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PHYLOGENETIC INVARIANTS

Elizabeth S. Allman and John A. Rhodes

Abstract
Under many common models of sequence evolution along trees, frequen-
cies of base patterns in extant taxa satisfy certain polynomial relationships
known as ‘phylogenetic invariants’. Though introduced in 1987 for phy-
logenetic inference, invariants remained difficult to construct, and the
inefficiency of simple inference schemes based on known linear ones was
discouraging. Recently there has been much progress in producing phy-
logenetic invariants, and in understanding their structure. Potentially
useful connections between specific topological features in a tree (ver-
tices and nodes) and specific invariants have emerged. We introduce some
of the mathematical ideas underlying current understanding of invari-
ants, with an emphasis on a geometric viewpoint and rank computations.
We also highlight new insights arising from invariants, including better
understanding of maximum-likelihood estimation and proofs of the identi-
fiability of certain substitution models, such as the covarion and mixture
models.

4.1 Introduction

Probabilistic models for the evolution of biological sequences are used through-
out phylogenetics, both for theoretical analysis and for practical inference.
Basic assumptions in these models lead naturally to expressing their predictions
through polynomial expressions. This simple observation leads to the insight that
polynomial algebra can provide alternative perspectives in phylogenetics.

Phylogenetic invariants were introduced in 1987 in two independent works,
by Cavender and Felsenstein [13], and by Lake [48]. For DNA sequences, phy-
logenetic invariants are polynomial relationships that must hold between the
frequencies of various base patterns in idealized data, which is perfectly in accord
with a particular model and tree. By testing whether such polynomials for various
trees were ‘nearly zero’ when evaluated on the observed frequencies of patterns in
real data sequences, it was hoped that one could infer which tree best explained
the data.
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A number of difficulties, which will be surveyed later in this chapter, pre-
vented invariants from being quickly developed into useful inference tools. In
particular, while Lake’s linear invariants had some desirable statistical proper-
ties, practical inference based on them performed poorly on sequences of a length
typical of real data. This perhaps led some to question the value of invariants in
general, even though few serious attempts at using higher degree invariants for
inference were made. Indeed, thorough knowledge of non-linear invariants was
largely lacking for DNA models, with the notable exception of the results on
group-based models that began with Evans and Speed [24]. As the need for
more general models to adequately describe data had become clearer, invariants
that incorporated the added complexity were simply not known.
Recently, however, much progress has occurred in understanding phyloge-

netic models algebraically. Our knowledge of phylogenetic invariants has grown
to include models of sufficient generality to encompass some of those currently
used for inference. Most importantly, for those models which are well understood,
a close relationship holds between specific invariants and particular local topo-
logical features of trees, such as edges or nodes. While more remains to be done
in determining the structure of invariants for additional models of interest, there
is now enough understanding to consider again how we might use invariants,
either for inference or for theoretical analysis.
This chapter is divided into two parts. In the first, we discuss constructions of

invariants, explain how they can be interpreted, and survey results on the extent
to which all invariants for various models are known. We begin with a careful
development of some invariants for the general Markov model, in order both
to be concrete and to emphasize that invariants make interpretable statements
about statistical models. In the second part, we turn to applications of invariants.
These include recent investigations focused on understanding when maximum-
likelihood inference may face multiple local optima, and on establishing the
identifiability of tree topologies for certain mixture models. We end with more
speculative uses for practical inference. We hope to convey that the perspectives
invariants offer on phylogenetic models can be valuable in many settings, and
that more applications remain to be discovered.
The mathematical field most appropriate to studying phylogenetic invariants

is algebraic geometry, which is rich and well-developed, but far from the typical
background of most phylogenetics researchers. In this chapter we provide only
a gentle introduction to its terminology when necessary, and our presentation
of some results omits more technical details. We hope this creates an overview
that will be especially useful for those who might be more interested in thinking
about how to use invariants than in how to find them.
A first example. For a concrete introduction to viewing a probabilistic model
in phylogenetics algebraically, consider the following illustrative example:
An ancestral sequence at the root r of a tree gives rise to two descendant

sequences, at leaves a and b of the tree shown in Fig. 4.1. We model evolution
at a single site in a sequence, with the idea that each site evolves according to
the same model, but independently (the i.i.d. assumption).
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r

a b

Fig. 4.1. Two taxa a and b descend from a common ancestor r.

For the ancestral sequence at r we specify the probabilities π = (π1, π2, π3, π4)
with which the four bases (A = 1, G = 2, C = 3, T = 4) might appear at a
particular site, or equivalently by the i.i.d. assumption, the relative frequencies
at which bases appear across all sites. For each edge of the tree, we model the
evolutionary process by specifying probabilities of various substitutions occur-
ring. Thus for edge e1, leading from r to a, we specify a 4× 4 matrix M1 whose
(i, j)-entry is the conditional probability of observing base j in the sequence at
a given that the ancestral base at r was i. Similarly, a matrix M2 describes the
mutation process on edge e2, leading from r to b. The parameters of the model,
the 4-state general Markov model, are the tree of Fig. 4.1 along which we model
evolution, and the entries of π,M1, and M2.
From the model parameters we compute the probability of each possible

observation. The probability of seeing base j in a site at a and base k in the
same site at b is

Prob(a = j, b = k) = pjk =
4∑

i=1

πiM1(i, j)M2(i, k). (4.1)

The joint distribution of bases P = (pjk), then, can be thought of as a 4 × 4
matrix, each of whose entries is a 4-term degree-3 polynomial in the parame-
ters of the model. These 16 polynomials parameterizing the model reflect all
the modeling assumptions, including the substitution probabilities, and the tree
topology of Fig. 4.1.
In order to produce a clear and instructive example, we simplify the model

further (at the expense of biological plausibility) by restricting it to the situation
where the ancestral sequence is composed of only the base A, so that π =
(1, 0, 0, 0). This ancestral-A model leads to a simplification of equation (4.1) so
that the joint distribution of bases is given by the 16 quadratic polynomials

pjk =M1(1, j)M2(1, k). (4.2)

Now from inspecting equation (4.2), we observe that

pjkpmn − pjnpmk = 0, (4.3)

since each term in this difference can be expressed in terms of the parameters as

M1(1, j)M2(1, k)M1(1,m)M2(1, n).
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Thus for every choice of j, k and m,n we have found a polynomial,

fjk,mn(P ) = pjkpmn − pjnpmk,

that will evaluate to 0 when P = (pjk) is any true distribution of bases arising
from the ancestral A-model, without regard to the particular numerical val-
ues appearing in the Markov matrix parameters. These polynomials are called
invariants for the ancestral-A model on a 2-taxon tree.1

More generally, an invariant for a model is a polynomial that gives zero
when evaluated on any distribution arising from that model, regardless of the
parameter values leading to that distribution. On a distribution that does not
arise from the model, an invariant typically evaluates to give a non-zero result.
Since the invariants found here will, in fact, vanish on distributions arising from
ancestral-G, ancestral-C, and ancestral-T models also, they are better termed
as invariants for an ancestral-1-base model. Even so, by allowing two or more
ancestral states it is easy to construct numerical examples of distributions on
which these invariants will not be zero.
To see why model invariants might be useful, imagine aligned DNA sequences

from taxa a and b. We wish to test whether this data might have been produced
from the ancestral-A model on the tree above. We record the observed distribu-
tion P̂ , a 4× 4 array giving frequencies of aligned bases in the two sequences. If
we believe the model provides a good description of the data, then we suspect
P̂ ≈ P , where P is a true distribution arising from the model for some unknown
choice of parameters. Thus for any model invariant, f , since f(P ) = 0, we should
find that f(P̂ ) ≈ 0.
Thus we might simply evaluate the model’s invariants on the observed dis-

tribution P̂ and, if we get values close to zero, take that as evidence that the
ancestral-A model might describe the data well. If we get values far from zero,
we could take that as evidence against the ancestral-A model providing a good
fit to the data.
This is schematically indicated in Fig. 4.2, where we imagine two alternative

models leading to different sets of invariants. In order to choose which model
may best describe a data point P̂ , we wish to determine if P̂ is closer to the zero
set of one collection of invariants or the other.
In this way polynomial invariants for more elaborate phylogenetic models

might provide a method of inference that circumvents determination of numerical
parameters. In particular, the tree topology may be of more intrinsic interest
than the numerical parameters in a phylogenetic model. If invariants can be
found that test for each possible tree topology for a set of taxa, evaluating them
on an observed distribution to see if they nearly vanish might enable us to infer
the topology.

1This model is actually a familiar one in statistics, outside of phylogenetics; it is the inde-
pendence model for a 2-way table P . The invariants above are commonly expressed in a slightly
different form, using an odds ratio: pjkpmn

pjnpmk
= 1.
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h1(P) = h2(P) = ... = hk(P) = 0

P

f1(P) = f2(P) = ... = fl(P) = 0

Fig. 4.2. The fi and hi are invariants for two alternative models. All joint
distributions arising from the first model lie in the ‘surface’ defined by fi(P ) =
0, and similarly for the second. To decide which model better explains a data
point P̂ , we attempt to judge whether fi(P̂ ) ≈ 0 or hi(P̂ ) ≈ 0.

This idea, focused on determining the tree topology from larger sets of
sequences, was the one introduced in both [13] and [48]. There are difficulties in
applying this idea as naively as described here; nonetheless, it is a good one to
keep in mind for motivation. In a nutshell, invariants have the potential to tell
us something about whether an observed distribution might have arisen from a
particular model, without having any need to infer numerical parameters.
Notice that in this example there are two sets of polynomials. The first,

appearing in equation (4.2), are the parameterization polynomials, expressing
the true distribution our model predicts in terms of the model parameters. The
second, the invariants of the model, appearing in equation (4.3), describe the
relationships that must hold within a distribution resulting from the parameter-
ization. The parameterization polynomials are straightforward to produce, since
they express the model as we have designed it. The invariants are consequences
of the parameterization polynomials, but how to produce them or interpret their
meaning is much less obvious for most models.
Finally, note that the idea of invariants need not be limited to phylogenetic

models. Indeed, they can be studied in other statistical settings where polynomial
parameterizations arise. The complexity and structure of phylogenetic models,
however, makes the subject particularly rich in this setting.

Part 1. Finding Invariants

Discussing constructions of invariants first requires a more detailed specification
of some phylogenetic models. Before proceeding, however, we note there is one
invariant whose existence is easy to explain.
Consider any probabilistic model which allows only finitely many outcomes.

The distribution will take the form of an array, where each entry is the probability
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of one possible outcome. For instance, for DNA substitution models for n-taxa,
the joint distribution can be given by an n-dimensional 4 × · · · × 4 array. The
vanishing of the stochastic invariant,∑

i1,i2,...,in

pi1i2...in − 1,

where the summation is over all entries of the distribution, states that the prob-
abilities of all possible outcomes must add to 1. It is therefore an invariant for
every such model.

4.2 Phylogenetic models on a tree

For convenience, we will assume all trees are binary (i.e. trivalent at all internal
nodes, except possibly bivalent at a root).
Let T be an n-leaf unrooted binary tree, with its leaves labeled by a collection

of taxa X = {a1, a2, . . . , an}. We may introduce a root r by either choosing some
existing node of T , or subdividing some edge of T and choosing the new node as
the root, obtaining the rooted tree T r. In a rooted tree T r we view all edges as
directed away from r.
The κ-state general Markov (GM) model on T r is a model of character

evolution parameterized by:

1. A root distribution vector πr = (π1, π2, . . . , πκ). We interpret πi as the
probability that the character is in state i in the ancestral taxon r. Thus
πi ≥ 0 and ∑κ

i=1 πi = 1. For simple DNA models, κ = 4.
2. For each directed edge e of the rooted tree, a κ×κ Markov matrixMe. We
interpret the (i, j)-entry of Me as giving the conditional probability that
the character is in state j at the descendant end of e given that it was in
state i at the ancestral end. Thus Me(i, j) ≥ 0 and ∑κ

j=1 Me(i, j) = 1.

A key feature of the model is that we may observe states only at the leaves of
the tree; states at all internal nodes are hidden.
Rather than give a general formula for the joint distribution arising from this

model, we indicate its form through an example, with a specific tree. Considering
the tree of Fig. 4.3, with Mi denoting the Markov matrix for edge ei, we find
the entries of the joint distribution P are

P (i, j, k, l,m) = pijklm =
κ∑

s=1

κ∑
t=1

κ∑
u=1

κ∑
v=1

[πsM1(s, i)M2(s, t)M3(t, u)×

M4(u, j)M5(u, k)M6(t, v)M7(v, l)M8(v,m)]. (4.4)

Note that these κ5 parameterization polynomials in 8κ(κ−1)+κ−1 variables
reflect not only the assumptions of the general Markov model, but also the form
of the tree in Fig. 4.3. Indeed, from the parameterization one can even reconstruct
the tree, as it algebraically encodes the topology.
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a1 a2 a3 a4 a5

r
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Fig. 4.3. A 5-taxon tree.

Most of the other models we consider are submodels of GM, in that they
merely place additional restrictions on the form of the numerical parameters. The
2-state symmetric model, or Cavender–Farris–Neyman model, assumes κ = 2,
π = (.5, .5), and that every Markov matrix has the form

Me =
(
1− ae ae

ae 1− ae

)
,

where ae is a scalar parameter. This is an example of a group-based model (see
[60] for an explanation of this terminology). Note that with this assumption, the
overall polynomial form of equation (4.4) is retained, but the degree of each term
drops by one, and the polynomial involves only the variables ae, for each edge e.
Other group-based models of particular interest include the Kimura

3-parameter model, a 4-state model that assumes π = (.25, .25, 25, .25) and

Me =



de ae be ce
ae de ce be
be ce de ae

ce be ae de


 ,

where de = 1− ae − be − ce. Specializing by requiring be = ce yields the Kimura
2-parameter model, and requiring ae = be = ce yields the Jukes–Cantor (or
4-state symmetric) model.
It is common in other contexts to use phylogenetic models which have a con-

tinuous time formulation, where one specifies a rate matrix Q and edge lengths
te to describe the substitution process, with the Markov matrix on an edge being
Me = exp(Qte). Usually the rate matrix for all edges is taken to be the same,
which is a strong assumption of commonality about the substitution process
over the entire tree. Indeed, typical implementations in software of the general
time-reversible model (GTR) are of this sort. Note that such models do not have
polynomial parameterizations, but rather ones involving exponentials.
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In studying invariants, in order that the parameterization maps be poly-
nomial, we do not assume a continuous-time model of base substitution, nor
commonality of rates across the tree. Rather we use a discrete notion of time,
in which the full evolutionary process on an edge of the tree is lumped together
to be described by a single matrix. As a result, the models dealt with when
studying or utilizing invariants are, in this respect, more general than those used
in most software.
One might view the generality of GM as either a strength (if one doubts that

the assumptions of a model such as the GTR are justified for a data set) or a
weakness (if one believes those assumptions are justified, and extra generality in
the model leads to the possibility of overfitting data). Regardless, note that a
model such as the GTR is a submodel of GM, in that it merely places additional
(non-algebraic) restrictions on the form of allowable parameters. Thus, whatever
invariants allow us to say about the GM model will imply statements about its
submodels such as GTR. In Section 4.9, for example, we describe an application
of invariants to some continuous-time models.
We also note that the GM model does not allow any ‘rate variation’ across

sites, so a model such as GTR+I+Γ is not a submodel. Later, in Section 4.9, we
return to a discussion of rate variation, explaining in more detail how invariants
can be used to understand both rate-matrix models with variation in rates across
sites, and also the covarion model.

4.3 Edge invariants and matrix rank

An invariant f for the GM model on the particular tree T r of Fig. 4.3 is a
polynomial in κ5 variables, the indeterminate entries pijklm of a κ×κ×κ×κ×κ
array P . Furthermore, when P is given numerical values P0 produced by some
choice of parameter values in equations (4.4), we have f(P0) = 0. Even a glance at
equations (4.4), however, indicates we have little chance of finding any invariants
by the ‘inspection’ approach we used for the ancestral-A model of Section 4.1.
To construct a first class of invariants for this model, we proceed by building

on the example of the Introduction. We again consider the much simpler situation
of Fig. 4.1 and equation (4.1), in order to rederive its invariants in a more
sophisticated way. Notice first that the 16 versions of equation (4.1) can be
combined into a single matrix equation

P =MT
1 diag(π)M2, (4.5)

where diag(π) denotes a matrix with the vector π placed along the diagonal and
with 0 in all off-diagonal entries.
For the ancestral-A model, we make the additional assumption that π =

(1, 0, 0, 0), so that diag(π) has only one non-zero entry. With this assumption,
then, equation (4.5) implies that the matrix P must have rank at most 1, for
diag(π) is a matrix of rank 1, and the rank of a product of matrices is at most
the minimal rank of the factors. But from linear algebra there is a well-known
algebraic condition on the entries of a matrix of rank 1: A matrix has rank 1 if,



CUEL: “CHAP04” — 2007/4/3 — 18:06 — PAGE 116 — #9

116 PHYLOGENETIC INVARIANTS

and only if, its 2 × 2 minors (determinants of submatrices chosen by picking 2
rows and 2 columns) are all zero. Since these minors are precisely the polynomials
of equation (4.3), we have recovered our previous invariants for the ancestral-A
model on a 2-taxon tree.
To develop this viewpoint further, we consider an ancestral-AG model on the

same tree; that is, we assume the GM model with π = (πA, 1 − πA, 0, 0). Now
since diag(π) has rank 2, again using that the rank of a product is at most the
minimal rank of its factors, equation (4.5) establishes that the rank of P is at
most 2. Thus all 3×3 minors of P give invariants. For an ancestral-AGC model,
similar reasoning shows P has rank at most 3, and so det(P ) = 0 is the sole
invariant we obtain.
For the 4-state GM model on the 2-leaf tree, where we place no restrictions

on π, we similarly conclude that P must have rank at most 4. However, since
P is 4 × 4, there is no real content in this observation, since the rank of any
matrix is bounded by its dimensions. Thus we obtain no invariants from this
viewpoint (and indeed none exist for this model on the 2-taxon tree, except the
stochastic one.)
To summarize the viewpoint so far, and ultimately to obtain invariants for

more taxa, it will be helpful to consider a slight broadening of the model. We
step beyond the phylogenetic setting, but still base our model on the graphical
depiction of Fig. 4.1. We imagine 3 discrete random variables, associated to the
nodes r, a, b. The variable at r may take on any of κ states, while those at a and
b may take on any of λ and µ states, respectively. A κ element root distribution
vector π specifies probabilities of states at r, while κ × λ and κ × µ Markov
matrices give transition probabilities to the various states at a and b. Finally, we
observe states only at a and b, with those at r being hidden.
Under this model, we see that equation (4.5) still applies to give the joint

distribution. We also see that since the diagonal matrix has rank at most κ, P
will also have rank at most κ, and thus all (κ + 1) × (κ + 1) minors of P must
vanish. Provided λ, µ > κ, so that P is big enough for such minors to exist, we
have found some invariants of the model.
These invariants, which test for matrix rank, have a direct statistical interpre-

tation: They express the basic assumption of this model, that the stochastic pro-
cesses occurring along the two edges leading from r are independent, conditioned
on the state at r.
To use this observation to find invariants for the κ-state GM model, we must

consider a tree with more taxa, such as that to the left in Fig. 4.4. Suppose the
root r is located at the left of the internal edge. Then the GM model has as
parameters a root distribution vector, and five κ× κ Markov matrices.
We can ignore some of the structure in the model by grouping together taxa,

letting a = {a1, a2} and b = {a3, a4}. The random variable associated to a
now has κ2 states, the pairs of states for a1 and a2, and similarly for b. The
graphical depiction of the model is now that of the right side of Fig. 4.4, which is
identical to Fig. 4.1. For this ‘coarsened’ model we can express the κ×κ2 matrix
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a1

a2

a3

a4

r f

r

a a1 a2= {       
 
} b a3 a4= {        }

Fig. 4.4. A 4-taxon tree, with taxa a1, a2, a3, a4, rooted at r, and its coarsening
to a simpler model.

parameters M1 and M2 in terms of the GM parameters:

M1(i, (j, k)) =Mra1(i, j)Mra2(i, k),

M2(i, (j, k)) =
κ∑

l=1

Mrf (i, l)Mfa3(l, j)Mfa4(l, k).

Coarsening the GM model in this way corresponds to changing the way we view
the joint distribution array P . Though initially we viewed P as a κ× κ× κ× κ
array, we now ‘flatten’ it to a κ2 × κ2 matrix

Flat(P )((i, j), (k, l)) = P (i, j, k, l).

Note that we have merely rearranged the way we view entries of P ; the entries
themselves are unchanged.
This coarsened GM is now an instance of a model for which we have already

found invariants. We can therefore immediately see that all (κ + 1) × (κ + 1)
minors of Flat(P ) are invariants of the GM model on this tree, since the flatten-
ing of P must have rank at most κ. These invariants should be interpreted as
expressing a conditional independence statement that the state-change process
on the branches leading from r to a1 and a2 is independent of that on the edges
leading from r to a3 and a4, conditioned on the state at r.
Despite appearances, these invariants do not actually depend on the location

of r at one end of the internal edge of the tree. It can be shown that for a dense
subset of all parameters, the GM model with one specified root location on a tree
T produces the same joint distributions as the GM model with a different root
location on T . This means we can freely move the root to a location convenient
for our construction.
Note that the arrangement of entries in Flat(P ), and thus the invariants we

have found, depend only on the split of taxa {a1, a2}, {a3, a4} induced by the
internal edge of the tree. We thus refer to these as edge invariants associated to
the single internal edge of the tree.
This construction easily generalizes to larger trees. We can pick any internal

edge of T and flatten P according to the resulting split. For a concrete example,
consider the 2-state GM model on the 5-taxon tree of Fig. 4.5. Denoting states
by 0 and 1, from the 2× 2× 2× 2× 2 joint-distribution array P , we obtain two
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a1

a2

a3

a4

a5

Fig. 4.5. A 5-taxon tree.

edge flattenings. The {a1, a2}, {a3, a4, a5} split gives

p00000 p00001 p00010 p00011 p00100 p00101 p00110 p00111
p01000 p01001 p01010 p01011 p01100 p01101 p01110 p01111
p10000 p10001 p10010 p10011 p10100 p10101 p10110 p10111
p11000 p11001 p11010 p11011 p11100 p11101 p11110 p11111


 ,

and the {a1, a2, a3}, {a4, a5} split gives


p00000 p00001 p00010 p00011
p00100 p00101 p00110 p00111
p01000 p01001 p01010 p01011
p01100 p01101 p01110 p01111
p10000 p10001 p10010 p10011
p10100 p10101 p10110 p10111
p11000 p11001 p11010 p11011
p11100 p11101 p11110 p11111



.

By what we have seen, all 3× 3 minors of each of these matrices are invariants
of the GM model on this particular tree.

4.4 Vertex invariants and tensor rank

The edge invariants of the GMmodel that are described in the last section express
a conditional independence statement: character state-changes in the two parts
of a tree separated by an edge are independent of one another, conditioned on
the state of the character at some point along the edge.
Other invariants for the GM model express a similar sort of conditional inde-

pendence statement, but focus on an internal node of the tree rather than an
edge. To explain them, we first focus on the simplest tree for which they can
arise, the 3-taxon tree with only one internal node, as in Fig. 4.6.
Here we imagine the central node is the root. Numerical parameters for the

model then are the root distribution πr and three κ × κ Markov matrices M1,
M2, andM3 giving probabilities of changes in state along the three edges leading
from the root. The joint distribution for this model is a κ×κ×κ array P = (pijk),
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a

b

c

Fig. 4.6. The 3-taxon tree.

where

pijk =
κ∑

l=1

πlM1(l, i)M2(l, j)M3(l, k). (4.6)

Since the matrix notation used in equation (4.5) is insufficient for describing
a 3-dimensional array, we take an alternate approach. We first introduce arrays
representing intermediate steps in equation (4.6): for each state l at the internal
node, let Pl be the κ×κ×κ array with ijk-entryM1(l, i)M2(l, j)M3(l, k). Notice
that Pl is simply a joint distribution for an ‘ancestral-base-l’ model, similar to
that of the introduction, but now for a 3-taxon tree.
The arrays Pl have a particularly simple structure, though. All entries are

found by taking the various products of entries from the lth rows of M1, M2,
andM3. In other words, Pl is the tensor product of three rows. This parallels the
situation for the 2-taxon tree in the last section, where the ancestral-A model
had joint distribution P = (pij), with

pij =M1(1, i)M2(1, j)

so
P = rT1 r2,

where r1 was the first row of M1 and r2 the first row of M2. Just as this P
was a rank 1 matrix, we call the 3-dimensional array Pl a rank 1 tensor. More
formally, a 3-dimensional array is said to have rank 1 if it is the tensor product
of 3 non-zero vectors.
When a 3-dimensional joint distribution is a rank 1 tensor, the fact that

its entries are simple products of the form given here is just a manifestation of
independence of the states for the 3 indices. Indeed, a rank 1 joint distribution
occurs exactly when a model assumes a single state at the internal node of the
graphical model of Fig. 4.6, with independent state changes on each edge leading
away.
Now for the full model on the 3-taxon tree, we have that P is the weighted

sum of κ rank 1 tensors,

P =
κ∑

l=1

πlPl,

with one summand for each of the κ possible states at the internal node. As
the tensor rank of an array is the smallest number of rank 1 tensors needed to
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express it as a sum, P is thus a tensor of rank at most κ since, just as before,
it is a sum of rank 1 tensors. Emphasizing the statistical viewpoint, the joint
distribution P is a tensor of rank at most κ precisely because of independence of
the state changes on the edges of the tree, conditioned on the κ possible states
at the root. This parallels the 2-taxon, matrix situation of the last section.
This gives a good way of thinking of invariants for the GM model on the

3-taxon tree: they should be interpreted as making a conditional independence
statement about state changes on the 3 edges emerging from the internal node.
But how do we explicitly find invariants for this model?
For edge invariants, we could use the classical results on the relationship

between matrix rank and vanishing of minors. Although by general principles of
algebraic geometry, analogs of matrix minors must exist for testing tensor rank,
they are only explicitly known for tensors of a few special sizes.2

To find invariants for the 3-taxon tree, we need a direct construction, as
supplied in [1]. While that paper gives a variety of invariants of different forms,
the most important are the ones arising from commutation relations that are
derived from an observation that certain expressions built from the joint distri-
bution give commuting matrices. Even for the 4-state model, these invariants
are rather complicated when expressed in ordinary polynomial notation; though
each term is only of degree 5, there are hundreds of terms.
However, they can be given a concise expression using matrices. To illustrate

a typical form, for any choice of state k let Pabk = (pijk) be the kth ‘slice’ of P ,
a matrix obtained by only considering those entries in the 3-dimensional array
P with a fixed index of k in the 3rd position (corresponding to state k at taxon
c). Then for any choice of i, j, k it can be shown that the matrix equations

Pabk Cof(Pabj)TPabi = Pabi Cof(Pabj)TPabk (4.7)

must hold if P arises from the GM model. Here Cof(M)T refers to the trans-
pose of the co-factor matrix of M , which is a standard construction from linear
algebra. As this equation expresses the equality of two κ × κ matrices, it gives
κ2 individual invariants from equating entries. Since each entry of the co-factor
matrix is a polynomial of degree κ− 1, these invariants are of degree κ+ 1.
When κ = 2, a calculation shows that all of these polynomials simply give

0. In fact, for the 2-state GM model on a 3-taxon tree, one can show the only
invariant is the stochastic one, so this is as it should be.
For the 4-state model, however, one can verify that these polynomials are

not zero. In fact, minor variations on the construction can produced 1728
linearly-independent degree 5-invariants. Other means [36, 49] can show this

2Tensor rank is a more subtle notion than one might expect from familiarity with the matrix
concept. In particular, analogues of matrix minors will test for border rank rather than rank,
since the closure of tensors of a certain rank may contain ones of higher rank. This phenomenon
does not occur for matrices.
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v v

Fig. 4.7. Flattening a model at a vertex ν.

is the dimension of the full space of degree 5-invariants, and that except for the
stochastic invariant there are essentially no others of lower degree.3

With some invariants in hand for the 3-taxon tree, a ‘flattening’ approach can
be used again to give invariants for n-taxon binary trees. Picking any internal
vertex v of the tree, we combine the taxa into three groups, as indicated in
Fig. 4.7.
Coarsening our model in this way corresponds to rearranging the entries of

the n-dimensional joint distribution array into a 3-dimensional array with size
κn1 × κn2 × κn3 , where n = n1 + n2 + n3. For a κ-state model, this flattened
array must be a tensor of rank at most κ, since just as before it is a sum of
rank 1 tensors, with one summand for each possible state at the internal node.
Invariants for this coarsened model, which must also be invariants for the original
model, are referred to as vertex invariants. With a bit of additional work [6], one
can obtain explicit formulas for all vertex invariants provided one has them for
the 3-taxon tree.

4.5 Algebraic geometry and computational algebra

Once invariants, such as the edge and vertex invariants for the GM model dis-
cussed above, have been found for a particular model, a natural question is
whether there are others. To be able to discuss this properly, we informally
introduce a little of the viewpoint and language of algebraic geometry.
Suppose we are given a collection of M polynomial functions, g1, g2, . . . , gM

depending on N variables x1, x2, . . . , xN . Allowing the variables to range over
the complex numbers, we have a function

φ : CN −→ CM ,

(x1, x2, . . . , xN ) 	−→ (g1(x1, . . . , xN ), . . . , gM (x1, . . . , xN )).

We have in mind here that the gi are the parameterization polynomials for
the joint distribution of a phylogenetic model, the xi are the parameters, and φ
gives us the full joint distribution array for any parameter choice.

3While it is known that some additional invariants of degree 9 are also needed to obtain all
invariants for the 3-taxon model, the full situation is not yet completely understood [6].
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The image of φ, the set φ(CN ), is a parameterized subset of CM , which we
view as some sort of high-dimensional ‘surface’, which is smooth at most points,
but perhaps has some singularities. For example, the cartoon depiction of Fig. 4.2
represents two such ‘surfaces’, though in practice dimensions are usually much
higher.
We now try to describe φ(CN ) implicitly, as the zero set of polynomials.

Introducing variables P = (p1, p2, . . . , pM ), we look for polynomials in the pi

that vanish when P = φ(x1, . . . , xN ). Optimally, we determine the entire set
I = {f} of all polynomials f in the variables pi, such that

P = (p1, . . . , pM ) ∈ φ(CN ) implies f(p1, . . . , pM ) = 0.

Thus the vanishing of such an f on a point P would provide some evidence that
it is in the image of φ.4

Indeed, this is precisely what we have been trying to do for phylogenetic
models. In that context the set I of polynomials implicitly defining the set of
joint distributions φ(CN ) are the phylogenetic invariants.5

For phylogenetic models, or statistical models in general, the numerical
parameters usually represent probabilities. It thus might seem more reasonable
to require that parameters be in some subset of the interval [0, 1], or at least
in R. However, in algebraic geometry it is well understood that many technical
issues are easier dealt with when we allow variables to range over C. For finding
all possible invariants this has little consequence due to the following:

Fact 1. For polynomial maps φ and f as above, f(φ(x1, . . . , xN )) = 0 for all
choices of (x1, . . . , xN ) in an open subset of RN if, and only if, f(φ(x1, . . . , xN )) =
0 for all choices of (x1, . . . , xN ) in CN .
Thus while phylogenetic invariants express polynomial relationships that

must hold for joint distributions arising from stochastically-meaningful param-
eter values, they are exactly the same relationships that hold for all complex
parameter values.
Suppose we knew several polynomials in the set I, that evaluate to zero on

φ(CN ). From these, say f1(P ), f2(P ), . . . , fk(P ) ∈ I, we can find many more,
since for any choice of polynomials hi(P ), the polynomial

∑k
i=1 hi(P )fi(P ) will

then vanish wherever all the fi do. Thus any such combination of invariants
will also be an invariant. In the language of algebra, this means the set I of
polynomials vanishing on φ(CM ) forms an ideal. For a phylogenetic model, we
call the collection of all invariants the phylogenetic ideal.

4A more optimistic hope would be that

P = (p1, . . . , pM ) ∈ φ(CN ) if, and only if, f(p1, . . . , pM ) = 0 for all f ∈ I,

but this is usually not possible. The common zero set of all f ∈ I is closed, while φ(CM ) may
not be, and thus the zero set may contain additional points.

5Some writers refer to these merely as ‘invariants,’ reserving ‘phylogenetic’ for those invari-
ants we refer to as topologically informative. We use ‘phylogenetic invariant’ to mean any
invariant for a phylogenetic model.
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But we must be more explicit about the role of the tree parameter, T , in
a phylogenetic model. Even if we have fixed a model to consider, such as GM,
the form of the parameterization map depends intimately on T . We signify this
by denoting the parameterization map by φT , and its image by φT (CM ). The
phylogenetic ideal is the set of polynomials vanishing on this image, and so also
depends on T . We typically denote the phylogenetic ideal by IT , as we consider
different trees. We omit from our notation a reference to the model, such as GM,
since this is usually fixed throughout a discussion.
Since an ideal I is generally an infinite set of polynomials, to specify its

elements we can ask for a list of generators, that is, a set of polynomials
{f1, f2, . . . } such that if f ∈ I then f =

∑
i hifi for some choices of polynomials

hi. Fortunately, only finitely many generators are needed:

Fact 2. Any ideal of complex polynomials in M variables has a finite set of
generators.
Thus, to find all invariants for a phylogenetic model and tree T , it is enough

to determine a finite set of generators of the ideal IT . For most ideals there is
no canonical choice of a set of generators; different sets might generate the same
ideal. In the phylogenetic setting we will of course prefer that our generators
can be given a statistical explanation, such as the conditional independence
interpretations of the edge and vertex invariants introduced earlier.
Given a collection S of polynomials in variables P = (p1, . . . , pM ), define the

algebraic variety associated to S as

V (S) = {P ∈ CM | f(P ) = 0 for all f ∈ S}.

Thus the variety is simply the set of common zeros of the polynomials in S.
In particular, for phylogenetic models, we refer to VT = V (IT ), the common

zero set of all phylogenetic invariants, as the phylogenetic variety. The phylo-
genetic variety will typically be larger than φT (CM ), including points in the
topological closure of the image of the parameterization. Thus the phylogenetic
variety is made up of all ‘joint-distributions’ arising from complex parameter
values, together with some additional points nearby.
When studying a model in the framework of algebraic geometry, finding gen-

erators for the phylogenetic ideal is certainly the most desirable goal. However,
proving that one has found generators is often technically quite difficult, and a
weaker result may be the best we can achieve.
Let V be an algebraic variety and I the ideal of all polynomials vanishing

on V . Suppose S is some other set of polynomials having the same zero set
as I, so that V (S) = V . Then we say S defines V set-theoretically. In such a
circumstance S ⊂ I, but we may have S � I, and even that S fails to generate
I. While having a collection of set-theoretic defining polynomials for a variety
does give us a way to test whether a point lies on a variety, we do not necessarily
know all such tests unless we have generators of I.
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(a) (b)

Fig. 4.8. The real points in varieties (a) defined by p2
1 − p2 = 0, or by (p2

1 −
p2)2 = 0, and (b) defined by (p2

1 − p2)(p2
1 + p2) = 0.

In order to clarify this terminology, we give a simple example, outside a
phylogenetic setting. Consider the parameterization

φ : C → C2

φ(x) = (x, x2).

The real points in the image of φ are shown in Fig. 4.8(a). It is easy to guess,
correctly, that the ideal I of all polynomials vanishing on φ(C) is generated by
the single polynomial p2

1 − p2. But notice that (p2
1 − p2)2 also defines the variety

set-theoretically, even though it does not generate the ideal. A third invariant is
p4
1 − p2

2 = (p
2
1 − p2)(p2

1 + p2), which defines too large a variety, the union of the
one of interest and its reflection below the p1-axis. Although phylogenetic models
with their many variables are necessarily more complicated, this simple example
illustrates the main points: one might characterize ideal generators as the ‘least
complicated description’ of a variety, and set-theoretic defining polynomials as
a ‘good description’. Other sets of polynomials have extraneous common zeros.
In principle, for a particular model on a particular tree, passing from a param-

eterization to an implicit description of a variety can be done by a computation
involving variable elimination. This implicitization problem is described more
fully in the excellent and accessible introduction to algebraic geometry [20],
or more specifically in the phylogenetic setting by [37]. Computational alge-
bra software implementing Gröbner basis algorithms, such as Maple, or the
more specialized and powerful packages such as Macaulay2 [34] or Singular [35],
can thus sometimes be used to explore invariants, form conjectures, and prove
results.
However, several caveats on using computational algebra with phylogenetic

models are in order. First, despite the impressive abilities of these packages,
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the large number of variables involved in phylogenetic problems can make the
computations intractable except for small trees and some of the less-complicated
models. Second, the form of the invariants one finds this way can depend on com-
putational choices that are made along the way, such as the term order necessary
for any Gröbner basis computation. Therefore one will usually still want to find
an interpretation, or natural construction, of the invariants produced computa-
tionally. Despite this, such computational explorations have played important
roles in quite a few recent works focused on both finding and using invariants.
Such software is an extremely valuable tool.
In many early papers on invariants, dimension counting was applied to

determine how many invariants might be ‘needed’ for a particular model. If
a model depended on N numerical parameters (with no redundancy), and gave
a joint distribution with M entries, then the phylogenetic variety should be
an N -dimensional object in M -dimensional space, i.e. of codimension L =
M −N . Thus one might look for L phylogenetic invariants to define the variety
set-theoretically.
Unfortunately, an algebraic variety of codimension L may require more than

L set-theoretic defining polynomials. Although for some neighbourhood of any
point there will be L polynomials defining the part of the variety in that neigh-
bourhood, those polynomials may have additional common zeros outside of the
neighbourhood that are not part of the variety. There may not be any set of L
polynomials defining the variety globally.
This issue was first clearly brought up rather recently, in [37]. (See also the

expository papers [38, 47].) In [66], as a consequence of the determination of
all invariants for some group-based models, Sturmfels and Sullivant established
that this issue did in fact arise for some standard phylogenetic models; previously
given sets of invariants had many extraneous zeros. The authors argued strongly
for the determining of the full ideal of invariants, or at least set-theoretic defining
polynomials.
As a result of this history, one must be careful in interpreting literature that

refers to ‘complete sets of invariants which are algebraic generators’ of the ideal.
The concept of algebraic generators is a weaker one than set-theoretic defining
polynomials, allowing extraneous zeros such as those in Fig. 4.8(b) when the
variety of interest is (a). While such local defining polynomials might still be
useful for future applications, it is likely that one needs some understanding of
the locations of their extraneous zeros.
There are many open mathematical questions concerning phylogenetic ideals

and varieties, some of which have been surveyed for algebraic geometers in [23].
Here we mention only one issue whose relevance will immediately be clear.
As mentioned, the vanishing of the invariants for a particular model and tree

does not just distinguish joint distributions arising from parameter values that
are probabilistically meaningful, but also those arising from complex parame-
ters. This is not because of any lack of understanding of all invariants on our
part, but rather due to the fundamental features of defining sets by the van-
ishing of polynomials. The field of real algebraic geometry, in which polynomial



CUEL: “CHAP04” — 2007/4/3 — 18:06 — PAGE 126 — #19

126 PHYLOGENETIC INVARIANTS

inequalities as well as equalities play a role, would be a more appropriate setting
in which to work if we hope to understand points coming from real parame-
ter values. Although polynomial inequalities were used in both of the papers
[13, 48] inaugurating the study of invariants, more recent works have not dealt
with them. Real algebraic geometry presents greater technical difficulties than
complex algebraic geometry, but it may provide greater understanding as well.

4.6 Invariants for specific models

Invariants have been found for phylogenetic models by many means, ranging from
insightful observations, to exact algebraic computations, to more brute-force
numerical computations.
Many papers focused on determining linear invariants for various models

[12, 30, 31, 32, 42, 51, 65], partly because of the behaviour of linear invariants
for rate-variation models that had been noted in [48] and will be discussed in
Section 4.7. Other investigations, including [26, 27, 28, 29], found higher degree
invariants. Already in [13] it was pointed out that some of these invariants encode
statements of independence of substitutions in different parts of the tree, a theme
that was further elaborated on in [21, 55].
Rather than survey these works in detail, we instead focus on some results

obtained more recently. We hope this will provide a clearer overview of what
invariants are and how they might be useful.

4.6.1 Group-based models
Group-based models, such as the Kimura 3-parameter model, and their sub-
models, such as the Jukes–Cantor and Kimura 2-parameter models, have a
particularly nice mathematical structure which aids us in determining invari-
ants. Since a full explanation could require a chapter in itself, we provide only
an overview.
The key to analysing group-based models is the powerful tool of Fourier anal-

ysis. This was first recognized in Hendy’s discovery of the Hadamard conjugation
in [33, 41] for the 2-state symmetric model, where the underlying group is Z2.
(See [40] for a more recent overview.) The relationship between the Kimura
3-parameter model and the group Z2 × Z2, and the utilization of the associ-
ated Fourier transform, formed the basis of Evans and Speed’s [24] insightful
construction of invariants for the model. Fourier ideas were further explored for
arbitrary group-based models in the work of Székely, Steel, and Erdős [67], which
was then exploited for constructing invariants in [63]. See also [25]. Phylogenetic
invariants for group-based models, then, appeared to be well-understood.
Recently, however, the question was considered of whether these con-

structions gave essentially all invariants: could one produce an explicit list
of generators for the phylogenetic ideal for a group-based model? This was
addressed by Sturmfels and Sullivant in [66].
The Fourier transform developed in the earlier works cited above amounts

to a linear change of variables for the parameterization map, in both inputs
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and outputs. The result of this transformation is that the complicated polyno-
mial formulas for the parameterization map become quite simple: they can be
given by monomials (one-term polynomials) in the transformed variables. Vari-
eties parameterized by monomial functions are called toric varieties in algebraic
geometry, and form a class that is particularly amenable to detailed analysis.
Using this, Sturmfels and Sullivant were able to show that all invariants

for a particular tree could be constructed from invariants from the two smaller
trees obtained by breaking an edge, together with some invariants associated
to the edge itself. This ‘breaking’ or ‘gluing’ process reduced the problem of
explicitly finding all invariants for an arbitrary tree to that for star trees, with
only one internal node. Thus, after an analysis for the 3-leaf tree was completed,
generators of the ideal for any binary tree could be explicitly given. We quote
only a summary form of their result [66].

Theorem 4.1 For a binary tree T , the ideal of phylogenetic invariants for the
models M below is generated by the stochastic invariant, together with an explicit
set of polynomials of the given degrees:

M = 2-state symmetric, degree 2;
M = 4-state Jukes–Cantor, degree 1, 2, 3;
M = 4-state Kimura 2-parameter, degree 1, 2, 3, 4;
M = 4-state Kimura 3-parameter, degree 2, 3, 4.

In addition to the explicit nature of the theorem, and the insight of the
underlying analysis, there are two larger lessons to be drawn from these results.
First, the work shows that all invariants for group-based models arise from

local features in the tree—from edges and nodes. As one considers trees with
additional taxa, there will be larger sets of invariants, but their construction
remains straightforward. Because the number of invariants needed to generate
the phylogenetic ideal grows at least exponentially with the number of taxa,
if invariants are to be useful for large trees, some local understanding of their
meaning is valuable. Being able to tie generating invariants to specific topological
features within a tree is likely to be essential for any application they may have.
Second, as mentioned in Section 4.5, it could be seen that for the 2-state

symmetric model on a 4-leaf tree the ‘complete sets of algebraic generators’ of
the invariants found in earlier works had many extraneous zeros. Indeed, the
natural set of generators of the ideal of invariants for this model had more than
the codimension number of polynomials in it, and any subset had extraneous
zeros. This clearly showed that finding generators of the phylogenetic ideal, or at
least set-theoretic defining polynomials, is necessary for adequate understanding
of a phylogenetic variety.
Although we omit a detailed exposition of the precise form and construction

of the invariants for group-based models, the ‘Small Trees’ web site [9] provides
a valuable entryway for those interested in seeing or using them. It gives a
compilation of invariants, Fourier transforms, and other information for trees of
up to 5 taxa, with and without a molecular clock assumption. Input files for
both Maple and Singular are helpfully provided.
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4.6.2 The general Markov model
A separate thread of work on invariants was also undertaken recently, for the
general Markov model, some of whose invariants were introduced in Sections 4.3
and 4.4. This model has many more parameters than the group-based models,
and in studying it we lack the tool of Fourier analysis on a group. Nonetheless,
fairly complete results have been obtained.
For the GM model, a single invariant for a 4-taxon tree was first given in

[61]. The underlying idea was a suitable encoding of the 4-point condition for
metric trees of [8], using log-det distances, building on an approach taken in [13].
Remarks in [59] point out that many additional invariants can be produced from
the entries of certain matrix equations built from the joint distribution array. All
these invariants depend only on two-dimensional marginalizations of the joint
distribution (i.e. comparisons of sequences two at a time), as the underlying
reasoning takes a generalized distance viewpoint.
The edge invariants for the GM model, which have been described in Section

4.3, are not inspired by any distance reasoning. Recall that they can be inter-
preted as statements of the independence of the substitution process on parts
of the tree separated by an edge, conditioned on the state at some point along
that edge.
For the 2-state GM model on a binary tree, the edge invariants in fact provide

generators of the phylogenetic ideal, as was conjectured in [52] and proved in [6].

Theorem 4.2 For the 2-state GM model on any n-leaf binary tree T , let P
denote an n-dimensional array of indeterminants representing the joint distribu-
tion array. Then the ideal of phylogenetic invariants is generated by the stochastic
invariant, together with all 3× 3 minors of the matrix edge flattenings Flate(P )
for all interior edges e of T .

For instance in the 5-taxon tree example discussed at the end of Section 4.3,
the 448 minors of size 3 × 3 of the two matrices shown, the edge invariants,
provide a set of generators of the ideal.
Although the proof of this theorem requires mathematical techniques we will

not discuss here, the result has a concrete, accessible interpretation: to each
internal edge e of a tree we can associate both an explicit collection of cubic
polynomials (the edge invariants for e) and a split of the taxa (into the two sets
separated by e). These polynomials will be zero for any joint distribution arising
from an n-taxon model on a tree inducing the same split of taxa. Moreover,
these polynomials are essentially the only polynomial relationships that hold for
all joint distributions arising from the fixed tree. Thus the structure of invariants
for the GM model is determined by local features of the tree.
For the κ-state GM model, with κ > 2, our understanding is not quite

as complete, but partial results again indicate a prominent role for invariants
associated to local tree topology. The best current result is the following from [6].

Theorem 4.3 Suppose a set of polynomials set-theoretically defining the vari-
ety associated to the GM model on a 3-taxon tree were given. Then an explicit
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construction will produce a set of polynomials set-theoretically defining the
phylogenetic variety for any n-taxon binary tree.

Although this statement fails to highlight it, the construction of the explicit
polynomials it refers to involves precisely the vertex invariants and edge invari-
ants as discussed earlier. A large tree is viewed as many star trees joined together,
and from invariants for each star tree, set-theoretic defining polynomials for the
large tree are constructed.
We also note that while an understanding of set-theoretic defining polynomi-

als for the 3-leaf tree is not complete, good partial results are available in [1] for
the 4-state GM model.

Theorem 4.4 Let S be the set of 1728 degree-5 polynomials, constructed as
discussed in Section 4.4, which are invariants for the 4-state GM model on the
3-leaf tree. Then V (S), the variety they define, is the union of the phyloge-
netic variety and possibly a set of extraneous zeros which lies in an explicitly
describable set.

The extraneous zeros mentioned in this last theorem can even be shown to
be far from points on the phylogenetic variety arising from biologically-relevant
parameter values.
We emphasize that the results for group-based and GM models parallel one

another, in that all invariants ultimately arise from edges and nodes of the tree.
Explicit polynomials tied to these features either generate the ideal or at least
set-theoretically define the variety. However, the methods of proof are quite
different. For group-based models, in addition to using the Fourier transform,
the arguments are combinatorial in flavor and depend on an understanding of
toric varieties. For the GM model, linear algebra and representations are the
main ingredients.

4.6.3 The strand symmetric model
While the elegant mathematical structure of the group-based models facilitates
an understanding of invariants, their restrictive assumptions are not always
viewed as biologically realistic. While the GM model is also well-structured for
understanding invariants, it might be considered to be too flexible, with too
many parameters, for some phylogenetic applications. It is desirable, then, to
look for biologically motivated models between these whose invariants can be
successfully determined.
One potentially valuable one is the strand symmetric model introduced by

Cassanellas and Sullivant in [10]. This 4-state model can be viewed as an amal-
gamation of a 2-state group-based model with a 2-state GM model, and thus its
study can build on our understanding of each of those.
Specifically, with the fixed ordering of bases A,G,T ,C, the model assumes a

root distribution vector of the form

π = (π1, π2, π1, π2),
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so that frequency of any base matches its complement in the Watson–Crick
pairing. This symmetry with respect to the pairing is also assumed for all Markov
matrices on edges, so that they have the form

Me =



a b c d
e f g h
c d a b
g h e f


 .

Since the rows of these matrices must sum to 1, there are 6 parameters introduced
for each edge. Note that with this ordering of the bases the matrices have a
block structure with 2×2 GM blocks arranged in a pattern reflecting the 2-state
symmetric model.
As one might expect, the symmetry of this model leads to the existence of

some linear invariants for any tree. Focusing next on the 3-taxon tree, a number
of invariants of degree 3 and 4 can be constructed. However, it is not known
whether these generate the phylogenetic ideal, or even set-theoretically define
the phylogenetic variety, echoing the incompleteness of the corresponding result
for the GM model. However, through the use of a computational algebra package,
it can be seen that they generate all invariants of degree at most 4.
Finally, to handle trees relating more taxa, it is established that producing

a set of invariants set-theoretically defining the variety for a 3-taxon tree would
suffice to allow construction of invariants set-theoretically defining the variety
for an arbitrary binary tree. This emphasizes once again that for those models
for which we have made substantial progress in understanding invariants, we can
tie particular invariants to particular local features of the tree.

4.6.4 Stable base distribution models
Another attempt to consider a biologically motivated model less general than the
GM, but more general than group-based ones, appeared in [3]. The motivation
was to understand what invariants might be valid for any model assuming a stable
base distribution throughout the tree. In the course of this investigation, several
nested models with this feature are formulated, including 1) an algebraic time-
reversible model (ATR), which is similar to the GTR model but unlike the GTR
has a polynomial parameterization map and, 2) a stable base distribution model
(SBD) that assumes only that all Markov matrices fix the root distribution.
In the case of characters with 2 states, these models become the same,

and generalize a model that had appeared earlier in [26]. In this simple sit-
uation the parameterization map is even explicitly invertible by a rational
function; parameters can be recovered from a joint distribution by quite sim-
ple formulas. However, for a larger number of states our understanding is quite
incomplete.
While some invariants are constructed for these models, little is understood

about the full phylogenetic ideal or variety. Perhaps the most interesting result
is a construction of a specific invariant that involves the hyperdeterminant of
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a 3-dimensional array, making a connection between phylogenetic invariants
and what mathematicians refer to as invariant theory. Though only of degree
6 for the 2-state model, unfortunately this invariant is of degree 408 in the
4-state case.

Part 2. Using Invariants

In this section we turn from questions of determining invariants for various mod-
els, to questions of how they might be used. Although invariants have had key
roles in several contributions to theoretical understanding, for data analysis it
is still less clear how they can be exploited. While their potential is attractive,
much more needs to be done to develop ways to use them with data.

4.7 Invariants and statistical tests

In the decade following the first appearance of phylogenetic invariants in [13]
and [48], many papers appeared building upon the idea. In particular, a number
of these works dealt primarily with linear invariants for various models.
A compelling reason for the emphasis on linear invariants was the hope

that they might be particularly useful for certain types of rate variation mod-
els. Suppose an invariant f(P ) for a specific model on a specific tree T is
found which is linear and homogeneous (without constant term). Then since
f(c1P1 + · · · + ckPk) = c1f(P1) + · · · + ckf(Pk), this polynomial will also van-
ish on any linear combination of joint distributions arising from the model. But
linear combinations such as c1P1 + · · ·+ ckPk arise naturally when we consider
mixture models, where sites are distributed among classes, and each class has
its own set of parameters for the same model and tree. Then Pi represents the
joint distribution for the ith class, and ci the class size parameter. Thus a linear
invariant for a model on a tree will also be a linear invariant for any rates-
across-sites extension of that model on the same tree. We need not even make
any assumptions about the nature of the distribution of sites among rate classes.
This observation on linear invariants for mixture models holds for both discrete
and continuous distributions of rates.6

If an invariant for a model is topologically informative, in the sense that it
vanishes on all joint distributions arising from the model for some tree topologies
and not others, then it could be the basis of a statistical test to distinguish
between the topologies. Topologically-informative linear invariants, then, could
give tests for topologies that would be insensitive to across-site rate variation.
Tests of various sorts based on linear invariants were proposed in [11, 48], and
investigated more thoroughly in [50].
Although higher degree invariants for a model are typically not invariants

for rates-across-sites extensions, some attention was also given to how they
might be used in a statistical framework. In [13], one of the quadratic invariants

6A higher degree invariant for a specific 2-class mixture model was first constructed in [29].
While this demonstrated that higher-degree invariants might be sought for mixture models,
until recently it remained an isolated result.
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constructed encoded an independence statement, that substitutions in one part
of a tree were independent of those in another part of the tree separated from
it by an edge. Thus the possibility of a statistical analysis based on 2-way con-
tingency tables, as is typically done to test for independence, was suggested.
This idea was pursued further in [55]. Using general formulas for multinomial
distributions to estimate variances of quadratic invariants was suggested in [21].
However, as far as we know, no firmly-grounded statistical test based on general
non-linear invariants has been suggested.
Several comparison studies [44, 45, 46] of the effectiveness of various phy-

logenetic inference methods included Lake’s linear invariants. Using simulated
data, Lake’s method was found to be less efficient than many other methods, in
that it required much longer data sequences to perform well. Note that Lake’s
method had been shown to be statistically consistent, so that provided data was
in accord with the underlying model, as the length of data sequences approaches
infinity the probability of inferring the correct tree approaches 1. Despite this
theoretical strength, on sequences of a length typical for real data sets, Lake’s
invariants failed to reliably infer the correct tree even when no underlying model
assumptions were violated.
In retrospect, this is not so surprising. Linear invariants only can test if a

data point is in the smallest linear subspace containing the phylogenetic variety.
Though higher degree invariants could potentially yield much more information
than linear ones, a statistical framework for using them was largely lacking.
Indeed, how to use higher degree invariants in a statistically meaningful way

is still an open question, and one needing exploration. There is evidence [9] that
naive approaches to identifying topologies using all invariants can be effective on
simulated data even with relatively short sequence length. Thus the inefficiency
of Lake’s linear invariants should not be interpreted as a sign that invariants in
general are necessarily inefficient.

4.8 Invariants and maximum-likelihood

In current software, when phylogenetic inference is performed using a maximum-
likelihood approach, the maximization of the likelihood function is undertaken by
numerical search for optimal model parameters. For a possible tree topology, an
attempt is made to find optimal numerical parameters such as base distributions,
mutation rates, and edge lengths, and then the tree is varied and a new search
for optimal parameters is undertaken.
Various algorithms can be used for the two aspects of this search (for numer-

ical parameters and for topology), but rarely can one be certain that the true
maximum has been located. For a fixed tree, a good algorithm will ensure locally
optimal numerical parameters will be found, but the possibility of missing a
global optimum remains. In addition, because the number of possible tree topolo-
gies will be quite large when the number of taxa is big, it may be impossible to
consider all topologies, and so heuristic searches of tree spaces may overlook the
optimal tree.
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While many packages incorporate methods to avoid being trapped at non-
global optima as they search, they generally come with no guarantee. Comparing
the performance of one algorithm against another may shed some light on the
issue, but cannot really give us full understanding if we have no way to verify
that any maximum we have found is the true one.
Beginning with the work of Yang [69], a number of papers have sought to

better understand the maximum-likelihood (ML) problem through exact opti-
mization in simple settings.7 In particular Chor and his collaborators introduced
the use of phylogenetic invariants as an aid in this optimization problem.
To see why invariants might be useful for exact ML optimization, recall

the construction of the likelihood function for a fixed n-leaf tree whose leaves
are labeled by taxa. We first express the joint distribution of bases by an n-
dimensional array P , as in Section 4.2. With variables u = (u1, u2, . . . , uL)
representing the numerical parameters of the model, each entry of P = P (u) =
(pi1i2...in

(u)) is thus expressed by a polynomial parameterization function.
Given aligned sequences for the taxa, we record the observed distribution

of bases as an n-dimensional array P̂ = (p̂i1i2...in). The log-likelihood function
is then

lnL(u) =
∑
(p̂i1i2...in

) ln(pi1i2...in
(u)).

To find maxima of this function, we can first look for critical points, where all
partial derivatives are zero. Thus differentiating with respect to each variable uj

we obtain the system of equations

0 =
∑ p̂i1i2...in

pi1i2...in(u)
∂pi1i2...in

(u)
∂uj

, j = 1, . . . , L.

Now since each pi1i2...in
(u) is a polynomial, these are rational equations. Clearing

denominators, they give rise to a system of polynomial equations in the unknown
parameters u. If they can be solved, then among the solutions lie all local maxima
of the likelihood function. Note that the polynomials pi1i2...in

(u) are typically of
high degree (e.g. of degree approximately the number of edges in the tree), and
clearing denominators could therefore lead to equations of very high degree.
While solving such a system of equations by hand is not usually possible, one

might hope that a computer algebra package could handle it. Unfortunately, the
polynomial system one obtains, even for a simple model on a small tree, may be
intractable for current software.
However, this optimization problem can be reformulated as a constrained

optimization problem that may be tractable. Rather than seek optimal param-
eters u, we instead seek optimal values for the entries pi1i2...in

of P . We’d like
to constrain P so that it lies in the image of the parameterization map, so
we impose the slightly weaker condition that it lie in the phylogenetic variety.
Thus we require that all phylogenetic invariants vanish on P . The ML problem

7Though this is often referred to as seeking analytic solutions to ML, we avoid that
terminology as the methods are in fact generally algebraic.
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becomes one of maximizing

lnL(P ) =
∑
(p̂i1i2...in) ln(pi1i2...in)

subject to the constraints

f(P ) = 0 for f ∈ IT .

Note that the model parameters do not appear here; we view the entries of P
as the variables. Moreover, since the phylogenetic ideal IT is finitely generated,
only finitely many constraint equations fi(P ) = 0, i = 1, . . . ,K, are actually
needed here.
Formulating this problem using Lagrange multipliers, all critical points are

found by solving the system given by the K constraint equations together with
the κn equations from the entries of

∇ lnL(P ) =
K∑

i=1

λi∇fi(P ).

Explicitly, these last equations are simply

p̂i1i2...in

pi1i2...in

=
K∑

i=1

λi
∂fi

∂pi1i2...in

.

Though we again need to clear denominators to obtain polynomial equations,
note that the resulting equations may well be of much lower degree then the ones
obtained from the original parameter formulation of the ML problem, especially
if the degrees of phylogenetic invariants are not that large.
This last observation gives some hope that with judicious use of a computer

algebra system we might able to solve this constrained optimization problem.
Indeed this is the case, at least for some small trees and simple models.
In [17] this approach was used to show that maximum likelihood estimation

of trees could be quite ill-behaved. For a 2-state symmetric model on a 4-leaf tree,
a number of examples of observed distributions P̂ were constructed for which the
ML problem on a particular tree topology had a continuum of global maxima.
For some of these, the global maxima even tied with a continua of global maxima
for the other possible tree topologies as well. Proving these results for the specific
examples required algebraic methods of solution of the above constrained opti-
mization problem. The symmetry of the model results in some linear invariants
which first allow a reduction in the number of variables pi1i2...in . Because the
model is group-based, higher degree (quadratic) invariants could be constructed
using the Fourier transform in the form of the Hadamard conjugation.
The paper [15] gives a more positive result on maximum likelihood, focusing

on the 2-state symmetric model on a 3-taxon tree with a molecular clock, as
had Yang in [69]. For this model, a linear invariant resulting from the molecular
clock hypothesis is found through Hadamard conjugation. Using the constrained
optimization formulation of the ML problem, the authors were able not only to
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recover Yang’s result on uniqueness of the ML optimum for this model on a fixed
tree, but to extend it to allow variation in rates across sites, with mild restriction
on the distribution of the rate parameter.
In [18, 19], the 2-state symmetric model with a molecular clock hypothesis is

considered again, but now on 4-taxon trees. Hadamard conjugation again facil-
itates the derivation of invariants from the molecular clock hypothesis, though
these must be derived separately for each of the possible rooted 4-taxon tree
shapes, a ‘fork’ and a ‘comb’, and are quadratic rather than linear. The con-
strained optimization formulation of the ML problem is then solved, by a mix
of insightful reductions and computer calculation. For the fork a unique maxi-
mum is found, whose coordinates can even be given as rational expressions in
the entries of P̂ . For the comb, the result is a bit more complicated, but the
system is ultimately seen to have a finite number of solutions. However, all but
one of these solutions is complex or outside the range [0, 1], so again there is a
unique maximum with statistical meaning.
In [16], this sort of analysis is pushed to a 4-state Jukes–Cantor model, on

rooted 3-leaf trees. By working with transformed ‘path-set’ variables arising
through Hadamard conjugation, rather than the variables pi1i2...in , the authors
are able to avoid explicit use of constraint equations. Still, a symbolic algebra
software package is needed to find critical points in the unconstrained formula-
tion. They show that the ML problem has a finite number of optima, though
some of the parameter values may not be meaningful in the context of the model.
Whenever a statistical model is parameterized through polynomial equations,

one might take a similar algebraic approach to ML optimization. In [43], Hoşten,
Khetan, and Sturmfels provide a general framework for using algebra to find
exact solutions of ML problems. Computational approaches to both the con-
strained and unconstrained formulations are given. The authors further report
that the constrained version generally performs better, though to take that
approach requires one first finding model invariants, which of course may be
quite difficult.
That paper also contains several phylogenetic calculations as examples. In

one, for real data, the ML tree using a 4-state Jukes–Cantor model with 4 taxa
is found, with the existence of a second local maximum established for that data
also. This further indicates that multiple local maxima are a genuine issue in
practical inference by maximum-likelihood. In another example, the result of
[16] is reproved, this time in a constrained formulation.
The recent volume [53] provides a broader view of algebraic perspectives

on statistics, with particular focus on applications to computational biology.
Included in it is further background on the connections between algebra and
general maximum-likelihood estimation.

4.9 Invariants and identifiability of complex models

While invariants were originally proposed for inferring trees from data, they can
also be used to give theoretical results that such inference is possible. Separate
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from the question of what inference method performs best for data analysis, is
the more fundamental question concerning the limits of what can be inferred
under perfect conditions.
A statistical model is said to be identifiable if from any joint distribution

arising from the model it is possible to recover all parameters or, in other words,
if the parameterization map of the model is injective. Identifiability is important
because it plays a key role in proofs that methods of inference such as max-
imum likelihood are statistically consistent. If, for instance, two different tree
topologies could give rise to the same joint distribution under some model, it
is intuitively clear that inferring the ‘correct’ tree from data cannot be done
reliably.
In practice, for phylogenetic models one must modify the strict notion of

identifiability. For instance, allowing no substitutions to occur on an internal
edge would lead to non-identifiability of the tree topology for 4-taxon trees,
since each of the 3 fully-resolved 4-taxon trees as well as a 4-leaf star tree could
all lead to the same joint distribution. Allowing too much substitution along
internal edges, so that states become completely ‘randomized’ and uncorrelated
in different parts of the tree, can also lead to loss of phylogenetic signal and
non-identifiability of topology. Even when the tree parameter is identifiable for
a model, numerical parameters may not be. For instance, for the GM model
one can permute the states at an internal node of the tree, adjusting parameters
appropriately, without changing the joint distribution [1, 14], so that numerical
parameters are not identifiable unless one places additional restrictions on them.
But while understanding the issues of non-identifiability mentioned so far is
important, these are rather mild problems that can be dealt with by imposing
biologically plausible assumptions on parameter values.
Identifiability of the tree parameter is often of primary interest in phyloge-

netics. For many basic models, such as the Jukes–Cantor, Kimura, or even GM,
tree identifiability can be shown by first defining an appropriate phylogenetic
distance, and then using the 4-point condition [8]. However, for models with-
out a known distance formula, such as the covarion model [68], this approach is
not possible. General mixture models, in which different classes of sites undergo
substitutions according to different numerical parameter values for a model, but
with the same tree parameter, also lack a distance. In both these situations tree
identifiability has been an open question.
Note that while identifiability of the GTR+I+Γ model was shown in [54], the

approach makes use of the assumption that the rate-parameters are described
by a known distribution in such a way that the 4-point condition can still be
applied. If the rate-parameter distribution is unknown for GTR+rates-across-
sites model, then [64] established the topology is not identifiable for certain
(non-explicit) parameter choices.
How general non-identifiability of a tree might be is quite important, both

for knowing whether a particular model might be usable for inference, and
for understanding under what circumstances tree inference might simply be
impossible.
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Phylogenetic invariants were recently used to study the problem of identifia-
bility of the tree parameter for a variety of models in [4]. General theorems are
produced that guarantee tree identifiability for most parameter choices for both
the covarion model and many mixture models, provided the number of classes is
small.
In order to study a variety of models at once, a substitution model is intro-

duced that is much like the general Markov, but which allows λ states for the
characters at internal nodes of the tree, and κ states at the leaves, with λ ≥ κ.
For DNA models with several classes, the states at the internal nodes might be
indexed by pairs (i, j), where i refers to the base A,G,C,T and j to a rate-class,
while at the leaves the states are simply the bases. Thus if there are n rate
classes, then we have λ = 4n states for all ancestral taxa, but only κ = 4 states
for the currently extant taxa. The idea behind this is simply that while each site
is in some rate-class, we cannot observe that class when data is collected; only
the base can be recorded. The generality of this framework encompasses not only
rates-across sites models, in which no site can change class, but also covarion
models, where rate-class switching can occur.
While most invariants for such a model, even on a 4-leaf tree, are beyond

our current knowledge, some can be found through a generalization of the edge
invariant construction for the GM model. It can then be shown that these invari-
ants are sufficient to identify the tree topology for generic choices of parameters,
provided λ < κ2. ‘Generic’ is given a precise meaning of ‘all except those in
a proper subvariety’. Since such a subvariety is necessarily of lower dimension
than the parameter space, this means that if parameters are chosen randomly,
according to any reasonable notion of randomness, they will be generic and the
tree topology can be identified from the resulting joint distribution.
This result is for a model much more general than typically of interest in phy-

logenetics. Further arguments are given to show that when more usual mixture
models are viewed as submodels of this general model they inherit identifiability
of trees for generic parameters of their own.
In particular for κ-state models, even a GM+GM+· · ·+GM model, with a

mixture of κ − 1 classes each described by the GM model but with unrelated
numerical parameters, has identifiable tree topology for generic parameters. For
DNA models, then, trees are identifiable for generic parameters of models with
3 unrelated GM classes. The result further specializes to a model such as the
GTR, where a common rate matrix is assumed for the substitutions on all edges,
allowing up to 3 classes of sites with scaled rates.
While the framework of invariants seems best suited to studying models with

a finite number of rate-classes, much research literature refers to continuous
distributions of rates. Indeed, the commonly-used GTR+Γ model assumes a
continuous distribution. In fact, though, software implementations usually use
discretized versions of Γ with only a few classes (although more than 3). Thus
models with a finite number of rate-classes are common in practice.
It should be emphasized that there is no reason to believe identifiability for

generic parameters should not hold for rate-class models with more than κ − 1



CUEL: “CHAP04” — 2007/4/3 — 18:06 — PAGE 138 — #31

138 PHYLOGENETIC INVARIANTS

classes, provided the number of classes is not too large. The current restriction
to κ − 1 classes is an artifact of having incomplete knowledge of all invariants
for the models. A better understanding of what limits must be placed on the
number of classes to preserve generic identifiability is still needed.
In addition to giving results on mixture models, [4] leads to establishing

generic identifiability of the tree topology for certain covarion models, such as
that of Tuffley and Steel [68] and extensions. Covarion models are biologically
quite attractive in that they describe sites passing between being invariable and
being free to vary as they evolve over a tree. However, identifiability of trees
had not previously been established for them, despite their implementation in
software [33].
For some of the results described here, such as for the covarion model and the

GTR+rate-classes models, the underlying model is not one with a polynomial
parameterization. These are inherently continuous time models, involving matrix
exponentials in their parameterization formulas. Nonetheless, because they are
submodels of a more general polynomially-parameterized model, they can be
effectively studied through invariants.
Another investigation [5] of invariants for mixture models has focused on

the GM+I model, with 2 classes, one evolving according to GM and the other
held invariable. Although identifiability of the tree for generic parameters in this
model follows from [4], a focus on this more specific model allows additional
invariants to be found, giving a refined analysis. Note that some questions of
identifiability for this model had been studied previously in [7], in which it was
shown the tree was not identifiable from marginalizations of the joint distribution
to 2 taxa (i.e. from pairwise sequence comparisons).
An interesting consequence of studying invariants for GM+I is a set of explicit

formulas that can recover the proportion of invariable sites with any given base
from the joint distribution. For the more restrictive Kimura 3-parameter model
with invariable sites, such a formula was found in [62] by a rather different
argument using ‘capture/recapture’ reasoning. For the GM+I model an under-
standing of the invariants naturally leads to determinantal formulas to recover
these parameters. For example, in the 2-state case on a 4 taxon tree, with states
0 and 1, the proportion of invariable characters of state 0 is given as a quotient:

πI
0 =

∣∣∣∣∣∣
p0000 p0001 p0010
p0100 p0101 p0110
p1000 p1001 p1010

∣∣∣∣∣∣∣∣∣∣p0101 p0110
p1001 p1010

∣∣∣∣
.

Here subscripts indicating states corresponding to the taxa ordered as a, b, c, d,
where the tree has split ab|cd. Similar formulas are valid for the 4-state
characters, or even κ-state.
Note that such formulas are far from unique, since they can be modified

by the addition of any invariant for the model without affecting the value the
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formula will yield when evaluated at a distribution. Nonetheless, there is a pos-
sibility that such formulas might be useful for quick estimation of parameters
from data.
Identifiability by means of invariants also appeared in [2], which focused on

the use of invariants only for quartets (subsets of 4 taxa) to determine a fit of
n data sequences to a tree. Although the precise results require some technical
conditions, they can be roughly summarized as indicating that while quartet
invariants can indicate a unique n-taxon tree, additional invariants are needed
to assure the n-dimensional joint distribution is fit well by the model. This
clarifies the loss of information inherent in quartet methods of inference.

4.10 Other directions

4.10.1 A tree construction algorithm
A first step toward a novel invariant-based inference method was taken by
Eriksson in [22], with a software implementation for DNA sequence data. The
underlying idea uses only the edge invariants for the GM model. Following an
algorithmic approach reminiscent of neighbour joining, the method iteratively
builds a tree by finding good taxa, or clades, to join together, and thus has good
running times.
In the initial step, all splits that separate two taxa from the rest are consid-

ered. If all the edge invariants for a hypothetical split come close to vanishing,
then that is evidence that the two taxa should be joined. However, evaluating
these invariants would simply be a test that the corresponding flattening of the
observed distribution is close to a rank 4 matrix. Thus, rather than actually
evaluate the many edge invariants for each flattening, the algorithm instead uses
a numerical approach to determine how close each flattening is to a matrix with
rank 4.
This problem of measuring how well a matrix can be approximated by one of

fixed rank is well understood, provided closeness is measured by the Frobenius
(i.e. L2 on matrix entries) norm. The singular value decomposition of matrices
provides a good numerical approach both to finding such approximations, and
measuring error. Thus the algorithm avoids both the issues of how to use the
large number of invariants associated to one edge to get a combined measure
of support for that edge, and how one would interpret such a measure in a
statistically meaningful way.
Although the performance of Eriksson’s SVD method on simulated data was

not as good as neighbour joining or maximum-likelihood, as a first attempt it
gave several reasons to be hopeful. First, the simulation studies were in some
sense biased against the new method: data was simulated according to a more
restricted model than the GM model underlying the SVD algorithm, so that
one might expect the generality of the GM model allowed too much flexibility
in parameters for optimal tree recovery. It would be interesting to see how the
algorithm’s performance compares on simulated data that violates some of the
common assumptions of the competing methods. For data arising without stable
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base frequencies throughout evolution, or with substitution rates on different
edges of the tree varying substantially, the GM model may be valid where some-
thing like the GTR is not. Indeed, in such a situation the SVD method could be
proved to be statistically consistent, unlike standard implementations of other
methods, which do not allow such flexibility in models.
Second, the SVD method is based only on consideration of edge invariants,

and not of vertex invariants. In a sense, it is dealing with a model even more
general than GM, by placing no assumptions at all on how substitutions occur
around the time of speciation events. While one might expect better performance
if vertex invariants are somehow utilized, it is unfortunately not immediately
clear how to do so. There is no simple analogue of the SVD for determining best
approximations of 3-dimensional tensors of specified rank, so new ideas are likely
to be needed.
Although more needs to be done to develop this approach, there is also

much potential to do so. The focus on the relationship of invariants to local tree
structure, as well as the introduction of the SVD to provide an alternative to
naive evaluation for ‘near-vanishing’ of polynomials, can guide future work.

4.10.2 Invariants for gene order models
In [56, 57, 58], a new direction in the application of invariants was given by
Sankoff and Blanchette, to inferring phylogenetic trees from gene order data.
Not only are parsimony approaches to inference in this setting computationally
slow even for quite small trees, but they can also produce incorrect results if
there are large differences in branch lengths in the tree. Since invariants are
based on a model, and are designed to ‘ignore’ specific parameter values such as
branch lengths, they might provide a useful new approach.
First a simplified probabilistic model is given to describe gene order data with

n genes. Focusing on any particular gene, the various states for the model are
the possible genes that might be its successor in the ordering. Assuming equal
probabilities of all such changes on a given edge of the tree, an (n − 1)-state
model generalizing the Jukes–Cantor one is produced. Thus linear invariants are
well understood, and can be explicitly produced for a small tree and small n.
From simulation using parameters inferred from the data, distributions for the
values of these invariants can be produced, and significance levels assigned to
the values they produce when evaluated on the data. For real data, the method
produces plausible results, in line with a parsimony approach focusing only on
adjacent genes. While there is possibly some improvement in inference, examples
are too few to be conclusive.
As the authors noted, little had been done with probabilistic models for

evolving gene order, and the simple model they used is only a very rough approx-
imation that might be improved. They also investigated only linear invariants,
the construction of which was already well known for this model, noting their
insensitivity to rate variation. Producing a more sophisticated model and deter-
mining its invariants might well enable better inference, though how difficult
that might be is unclear.
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4.11 Concluding remarks

Much progress has been made in understanding invariants of various phyloge-
netic models. Only recently has it been possible to claim we know all invariants
for some models, or even a large number of invariants for models general enough
to include those commonly used in inference. For group-based models and the
GM model our knowledge is now extensive, and a pleasing and potentially useful
relationship between invariants and local tree features has emerged. Even for cer-
tain very general mixture models, we have learned of some non-linear invariants
that are topologically informative.
Moreover invariants have proved their usefulness in addressing two funda-

mental theoretical issues. They played an important role in investigating the
possibility of multiple maxima of the likelihood functions, making it possible to
formulate the problem as one of constrained optimization so that exact solutions
could be found. They also were the key tool in establishing the identifiability
of trees for general mixture models, with a small number of classes, for generic
parameters.
How invariants might be useful in practical inference is now a question

ready for renewed exploration. Earlier disappointments in the performance of
linear invariants should not be discouraging, since that small subclass of invari-
ants offers little insight into how higher degree ones might perform. For naive
approaches to using invariants for inference to be developed into useful and well-
founded methods, we need to find both good ways of evaluating a large number
of invariants, and good statistical approaches to judging whether the results are
near to zero. But as the SVD algorithm has shown, we might let invariants
guide our thinking yet use other computational ideas in developing an inference
method.
Simply put, we do not yet know how to use invariants to address practical

problems. Although their potential seems clear, the development of ways to
use invariants, either heuristically or in well-founded statistical tests, needs the
attention of a wider group of researchers.
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