (i.e., the
Markov matrices on these edges are I ), as illustrated at the left in Fig. 1. The model producing P ‘extends’
these terminal edges, placing the λ× κ Markov matrices on the extensions, as shown on the right.

Importantly, Equation (1) can be re-expressed in several ways. The first of these naturally reflects the
topology of T1. Let Flatab|cd(Q) be the λ2 × λ2 matrix with entries

Flatab|cd(Q)((i, j), (k, l)) = Q(i, j, k, l),

where each index runs through [λ]2. Similarly let Flatab|cd(P ) be the κ2 × κ2 matrix, with indices in [κ]2,
given by

Flatab|cd(P )((i, j), (k, l)) = P(i, j, k, l).

Let Nab = Mra ⊗Mrb and Ncd = Mfc ⊗Mfd where “⊗” denotes the Kronecker product of matrices.
Thus Nab and Ncd are λ2 × κ2 matrices where, for instance Nab((i, j), (k, l)) = Mra(i, k)Mrb(j, l). Then
we have

Flatab|cd(P ) = NT
ab Flatab|cd(Q)Ncd . (2)

Alternatively, we have other expressions involving flattenings which are less natural with respect to the
topology of T1. Let Flatac|bd(Q) be the λ2 × λ2 matrix with entries

Flatac|bd(Q)((i, j), (k, l)) = Q(i, k, j, l).

Similarly let Flatac|bd(P ) be the κ2 × κ2 matrix with entries

Flatac|bd(P )((i, j), (k, l)) = P(i, k, j, l).

FIG. 1. Models underlying the tensors Q and P .
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Let Nac = Mra ⊗Mfc and Nbd = Mrb ⊗Mfd . Then we have

Flatac|bd(P ) = NT
ac Flatac|bd(Q)Nbd. (3)

A third such expression, obtained in a similar way, is

Flatad|bc(P ) = NT
ad Flatad|bc(Q)Nbc. (4)

The key observation underlying our proof of the identifiability of the tree topology for the (λ, κ)-
state model (Theorem 2 and Corollary 3 below) is that, for generic parameter choices, the ranks of the
matrices Flatab|cd(Q), Flatac|bd(Q), Flatad|bc(Q), are rather different, and this affects the ranks of the three
corresponding flattenings of P . This will lead to explicit polynomials (i.e., phylogenetic invariants) whose
vanishing can be used to identify the tree topology from which P arises, for generic parameters.

Theorem 2. Suppose λ < κ2; T1, T2, T3 are the three 4-taxon tree topologies as defined earlier in
this section, and VT1 , VT2 , VT3 are their associated varieties for the (λ, κ)-state model. With P denoting a
κ × κ × κ × κ tensor of indeterminants, let S1, S2, and S3 denote the sets of (λ+ 1)-minors of the κ2 × κ2

matrices Flatab|cd(P ), Flatac|bd(P ), and Flatad|bc(P ), respectively. Let the varieties Yi = V (Si) ⊂ Cκ
4

be
their zero sets. Then

(i) VTi ⊆ Yj if, and only if, i = j .
(ii) If P ∈ VT1 ∪ VT2 ∪ VT3 and P ∈ Yi � (Yj ∪ Yk) for distinct i, j, k, then P ∈ VTi � (VTj ∪ VTk ).
(iii) For distinct i, j, k, let Xi = φ−1

Ti
(Yj ∪ Yk) � CL. Then Xi is a proper algebraic subvariety of the

complex parameter space for the 4-taxon tree Ti , and for any parameters s ∈ CL � Xi the tree Ti is
identifiable from the joint distribution tensor P = φTi (s) via the vanishing of the polynomials in Si .

Proof. Throughout, we may assume i = 1, j = 2, k = 3.
To establish (i), for any parameters s ∈ CL on T1, let Q = Q(s), P = P(s) = φT1(s), where Q and

P are the tensors described above. Now Flatab|cd(Q) is a matrix of all zeros except for a single λ × λ

submatrix whose entries are those of A = diag(π r )Mrf . Thus

rank(Flatab|cd(Q)) = rank(A) ≤ λ.

By Equation (2), this implies rank(Flatab|cd(P )) ≤ λ. Thus φT1(C
L) ⊆ Y1, and hence VT1 ⊆ Y1.

We now show VT1 �⊆ Y2 or Y3, by finding an s ∈ CL with φT1(s) /∈ Y2 ∪ Y3. To pick such an s,
we choose each of Mra,Mrb,Mfc,Mfd to have the block form (Iκ×κ 0(λ−κ)×κ)T . Then the Kronecker
products Nac,Nbd,Nad,Nbc all have block form

(Iκ2×κ2 0(λ2−κ2)×κ2)
T .

Now choosing π r and Mrf to have all positive entries, for instance, ensures that all entries of A are non-
zero. Since Flatac|bd(Q) is a matrix of all zeros, except the entries of A which appear in the ((i, j), (i, j))
positions, Flatac|bd(Q) is thus a diagonal matrix of rank λ2. Similarly Flatad|bc(Q) is diagonal with full
rank λ2. Thus

Flatac|bd(P ) = NT
ac Flatac|bd(Q)Nbd,

Flatad|bc(P ) = NT
ad Flatad|bc(Q)Nbc,

both have rank κ2 > λ due to the particular form of Nac,Nbd,Nad,Nbc. Thus φT1(s) /∈ Y2 or Y3.
Statement (ii) follows immediately from (i).
For (iii), note that the existence of the point s, constructed above, with φT1(s) /∈ Y2 or Y3 shows X1

is a proper subset of CL. That it is an algebraic variety follows from its definition as the zero set of all
polynomials of the form f ◦ φT1 where f vanishes on Y2 ∪ Y3.
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Remark. The set Xi should be thought of as the set of “bad” parameters for the model on Ti , for which
this approach is unable to identify the tree topology from the resulting joint distribution. It is important that
Xi be a proper subvariety of the parameter space since this immediately implies its dimension is smaller
than that of the parameter space.

Note that even if one restricts attention from complex to real parameters, or even to stochastic parameters,
the resulting points in Xi still form a set of lower dimension than the real or stochastic parameter space.
Although this follows from the fact that any open subset of Rn is Zariski dense in Cn, we sketch the
argument: the values of a polynomial (or any analytic function) on an open subset of Rn determines the
values of all (real = complex) partial derivatives at some point in its interior, and hence the full polynomial.
Thus if the polynomial vanished on the stochastic parameter space, it would be identically zero.

Therefore, for ‘most’ stochastic parameters, the topology of a 4-taxon tree is identifiable from the joint
distribution.

While the following theorem is stated for complex parameters on n-taxon trees, it similarly implies a
corresponding result for stochastic parameters.

Corollary 3. The n-taxon bifurcating tree topology is identifiable for generic parameters of the (λ, κ)-
state general Markov model when λ < κ2. That is, for each n-leaf tree T , there exists a proper subvariety
XT of the complex parameter space CL such that the tree topology is identifiable from the joint distribution
arising from any parameter choice s ∈ CL � XT via the vanishing of certain explicit polynomials (to be
described below).

Proof. As is well known (Semple and Steel, 2003), to identify the topology of an n-leaf tree T , it is
enough to identify the topology of each induced quartet tree relating four leaves of T .

Let CL be the complex parameter space for the tree T , and let Q denote the collection of all 4-leaf trees
induced by T . For each T ′ ∈ Q, the parameter space for T ′ is CL

′
and we have the following commutative

diagram of maps:

CL
φT−−−−→ Cκ

n

αT ′
⏐⏐� µT ′

⏐⏐�
CL

′ φT ′−−−−→ Cκ
4

.

The map αT ′ can be explicitly given by multiplication of matrix parameters for T to obtain matrix param-
eters for T ′, if a consistent choice of roots for T ′ and T is made. The map µT ′ is a marginalization map
on tensors, where we sum over all but the 4 indices corresponding to leaves of T ′.

For any T ′ ∈ Q, identify its leaves with labels a, b, c, d so that T ′ is identified with T1 of Theorem 2.
Letting Xi, Yi be the varieties defined in that theorem, consider varieties

XT =
⋃
T ′∈Q

α−1
T ′ (X1),

YT =
⋂
T ′∈Q

µ−1
T ′ (Y1).

For any parameters s ∈ CL � XT , φT (s) ∈ YT � φT (XT ), and all 4-leaf induced tree topologies are
identifiable by the vanishing of the polynomials defining YT . (An explicit set of polynomials defining
YT can be taken to be the composition of the polynomials in S1 of Theorem 2 with the marginalization
maps µT ′ .)

It only remains to show that XT is a proper subvariety of CL. But it is easy to see that each of the
maps αT ′ is surjective. Therefore since X1 � CL

′
, for each T ′ ∈ Q we find α−1

T ′ (X1) � CL. Since XT is
a finite union of proper subvarieties of CL, we obtain XT � CL.
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Remark. For a concrete example of the polynomials described in Theorem 2 and Corollary 3, let
κ = 4, as is appropriate for DNA sequences, with the 4 bases denoted 1, 2, 3, 4. Suppose λ = 8, and
evolution proceeds according to the (8, 4)-state model on the tree T1 exhibiting the split ab|cd.

Let P be the 4 × 4 × 4 × 4 joint probability tensor of observations at the leaves of the tree, so
P(i, j, k, l) = pijkl denotes the probability of observing state i at a, j at b, k at c, and l at d. The matrix
Flatab|cd(P ) then is:

p1111 p1112 p1113 p1114 p1121 p1122 p1123 p1124 p1131 p1132 p1133 . . . p1144
p1211 p1212 p1213 p1214 p1221 p1222 p1223 p1224 p1231 p1232 p1233 . . . p1244
p1311 p1312 p1313 p1314 p1321 p1322 p1323 p1324 p1331 p1332 p1333 . . . p1344
p1411 p1412 p1413 p1414 p1421 p1422 p1423 p1424 p1431 p1432 p1433 . . . p1444
p2111 p2112 p2113 p2114 p2121 p2122 p2123 p2124 p2131 p2132 p2133 . . . p2144
p2211 p2212 p2213 p2214 p2221 p2222 p2223 p2224 p2231 p2232 p2233 . . . p2244
p2311 p2312 p2313 p2314 p2321 p2322 p2323 p2324 p2331 p2332 p2333 . . . p2344
p2411 p2412 p2413 p2414 p2421 p2422 p2423 p2424 p2431 p2432 p2433 . . . p2444
p3111 p3112 p3113 p3114 p3121 p3122 p3123 p3124 p3131 p3132 p3133 . . . p3144
p3211 p3212 p3213 p3214 p3221 p3222 p3223 p3224 p3231 p3232 p3233 . . . p3244
p3311 p3312 p3313 p3314 p3321 p3322 p3323 p3324 p3331 p3332 p3333 . . . p3344
p3411 p3412 p3413 p3414 p3421 p3422 p3423 p3424 p3431 p3432 p3433 . . . p3444
p4111 p4112 p4113 p4114 p4121 p4122 p4123 p4124 p4131 p4132 p4133 . . . p4144
p4211 p4212 p4213 p4214 p4221 p4222 p4223 p4224 p4231 p4232 p4233 . . . p4244
p4311 p4312 p4313 p4314 p4321 p4322 p4323 p4324 p4331 p4332 p4333 . . . p4344
p4411 p4412 p4413 p4414 p4421 p4422 p4423 p4424 p4431 p4432 p4433 . . . p4444

where the rows of this array correspond to the 16 pairs of states at a and b, and the columns to the 16
pairs of states at c and d .

The set S1 of Theorem 2 consists of the degree 9 polynomials obtained as determinants of all submatrices
of this array obtained by deleting all but 9 rows and all but 9 columns. One such submatrix has been

indicated in boldface, though there are
(16

9

)2
such. The main point of Theorem 2 is that if a joint distribution

tensor P is known to arise from the (8, 4)-state model on some 4-taxon tree with generic parameters, then
the vanishing of these polynomials indicates that the tree is T1.

Corollary 3 indicates that an n-taxon tree topology can be similarly identified, by considering quartets of
4 taxa, marginalizing over the other taxa so the joint distribution becomes 4-dimensional, and identifying
the quartet topologies as in Theorem 2.

We note that the use of rank conditions on flattenings of a data tensor to identify tree topology appears in
recent independent work of Eriksson (2005), where the singular value decomposition (SVD) for matrices
is used to give a novel algorithm for tree construction. That paper deals only with the general Markov
model (λ = κ), and takes a slightly different approach to identifying splits for a tree without focusing on
quartets.

Specializing our result to λ = κ , we recover the following result proved previously by Steel (1994)
using the log-det distance, and then reproved by Eriksson.

Corollary 4. The tree topology is identifiable for generic parameters in the κ-state general Markov
model.

5. IDENTIFIABILITY OF TREE TOPOLOGY FOR ANALYTIC
(λ, κ)-STATE MODELS

To deduce identifiability of the tree topology for analytic (λ, κ)-state submodels using Theorem 2 or
Corollary 3 requires a little additional work, since, a priori, it is possible that the restricted parameters are
not sufficiently generic to preserve identifiability.

Fix an analytic (λ, κ)-state model, and let ψ : U → CL denote its Markov map, giving parameters for
the general (λ, κ)-state model in terms of parameters for the analytic model.
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We first consider the identifiability of a 4-leaf tree topology, so let T1 = Tab|cd . For parameters u of the
analytic model, we need only show that points ψ(u) are generically not in the variety X1 of Theorem 2.

With I (X1) denoting the ideal of all polynomials vanishing on X1, consider the set

X̃1 = ψ−1(X1) = {u : f ◦ ψ(u) = 0, for all f ∈ I (X1)} ⊆ U ⊆ RM.

Since ψ is an analytic map, so is f ◦ ψ for each polynomial f , and hence X̃1 is an analytic subvariety
of U . Thus if we establish that X̃1 is a proper subvariety of U , then generic points in U are mapped to
generic points (off of X1) in CL by ψ . This establishes the following:

Lemma 5. For λ < κ2, consider an analytic (λ, κ)-state model on a 4-leaf tree, with parameter space
U and Markov map ψ . If there is a single choice of parameters u ∈ U such that ψ(u) /∈ X1, then the
4-leaf tree topology is identifiable for generic parameters.

For ease of application to the specific models listed in Section 3, we deduce a weaker form of this.

Lemma 6. Consider an analytic κ-base, m-class model on a 4-leaf tree. Suppose m < κ and there is
at least one choice of allowable parameters for which

(i) the Markov matrices for pendant edges are of the form Me = M0 = (Iκ×κ Iκ×κ . . . Iκ×κ)T , and
(ii) if π r is the root distribution and Me the λ × λ Markov matrix assigned to the internal edge of the

tree, then the κ × κ matrix

N = MT
0 diag(π r )MeM0

has at least mκ + 1 non-zero entries.

Then the tree topology is identifiable for generic parameters of the model.

Before proving this, we note that condition (i) means that no base changes occur on pendant edges,
though class information is hidden. In condition (ii), N represents a joint distribution of bases, without
class information, at the two internal nodes of the tree.

Proof. Since m < κ , then mκ < κ2 and Lemma 5 applies.
For a parameter choice on the tree T1 as described in the statement of the lemma, the joint distribution

of bases at the leaves is given by P where

P(i, j, k, l) =
{
N(i, k) if i = j , k = l

0 otherwise
.

Therefore the matrices Flatac|bd(P ) and Flatad|bc(P ) are diagonal with at least mκ+1 non-zero entries.
Hence they have rank at least mκ + 1. This shows the parameters do not lie in X1, and so the topology is
identifiable for generic parameters.

We now obtain the result that provided our original motivation for this work.

Corollary 7. For the covarion model of Tuffley-Steel, if κ ≥ 3 the 4-leaf tree topology is identifiable
for generic parameters.

Proof. This model is an analytic κ-base, 2-class model, and so we need κ ≥ 3 to apply Lemma 6.
For any R = (Rij ),π , s1, s2 with all si, πi, Rij > 0 for i �= j , the matrix diag(π r ) exp(Qte) has all

positive entries as long as te > 0, so then the matrix N has all positive entries. Picking such parameters,
with te > 0 for the internal edge of the tree, and te = 0 for all pendant edges, Lemma 6 gives the
result.

This result includes the κ = 4, 20 cases which apply to DNA and protein sequences. Note, however,
that the identifiability of the tree topology for the κ = 2 covarion model remains an open question.
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Finally, the result extends to trees with more than 4 leaves, by an argument analogous to that of
Corollary 3.

Corollary 8. For the covarion model of Tuffley-Steel, if κ ≥ 3 then bifurcating tree topologies are
identifiable for generic parameters.

Though we omit the details, one similarly sees that tree topologies for the 4-base, m-class covarion
model SSRV of Galtier (2001) are generically identifiable provided m < 4. Note that the implementation
of the SSRV in inference software described in that paper actually had m = 4, a case not covered by our
theorem. It would of course be desirable to prove identifiability for that case, and larger m, as well.

Finally, we can apply this approach to non-covarion rate-variation models with a finite number of rate
classes. As an example, we give the following result.

Corollary 9. For the GM+GM+· · · +GM model, with κ states and m classes where m < κ , bifurcating
tree topologies are identifiable for generic parameters. In particular, when κ = 4, the tree topology is
generically identifiable for the GM+GM+GM model.

Proof. For the 4-leaf tree, consider any parameter choice where no substitutions occur on pendant
edges in any of the classes, the root distribution has all positive entries, all Markov matrix entries are
non-negative, and for at least one class the κ × κ Markov matrix for that class on the internal edge has at
least κ + 1 positive entries. Then apply Lemma 6.

An argument analogous to that for Corollary 3 extends the result to trees with more leaves.

Similarly, for the GTR+rate-classes model we obtain generic identifiability of tree topology provided the
number of classes m is less than the number of bases κ . Note that while previous result on identifiability
for this model (Waddell and Steel, 1997; Rogers, 2001) have allowed a known continuous distribution of
rates, they have also assumed a common rate matrix for all classes. Our result holds when the (discrete)
distribution of rates among the classes is unknown, and even for a model in which different classes have
unrelated GTR rate matrices.

Finally, we note this approach proves generic identifiability of tree topologies for the GM+I model when
κ ≥ 3. However, for this particular model, we will take a different approach in another paper (Allman
and Rhodes, 2005a), obtaining identifiability for κ ≥ 2 as well as some interesting explicit formulas for
recovering proportions of invariable sites, and identifying other numerical parameters as well.
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