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Abstract

Inference of evolutionary trees and rates from biological sequences is commonly

performed using continuous-time Markov models of character change. The

Markov process evolves along an unknown tree while observations arise only

from the tips of the tree. Rate heterogeneity is present in most real data sets

and is accounted for by the use of flexible mixture models where each site is

allowed its own rate. Very little has been rigorously established concerning

the identifiability of the models currently in common use in data analysis,

although non-identifiability was proven for a semi-parametric model and an

incorrect proof of identifiability was published for a general parametric model

(GTR+Γ+I). Here we prove that one of the most widely used models (GTR+Γ)

is identifiable for generic parameters, and for all parameter choices in the case of

4-state (DNA) models. This is the first proof of identifiability of a phylogenetic

model with a continuous distribution of rates.

Keywords: phylogenetics, identifiability

AMS 2000 Subject Classification: Primary 60J25

Secondary 92D15, 92D20

1. Introduction

A central goal of molecular phylogenetics is to infer evolutionary trees from

DNA or protein sequences. Such sequence data come from extant species at the

tips of the tree – the tree of life – while the topology of the tree relating these

species is unknown. Inferring this tree helps us understand the evolutionary

relationships between sequences.

Phylogenetic data analysis is often performed using Markovian models of

evolution: Mutations occur along the branches of the tree under a finite-state

Markov process. There is ample evidence that some places in the genome

undergo mutations at a high rate, while other loci evolve very slowly, perhaps

due to some functional constraint. Such rate variation occurs at all spatial

scales, across genes as well as across sites within genes. In performing inference,

this heterogeneity is accounted for by the use of flexible mixture models where

each site is allowed its own rate according to a rate distribution µ. In the
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context of molecular phylogenetics, the use of a parametric family for µ is

generally considered both advantageous and sufficiently flexible.

The question of identifiability for such a rate-variation model is a funda-

mental one, as standard proofs of consistency of statistical inference methods

begin by establishing identifiability. Without identifiability, inference of some

or all model parameters may be unjustified. However, since phylogenetic data

is gathered only from the tips of the tree, understanding when one has identifi-

ability of the tree topology and other parameters for phylogenetic models poses

substantial mathematical challenges. Indeed, it has been shown that the tree

and model parameters are not identifiable if the distribution of rates µ is too

general, even when the Markovian mutation model is quite simple [13].

The most commonly used phylogenetic model is a general time-reversible

(GTR) Markovian mutation model along with a Gamma distribution family

(Γ) for µ. For more flexibility, a class of invariable sites (I) can be added by

allowing µ to be the mixture of a Gamma distribution with an atom at 0 [4].

Numerous studies have shown that the addition to the GTR model of rate

heterogeneity through Γ, I, or both, can considerably improve fit to data at

the expense of only a few additional parameters. In fact, when model selection

procedures are performed, the GTR+Γ+I model is preferred in most studies.

These stochastic models are the basis of hundreds of publications every year in

the biological sciences — over 40 in Systematic Biology alone in 2006. Their

impact is immense in the fields of evolutionary biology, ecology, conservation

biology, and biogeography, as well as in medicine, where, for example, they

appear in the study of the evolution of infectious diseases such as HIV and

influenza viruses.

The main result claimed in the widely-cited paper [11] is the following:

The 4-base (DNA) GTR+Γ+I model, with unknown mixing parameter and Γ

shape parameter, is identifiable from the joint distributions of pairs of taxa.

However, the proof given in [11] of this statement is flawed; in fact, two gaps
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occur in the argument. The first gap is in the use of an unjustified claim

concerning graphs of the sort exemplified by Figure 3 of that paper. As this

claim plays a crucial role in the entire argument, the statement above remains

unproven.

The second gap, though less sweeping in its impact, is still significant. As-

suming the unjustified graphical claim mentioned above could be proved, the

argument of [11] still uses an assumption that the eigenvalues of the GTR rate

matrix be distinct. While this is true for generic GTR parameters, there are

exceptions, including the well-known Jukes-Cantor and Kimura 2-parameter

models [4]. Without substantial additional arguments, the reasoning given in

[11] cannot prove identifiability in all cases.

Furthermore, bridging either of the gaps in [11] is not a trivial matter.

Though we suspect that Rogers’ statement of identifiability is correct, at least

for generic parameters, we have not been able to establish it by his methods.

For further exposition on the nature of the gaps, see the Appendix.

In this paper, we consider only the GTR+Γ model, but for characters with

any number κ ≥ 2 states, where the case κ = 4 corresponds to DNA sequences.

Our main result is the following:

Theorem 1. The κ-state GTR+Γ model is identifiable from the joint distribu-

tions of triples of taxa for generic parameters on any tree with 3 or more taxa.

Moreover, when κ = 4 the model is identifiable for all parameters.

The term ‘generic’ here means for those GTR state distributions and rate

matrices which do not satisfy at least one of a collection of equalities to be

explicitly given in Theorem 2. Consequently, the set of non-generic parameters

is of Lebesgue measure zero in the full parameter space. Our arguments are

quite different from those attempted in [11]. We combine arguments from

algebra, algebraic geometry and analysis.

We believe this paper presents the first correct proof of identifiability for
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any model with a continuous distribution µ of rates across sites that is not

fully known. The non-identifiability of some models with more freely-varying

rate distributions of rates across sites was established in [13]. That paper also

showed identifiability of rate-across-sites models built upon certain group-based

models provided the rate distribution µ is completely known. More recently,

[1] proved that tree topologies are identifiable for generic parameters in rather

general mixture models with a small number of classes. That result specializes

to give the identifiability of trees for the κ-state GTR models with at most

κ − 1 rates-across-sites classes, including the GTR+I model. Identifiability of

numerical model parameters for GTR+I is further explored in [2]. There have

also been a number of recent works dealing with non-identifiability of mixture

models which are not of the rates-across-sites type; these include [15, 16, 9, 8].

In Section 2 we define the GTR+Γ model, introduce notation, and reduce

Theorem 1 to the case of a 3-taxon tree. In Section 3, we use purely algebraic ar-

guments to determine from a joint distribution certain useful quantities defined

in terms of the model parameters. In Section 4, in the generic case of certain

algebraic expressions not vanishing, an analytic argument uses these quantities

to identify the model parameters. Focusing on the important case of κ = 4

for the remainder of the paper, in Section 5 we completely characterize the

exceptional cases of parameters not covered by our generic argument. Using

this additional information, in Section 6 we establish identifiability for these

cases as well. Finally, Section 7 briefly mentions several problems concerning

identifiability of phylogenetic models that remain open.

2. Preliminaries

2.1. The GTR+rates-across-sites substitution model

The κ-state across-site rate-variation model is parameterized by:

1. An unrooted topological tree T , with all internal vertices of valence ≥ 3,
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and with leaves labeled by a1, a2, . . . , an. These labels represent taxa, and

the tree their evolutionary relationships.

2. A collection of edge lengths te ≥ 0, where e ranges over the edges of T .

We require te > 0 for all internal edges of the tree, but allow te ≥ 0

for pendant edges, provided no two taxa are total-edge-length-distance 0

apart. Thus if an edge e is pendant, the label on its leaf may represent

either an ancestral (te = 0) or non-ancestral (te > 0) taxon.

3. A distribution vector π = (π1, . . . , πκ) with πi > 0,
∑

πi = 1, representing

the frequencies of states occurring in biological sequences at all vertices of

T .

4. A κ × κ matrix Q = (qij), with qij > 0 for i 6= j and
∑

j qij = 0 for

each i, such that diag(π)Q is symmetric. Q represents the instantaneous

substitution rates between states in a reversible Markov process. We will

also assume some normalization of Q has been imposed, for instance that

diag(π)Q has trace −1.

Note that the symmetry and row summation conditions imply that π

is a left eigenvector of Q with eigenvalue 0, which in turn implies π is

stationary under the continuous-time process defined by Q.

5. A distribution µ, with non-negative support and expectation E(µ) =

1, describing the distribution of rates among sites. If a site has rate

parameter r, then its instantaneous substitution rates will be given by

rQ.

Letting [κ] = {1, 2, . . . , κ} denote the states, the joint distribution of states

at the leaves of the tree T which arises from a rate-across-sites GTR model

is computed as follows. For each rate r and edge e of the tree, let Me,r =

exp(terQ). Then with an arbitrary vertex ρ of T chosen as a root, let

Pr(i1, . . . , in) =
∑

(hv)∈H

(
π(hρ)

∏
e

Me,r(hs(e), hf(e))

)
, (1)
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where the product is taken over all edges e of T directed away from ρ, edge e

has initial vertex s(e) and final vertex f(e), and the sum is taken over the set

H = Hi1i2...in
=

{
(hv)v∈Vert(T ) | hv ∈ [κ] if v 6= aj , hv = ij if v = aj

} ⊂ [κ]|Vert(T )|.

Thus H represents the set of all ‘histories’ consistent with the specified states

i1, . . . , in at the leaves, and the n-dimensional table Pr gives the joint distribu-

tion of states at the leaves given a site has rate parameter r. Since the Markov

process is reversible and stationary on π, this distribution is independent of

the choice of root ρ.

Finally, the joint distribution for the GTR+µ model is given by the n-

dimensional table

P =
∫

r
Prdµ(r).

The distribution for the GTR+Γ model is given by additionally specifying a

parameter α > 0, with µ then specialized to be the Γ-distribution with shape

parameter α and mean 1, i.e., with scale parameter β = 1/α.

2.2. Diagonalization of Q

The reversibility assumptions on a GTR model imply that diag(π1/2)Qdiag(π−1/2)

is symmetric, and that Q can be represented as

Q = Udiag(0, λ2, λ3, . . . , λκ)U−1,

where the eigenvalues of Q satisfy 0 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λκ [6], and U is a

real matrix of associated eigenvectors satisfying the equivalent statements

UUT = diag(π)−1, UT diag(π)U = I. (2)

Furthermore, the first column of U may be taken to be the vector 1.

While the λi are uniquely determined by these considerations, in the case

that all λi are distinct the matrix U is determined only up to multiplication

of its individual columns by ±1. If the λi are not distinct, eigenspaces are

uniquely determined but U is not.
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Our method of determining Q from a joint distribution will proceed by deter-

mining eigenspaces (via U) and the λi separately. Although the non-uniqueness

of U will not matter for our arguments, the normalization determined by

equations (2) will be used to simplify our presentation.

2.3. Moment generating function

We also use the moment generating function (i.e., essentially the Laplace

transform) of the density function for the distribution of rates in our model.

As our algebraic arguments will apply to arbitrary rate distributions, while our

analytic arguments are focused on Γ distributions, we introduce notation for

the moment generating functions in both settings.

Definition 1. For any fixed distribution µ of rates r, let

L(u) = Lµ(u) = E(eru)

for −∞ < u ≤ 0, denote the expectation of eru. In the special case of Γ-

distributed rates, with parameters α > 0 and β = 1/α, let

Lα(u) = LΓ,α = E(eru) =
(
1− u

α

)−α
.

Note that L, and in particular Lα, is an increasing function throughout its

domain.

2.4. Reduction to 3-taxon case

To prove Theorem 1, it is sufficient to consider only the case of 3-taxon trees.

Lemma 1. If the statements of Theorem 1 holds for 3-taxon trees, then they

also hold for n-taxon trees when n > 3.

Proof. As the generic condition of Theorem 1 is a condition on π and Q (see

Theorem 2 below for a precise statement), parameters on a n-taxon tree are

generic if and only if the induced parameters on all induced 3-taxon trees are

generic.
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b

c

ta

tb

tc

Figure 1: The unique 3-taxon tree relating taxa a, b, and c, with branch lengths ta, tb and

tc.

If the model on 3-taxon trees is identifiable for certain parameters, then from

the joint distribution for a tree such as that of Figure 1, we may determine

α, Q, π and the 3 edge lengths ta, tb, tc. Thus we may determine the pairwise

distances ta +tb, ta +tc, tb +tc between the taxa. From an n-taxon distribution,

by considering marginalizations to 3 taxa we may thus determine α, Q, π, and

all pairwise distances between taxa. From all pairwise distances, we may recover

the topological tree and all edge lengths by standard combinatorial arguments,

as in [12].

3. Algebraic arguments

We now determine some information that we may obtain algebraically from

a joint distribution known to have arisen from the GTR+µ model on a tree

T relating 3 taxa. While in this paper we will only apply the results to the

GTR+Γ model, we derive them at their natural level of generality. We therefore

denote the moment generating function of the rate distribution by L, with its

dependence on µ left implicit.

As marginalizations of the joint distribution correspond to the model on

induced trees T ′ with fewer taxa, we work with trees with 1, 2, or 3 leaves.

If T ′ has only 1 leaf, it is simply a single vertex, and the distribution of states

is therefore π. Thus π is identifiable from a joint distribution for 1 or more

taxa.
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If T ′ has exactly 2 leaves, joined by an edge of length te > 0, then the joint

distribution can be expressed as

P = diag(π)E(exp(terQ)) = diag(π)U diag(L(λ1te), . . . , L(λκte))U−1.

Therefore, diagonalizing diag(π)−1P determines the collection of L(λite) and

the columns of U up to factors of ±1. Since L is increasing, we may determine

individual L(λite) by the requirement that

1 = L(0) = L(λ1te) > L(λ2te) ≥ · · · ≥ L(λκte). (3)

When the λi are distinct, this fixes an ordering to the columns of U . Regardless,

we simply make a fixed choice of some U consistent with the inequalities (3)

and satisfying equations (2). We can further require this choice of U be made

consistently for all 2-taxon marginalizations of the joint distribution. Thus for

any tree relating 2 or more taxa, we may determine the eigenspaces of Q via U

and the value L(λidjk) for each i and pair of taxa aj , ak, where djk is the total

edge-length distance between aj and ak.

For T with exactly 3 leaves, let a, b, c be the taxa labeling them, with edge

lengths as in Figure 1, and let Xa, Xb, Xc denote the character states at these

taxa. As in [3], denote by P ab,γ the square matrix containing the probabilities

P ab,γ(i, j) = P(Xb = j, Xc = γ |Xa = i) ,

which can be computed from the joint distribution. But

P ab,γ = E
(
ertaQ diag

(
ertcQ·γ

)
ertbQ

)

where ertcQ·γ is the γth column of matrix ertcQ, so

U−1P ab,γU =

E
(
diag(ertaλ1 , . . . , ertaλκ)U−1 diag

(
ertcQ·γ

)
U diag(ertbλ1 , . . . , ertbλκ)

)
.

Note that the jth column of

diag
(
ertcQ·γ

)
U
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is the same as the γth column of

diag (U·j) ertcQ .

Thus when (i, j) is fixed, the row vector formed by U−1P ab,γU (i, j) for γ =

1, . . . , κ is

µijE
(
ertaλiertbλjertcQ

)
(4)

where µij is the row vector with

µij(k) = U−1(i, k)U(k, j) = π(k)U(k, i)U(k, j) . (5)

Finally, multiplying (4) by U on the right, and setting νij = µijU , we see that

the information brought by the triple of taxa {a, b, c} amounts to the knowledge

of

νijE
(
ertaλiertbλj diag(ertcλ1 , . . . , ertcλκ)

)
,

i.e., to the knowledge of each

E
(
ertaλiertbλjertcλk

)
= L(taλi + tbλj + tcλk)

for which νij(k) 6= 0.

This motivates the following notation, where for conciseness we let Uij =

U(i, j): For i, j, k ∈ [κ], let

νijk =
∑

l

πlUliUljUlk .

Note that while νijk = νij(k), we prefer this new notation since the value of

νijk is unchanged by permuting subscripts:

νijk = νikj = νjik = νjki = νkij = νkji.

Furthermore, since π can be determined from 1-taxon marginalizations, and U

from 2-taxon marginalizations, from a 3-taxon distribution we may compute

νijk for all i, j, k.

In summary, we have shown the following:
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Proposition 1. From a distribution arising from the GTR+µ model on the

3-taxon tree of Figure 1, we may obtain the following information:

1. π, from 1-marginalizations

2. all matrices U which diagonalize Q as above, and for all i the values

L(λi(ta + tb)), L(λi(ta + tc)), L(λi(tb + tc)),

from 2-marginalizations, and

3. the values L(λita + λjtb + λktc) for all i, j, k such that νijk 6= 0 for some

such choice of U .

Note that (2) can be obtained as a special case of (3) by taking j = i, k = 1,

as it is easy to see νii1 6= 0. We shall also see that νij1 = 0 if i 6= j, so certainly

some of the νijk can vanish.

One might expect that for most choices of GTR parameters all the νijk 6= 0

for i, j, k > 1. Indeed, this is generally the case, but for certain choices one

or more of these νijk can vanish. The Jukes-Cantor and Kimura 2- and 3-

parameter models provide simple examples of this for κ=4: For these models,

one may choose

π = (1/4, 1/4, 1/4, 1/4), U =




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




,

and νijk 6= 0 for i, j, k > 1 only when i, j, k are distinct. While for the Jukes-

Cantor and Kimura 2-parameter models one may make other choices for U , one

can show that these alternative choices of U do not lead to the recovery of any

additional information.

Nonetheless, for κ ≥ 3 there is always some genuine 3-taxon information

available from a distribution, as we now show. Although we do not need the
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following proposition for the proof of Theorem 1, the method of argument it

introduces underlies Section 5 below.

Proposition 2. With κ ≥ 3, for any choice of GTR parameters there exists at

least one triple i, j, k > 1 with νijk 6= 0.

Proof. Suppose for all triples i, j, k > 1,

νijk =
∑

l

πlUliUljUlk = 0. (6)

From equation (2) we also know that if j 6= k, then

ν1jk =
∑

l

πlUljUlk = 0. (7)

Both of these equations can be expressed more conveniently by introducing

the inner product

〈x, y〉 = xT diag(π)y.

Then with Ui being the ith column of U , and Wjk being the vector whose lth

entry is the product UljUlk, equations (6) give the orthogonality statements

〈Ui,Wjk〉 = 0, if i, j, k > 1,

while equations (7) yield both

〈U1, Wjk〉 = 0, if j 6= k, and

〈Uj , Uk〉 = 0, if j 6= k.

In particular, we see for j, k > 1, j 6= k, that Wjk is orthogonal to all Ui, and

so Wjk = 0. Considering individual entries of Wjk gives that, for every l,

UljUlk = 0, for all j, k > 1, j 6= k. (8)

Now note that for any j > 1, the vector Uj must have at least 2 non-zero

entries. (This is simply because Uj is a non-zero vector, and 〈1, Uj〉 = 0 since
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U1 = 1.) We use this observation, together with equation (8), to arrive at a

contradiction.

First, without loss of generality, assume the first two entries of U2 are non-

zero. Then by equation (8) the first two entries of all the vectors U3, U4, . . .

must be 0. But then we may assume the third and fourth entries of U3 are

non-zero, and so the first 4 entries of U4, . . . are zero. For the 4-state DNA

model, this shows U4 = 0, which is impossible.

More generally, for a κ-state model, we find Uk = 0 as soon as 2(k− 2) ≥ κ.

Note that for κ ≥ 4 this happens for some value of k ≤ κ, thus contradicting

that the Uk are non-zero. In the κ = 3 case the same argument gives that U3

has only one non-zero entry, which is still a contradiction, since U3 is orthogonal

to U1 = 1. Thus the lemma is established for a κ-state model with κ ≥ 3.

For κ = 2, the statement of Proposition 2 does not hold, as is shown by

considering the 2-state symmetric model, with

π = (1/2, 1/2), and U =


1 1

1 −1


 .

However, one can show this is the only choice of π and U for which ν222 = 0.

4. Identifiability for generic parameters

We now complete the proof of the first statement in Theorem 1, the identifia-

bility of the GTR+Γ model for generic parameters, which is valid for all values

of κ ≥ 2. As we now consider only Γ-distributed rates, we use the specialized

moment generating function Lα in our arguments.

More precisely, we will establish the following:

Theorem 2. For κ ≥ 2, consider those GTR parameters for which there exist

some i, j, with 1 < i ≤ j, such that νijj 6= 0. Then restricted to these

parameters, the GTR+Γ model is identifiable on 3-taxon trees.
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Remark 1. Note that the conditions νijj = 0 are polynomial in the entries of

U and π. Viewing the GTR model as parameterized by those variables together

with the λi, then the set of points in parameter space for which νijj = 0 for

some i, j with 1 < i ≤ j forms a proper algebraic variety. Basic facts of

algebraic geometry then implies this set is of strictly lower dimension than the

full parameter space. A generic point in parameter space therefore lies off this

exceptional variety, and the exceptional points have Lebesgue measure zero in

the full parameter space.

Remark 2. For κ = 2, identifiability does not hold for the 3-taxon tree if

the generic condition that νijj 6= 0 for some 1 < i ≤ j is dropped. Indeed,

if ν222 = 0, then, as commented in the last section, π and U arise from the

2-state symmetric model. Since there are only two eigenvalues of Q, λ1 = 0

and λ2 < 0, the second of these is determined by the normalization of Q. As

the proof of Proposition 1 indicates, the only additional information we may

obtain from the joint distribution is the three quantities

Lα(λ2(ta + tb)), Lα(λ2(ta + tc)), Lα(λ2(tb + tc)).

Since these depend on four unknown parameters α, ta, tb, tc, it is straightforward

to see the parameter values are not uniquely determined.

Our proof of Theorem 2 will depend on the following technical lemma.

Lemma 2. Suppose c ≥ a ≥ d1 > 0 and c ≥ b > d2 > 0. Then the equation

d−β
1 + d−β

2 − a−β − b−β − c−β + 1 = 0.

has at most one solution with β > 0.

Proof. The equation can be rewritten as
((

c

d1

)β

−
( c

a

)β
)

+

((
c

d2

)β

−
(c

b

)β
)

+
(
cβ − 1

)
= 0 (9)

Now a function g(β) = rβ−sβ is strictly convex on β ≥ 0 provided r > s ≥ 1,

since g′′(β) > 0. If r = s, then g(β) = 0 is still convex. Thus when viewed as
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a function of β the first expression on the left side of equation (9) is convex,

and the second expression is strictly convex. Also, for any r > 0 the function

h(β) = rβ−1 is convex, so the third expression in equation (9) is convex as well.

Thus the sum of these three terms, the left side of equation (9), is a strictly

convex function of β.

But a strictly convex function of one variable can have at most two zeros.

Since the function defined by the left side of equation (9) has one zero at β = 0,

it therefore can have at most one zero with β > 0.

Proof of Theorem 2. For some j ≥ i > 1, we are given that νijj 6= 0. As

νijj = νjij , by Proposition 1 we may determine the values

Dijj = Lα(λita + λjtb + λjtc),

Djij = Lα(λjta + λitb + λjtc),

as well as

Ck = Lα(λk(ta + tb)),

Bk = Lα(λk(ta + tc)),

Ak = Lα(λk(tb + tc))

for k = 1, . . . , κ.

Since Lα is increasing, for any k > 1 we can use the values of Ck, Bk to

determine which of tb and tc is larger. Proceeding similarly, we may determine

the relative ranking of ta, tb, and tc. Without loss of generality, we therefore

assume

0 ≤ ta ≤ tb ≤ tc

for the remainder of this proof. Note however that if ta = 0, then tb > 0, by

our assumption on model parameters that no two taxa be total-edge-length-

distance 0 apart.

Observe that

L−1
α (Dijj) + L−1

α (Djij) = L−1
α (Aj) + L−1

α (Bj) + L−1
α (Ci),
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or, using the formula for Lα and letting β = 1/α,

D−β
ijj + D−β

jij −A−β
j −B−β

j − C−β
i + 1 = 0. (10)

Since j ≥ i > 1, we have that λj ≤ λi < 0. Because Lα is an increasing

function, and 0 ≤ ta ≤ tb ≤ tc, with tb > 0, this implies

Ci ≥ Aj ≥ Dijj , and

Ci ≥ Bj > Djij .

Thus applying Lemma 2 to equation (10), with

a = Aj , b = Bj , c = Ci, d1 = Dijj , d2 = Djij ,

we find β is uniquely determined, so α = 1/β is identifiable.

Once α is known, for every k we may determine the quantities

λk(ta + tb) = L−1
α (Ck),

λk(ta + tc) = L−1
α (Bk),

λk(tb + tc) = L−1
α (Ak).

Thus we may determine the ratio between any two eigenvalues λk. As U is

known, this determines Q up to scaling. Since we have required a normalization

of Q, this means Q is identifiable. With the λk now determined, we can find

ta + tb, ta + tc and tb + tc, and hence ta, tb, tc.

5. Exceptional cases (κ = 4)

In the previous section, identifiability was proved under the assumption that

νijj 6= 0 for some j ≥ i > 1. We now specialize to the case of κ = 4, and

determine those GTR parameters for which none of these conditions holds. In

the subsequent section, we will use this information to argue that even in these

exceptional cases the GTR+Γ model is identifiable.
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Note that while we work only with a 4-state model appropriate to DNA,

the approach we use may well apply for larger κ, though one should expect

additional exceptional subcases to appear.

Lemma 3. For κ = 4, consider a choice of GTR parameters for which νijj = 0

for all j ≥ i > 1. Then, up to permutation of the states and multiplication of

some columns of U by −1, the distribution vector π and eigenvector matrix U

satisfy one of the two following sets of conditions:

Case A: π = (1/4, 1/4, 1/4, 1/4), and for some b, c ≥ 0 with b2 + c2 = 2,

U =




1 c b 1

1 −c −b 1

1 −b c −1

1 b −c −1




Case B: π = (1/8, 1/8, 1/4, 1/2), and

U =




1 2
√

2 1

1 −2
√

2 1

1 0 −√2 1

1 0 0 −1




Proof. We use the notation of Proposition 2, including the inner product

and definition of vectors Wij given in its proof. Orthogonality and lengths will

always be with respect to that inner product.

We will repeatedly use that for i, j with 1 < i ≤ j,

〈Wjj , Ui〉 = νijj = 0.

In particular, setting j = 4, we find W44 is orthogonal to U2, U3, U4, and

hence is a multiple of U1 = 1. This implies

U4 = (±1,±1,±1,±1),
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since U4 has length 1. Without loss of generality, by possibly permuting the

rows of U (which is equivalent to changing the ordering of the states in writing

down the rate matrix Q), and then possibly multiplying U4 by −1, we need

now only consider two cases: either

Case A: U4 = (1, 1,−1,−1), or

Case B: U4 = (1, 1, 1,−1).

We consider these two cases separately.

Case A: Since U1 = 1 and U4 = (1, 1,−1,−1), the orthogonality of U1 and U4

gives

π1 + π2 − π3 − π4 = 0.

Since
∑4

i=1 πi = 1, this tells us

π1 + π2 = 1/2, π3 + π4 = 1/2. (11)

Now since W33 is orthogonal to both U2 and U3, then W33 is a linear

combination of U1 and U4, and hence W33 = (b2, b2, c2, c2). Thus

U3 = (±b,±b,±c,±c).

Since U3 is orthogonal to both U1 and U4, it is orthogonal to their linear com-

binations, and in particular to (1, 1, 0, 0) and (0, 0, 1, 1). Thus, by permuting

the first two entries of the Ui, and also permuting the last two entries of the

Ui, if necessary, we may assume

U3 = (b,−b, c,−c)

with b, c ≥ 0. This orthogonality further shows

bπ1 − bπ2 = 0, cπ3 − cπ4 = 0.

Thus

π1 = π2, or b = 0,
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and

π3 = π4, or c = 0.

In light of equations (11), we have

π1 = π2 = 1/4, or b = 0,

and

π3 = π4 = 1/4, or c = 0.

In any of these cases, U3 has length 1 so

b2(π1 + π2) + c2(π3 + π4) = 1.

Together with equations (11) this gives that

b2 + c2 = 2.

Now since U2 is orthogonal to U1, U3, U4, we must have that

U2 = a(c/π1,−c/π2,−b/π3, b/π4)

for some a, and we may assume a > 0. But the length of U2 is 1, and U2 is

orthogonal to W22, so

c2/π1 + c2/π2 + b2/π3 + b2/π4 = 1/a2, (12)

c3/π2
1 − c3/π2

2 − b3/π2
3 + b3/π2

4 = 0. (13)

If neither of b, c is zero, so all πi = 1/4, then equation (12) tells us a = 1/4,

as the statement of the theorem claims.

If b = 0, then we already know c =
√

2, and π3 = π4 = 1/4. But equation

(13) implies π1 = π2, so these are also 1/4. We then find from equation (12)

that a = 1/4, and we have another instance of the claimed characterization of

case A. Similarly, if c = 0 we obtain the remaining instance.
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Case B: Since U1 = 1 and U4 = (1, 1, 1,−1), the orthogonality of U1 and U4

implies

π1 + π2 + π3 − π4 = 0.

Now W33 is orthogonal to U2 and U3, and hence is a linear combination of

U1 and U4. Thus W33 = (b2, b2, b2, c2), so

U3 = (±b,±b,±b, c).

But U3 is orthogonal to both U1 and U4, and hence orthogonal to their linear

combinations, including (0, 0, 0, 1) and (1, 1, 1, 0). This shows c = 0 and that

(possibly by permuting the first three rows of U , and multiplying U3 by −1)

we may assume U3 = b(1, 1,−1, 0) for some b > 0. Orthogonality of U3 and U1

then shows

π1 + π2 − π3 = 0.

Also W22 is orthogonal to U2, and hence is a linear combination of U1, U3, U4,

so W22 = (d2, d2, e2, f2). Thus

U2 = (±d,±d, e, f).

However, since U2 is orthogonal to U1, U3, U4, it is orthogonal to (0, 0, 0, 1),

(0, 0, 1, 0), and (1, 1, 0, 0). Thus we may assume U2 = d(1,−1, 0, 0) with d > 0.

Finally, orthogonality of U2 and U1 implies

π1 − π2 = 0.

All the above equations relating the πi, together with the fact that
∑4

i=1 πi =

1 gives

π = π1(1, 1, 2, 4) = (1/8, 1/8, 1/4, 1/2).

We can now determine the Ui exactly, using that they must have length 1,

to show U is as claimed.
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6. Identifiability in the exceptional cases (κ = 4)

We now complete the proof of Theorem 1 by showing identifiability in cases

A and B of Lemma 3. We do this by first establishing some inequalities for the

eigenvalues of Q that must hold in each of these cases, using the assumption

that the off-diagonal entries of Q are positive.

Note that as U−1 = UT diag(π), and the entries of π are positive, the

positivity of the off-diagonal entries of Q is equivalent to the positivity of the

off-diagonal entries of the symmetric matrix

Q̃ = U diag(0, λ2, λ3, λ4)UT .

Lemma 4. For κ = 4, let 0 = λ1 > λ2 ≥ λ3 ≥ λ4 denote the eigenvalues of a

GTR rate matrix Q. Then the following additional inequalities hold in cases A

and B of Lemma 3:

Case A: If bc 6= 0, then λ4 > λ2 + λ3, while if bc = 0, then λ4 > 2λ2.

Case B: λ4 > 2λ2.

Proof. For case A, one computes that

Q̃ =




∗ −λ2c
2 − λ3b

2 + λ4 −λ2bc + λ3bc− λ4 λ2bc− λ3bc− λ4

∗ ∗ λ2bc− λ3bc− λ4 −λ2bc + λ3bc− λ4

∗ ∗ ∗ −λ2b
2 − λ3c

2 + λ4

∗ ∗ ∗ ∗




where the stars indicate quantities not of interest. From the positivity of the

(1,2) and (3,4) entries of Q̃, we thus know

λ4 > max(λ2c
2 + λ3b

2, λ2b
2 + λ3c

2) ≥ (λ2c
2 + λ3b

2) + (λ2b
2 + λ3c

2)
2

.

Since b2 + c2 = 2, this shows λ4 > λ2 + λ3. In the case when bc = 0, so

(b, c) = (0,
√

2) or (
√

2, 0), the first inequality gives the stronger statement of

the proposition.
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For case B,

Q̃ =




∗ −4λ2 + 2λ3 + λ4 −2λ3 + λ4 −λ4

∗ ∗ −2λ3 + λ4 −λ4

∗ ∗ ∗ −λ4

∗ ∗ ∗ ∗




From the positivity of the off-diagonal entries, we see that

λ4 > 2λ3, λ4 + 2λ3 > 4λ2.

Together, these imply that λ4 > 2λ2.

We now return to proving identifiability for the exceptional cases. As in the

proof of Theorem 2, we may determine the relative rankings of ta, tb and tc,

and therefore assume

0 ≤ ta ≤ tb ≤ tc,

with tb > 0.

In case A, we find that ν234 = bc, so we break that case into two subcases,

Case A1: if b, c 6= 0; and

Case A2: if b or c = 0.

Case A1: In this case, we find that νijk 6= 0 for all distinct i, j, k > 1. Letting

D342 = Lα(λ3ta + λ4tb + λ2tc),

D423 = Lα(λ4ta + λ2tb + λ3tc).

and Ak, Bk, Ck be as in the proof of Theorem 2, observe that

L−1
α (D342) + L−1

α (D423) = L−1
α (A2) + L−1

α (B3) + L−1
α (C4).

Setting β = 1/α and using the explicit formula for Lα yields

D−β
342 + D−β

423 −A−β
2 −B−β

3 − C−β
4 + 1 = 0. (14)
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Note that by Proposition 1 all constants in this equation, except possibly β,

are uniquely determined by the joint distribution.

In preparation for applying Lemma 2, we claim that the following inequalities

hold:

D342 ≤ A2, (15)

D423 < B3, (16)

D342 < C4, (17)

D423 < C4. (18)

Inequalities (15,16) follow easily from the fact that Lα is increasing. For

inequality (17), note first that λ3ta + λ4tb + λ2tc ≤ (λ2 + λ3)ta + λ4tb. But

Lemma 4 indicates λ2 + λ3 < λ4, so, again using that Lα is increasing, the

claim follows. Inequality (18) is similarly shown to hold.

Finally, to apply Lemma 2, let d1 = D342, d2 = D423. The remainder of the

constants in the lemma are chosen in one of three ways, depending on which of

A2, B3, C4 is largest:

If C4 ≥ A2, B3, then let a = A2, b = B3, c = C4.

If A2 ≥ C4, B3, then let a = C4, b = B3, c = A2.

If B3 ≥ C4, A2, then let a = A2, b = C4, c = B3.

Thus in all subcases, from equation (14) we find that β > 0 is uniquely

determined.

The remainder of the proof now proceeds exactly as for Theorem 2.

Cases A2 and B: In both of these cases ν224 6= 0, so, similarly to the previous

case, letting

D422 = Lα(λ4ta + λ2tb + λ2tc),

D242 = Lα(λ2ta + λ4tb + λ2tc),

leads to

D−β
422 + D−β

242 − C−β
4 −A−β

2 −B−β
2 + 1 = 0. (19)
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By Proposition 1, we know all quantities in this equation except possibly β are

uniquely determined from the joint distribution.

We also note the following inequalities hold:

A2 ≤ B2, (20)

D422 ≤ A2, (21)

D242 < B2, (22)

D242 < C4. (23)

Inequalities (20–22) are implied by the fact the Lα is increasing. Inequality

(23) will follow from λ2(ta + tc) < λ4ta. However, λ2(ta + tc) ≤ 2λ2ta < λ4ta

by Lemma 4.

To apply Lemma 2, let d1 = D422 and d2 = D242. In light of inequality (20),

we need assign the remaining constants according to only two cases:

If C4 ≥ B2, let a = A2, b = B2, and c = C4.

If B2 ≥ C4, let a = A2, b = C4, and c = B2.

In both cases, we find β is uniquely determined, and the the proof of identifia-

bility can be completed as in Theorem 2.

Thus identifiability of the GTR+Γ model when κ = 4 is established for all

cases.

7. Open problems

Many questions remain on the identifiability of phylogenetic models, includ-

ing those commonly used for data analysis.

Perhaps the most immediate one is the identifiability of the GTR+Γ+I

model. Despite its widespread use in inference, no proof has appeared that the

tree topology is identifiable for this model, much less its numerical parameters.

Although our algebraic arguments of Section 3 apply, analogs for GTR+Γ+I of

the analytic arguments we gave for GTR+Γ are not obvious. While the Γ rate
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distribution has only one unknown parameter, Γ+I has two, and this increase in

dimensionality seems to be at the heart of the difficulty. Interestingly, empirical

studies [14] have also shown that these parameters can be difficult to tease apart,

as errors in their inferred values can be highly correlated in some circumstances.

Although we conjecture that GTR+Γ+I is identifiable for generic parameters,

we make no guess as to its identifiability for all parameters.

For computational reasons, standard software packages for phylogenetic in-

ference implement a discretized Γ distribution [17], rather than the continuous

one dealt with in this paper. While results on continuous distributions are

suggestive of what might hold in the discrete case, they offer no guarantee.

It would therefore also be highly desirable to have proofs of the identifiability

of the discretized variants of GTR+Γ and GTR+Γ+I, either for generic or all

parameters. Note that such results might depend on the number of discrete

rate classes used, as well as on other details of the discretization process. So

far the only result in this direction is that of [1] on the identifiability of the tree

parameter, for generic numerical parameter choices when the number of rate

classes is less than the number of observable character states (e.g., at most 3

rate classes for 4-state nucleotide models, or at most 60 rate classes for 61-state

codon models). As the arguments in that work use no special features of a

Γ distribution, or even of an across-site rate variation model, we suspect that

stronger claims should hold when specializing to a particular form of a discrete

rate distribution.

Finally, we mention that beyond [1], almost nothing is known on identifia-

bility of models with other types of heterogeneity, such as covarion-like models

and general mixtures. As these are of growing interest for addressing biological

questions [5, 10, 7], much remains to be understood.
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Appendix A. The gaps in Rogers’ proof

Here we explain the gaps in the published proof of Rogers [11] that the

GTR+Γ+I model is identifiable. Since that paper has been widely cited and

accepted as correct, our goal is to clearly indicate where the argument is flawed,

and illustrate, through some examples, the nature of the logical gaps.

We emphasize that we do not prove that the gaps in the published argument

cannot be bridged. Indeed, it seems most likely that the GTR+Γ+I model is

identifiable, at least for generic parameters, and it is possible a correct proof

might follow the rough outline of [11]. However, we have not been able to

complete the argument Rogers attempts. Our own proof of the identifiability

of the GTR+Γ model presented in the body of this paper follows a different

line of argument.

We assume the reader of this appendix will consult [11], as pinpointing the

flaws in that paper requires rather technical attention to the details in it.

A.1. Gaps in the published proof

There are two gaps in Rogers’ argument which we have identified. In this

section we indicate the locations and nature of these flaws, and in subsequent

ones we elaborate on them individually.

The first gap in the argument occurs roughly at the break from page 717 to

page 718 of the article. To explain the gap, we first outline Rogers’ work leading

up to it. Before this point, properties of the graph of the function ν−1(µ(x))

have been carefully derived. An example of such a graph, for particular values

of the parameters α, a, π, p occurring in the definitions of ν and µ, is shown in

Figure 2 of the paper. For these parameter values and others, the article has

carefully and correctly shown that for x ≥ 0 the graph of ν−1(µ(x))

1. is increasing,

2. has a single inflection point, where the graph changes from convex to

concave (i.e, the concavity changes from upward to downward),
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3. has a horizontal asymptote as x →∞.

Although the article outlines other cases for different ranges of the parameter

values, Rogers highlights the case when these three properties hold.

At the top of page 718 of the article, Figure 3 is presented, plotting the

points whose coordinates are given by the pairs (ν−1(µ(τ1λi)), ν−1(µ(τ2λi)))

for all λi ≥ 0. Here τ2 > τ1 are particular values, while α, a, π, p are given the

values leading to Figure 2. Rogers points out that “As in Figure 2, the graph

[of Figure 3] has an inflection point, is concave upwards before the inflection

point, and is concave downwards after the inflection point.” Then he claims

that “Similar graphs will be produced for any pair of path distances such that

τ2 > τ1.” However, he gives no argument for this claim. As the remainder of the

argument strongly uses the concavity properties of the graph of his Figure 3 (in

the second column on page 718 the phrase “. . . as shown by Figure 3” appears),

without a proof of this claim the main result of the paper is left unproved.

Judging from the context in which it is placed, a more complete statement

of the unproved claim would be that for any values of α, a, π, p resulting in a

graph of ν−1(µ(x)) with the geometric properties of Figure 2, and any τ2 > τ1,

the graph analogous to Figure 3 has a single inflection point. As no argument

is given to establish the claim, we can only guess what the author intended

for its justification. From what appears earlier in the paper, it seems likely

that the author believed the three geometric properties of the graph in Figure

2 enumerated above implied the claimed properties of Figure 3. However, that

is definitely not the case, as we will show in Section A.2 below.

Note that we do not assert that the graphs analogous to Figure 3 for various

parameter values are not as described in [11]. While plots of them for many

choices of parameter values certainly suggest that Rogers’ claim holds, it is of

course invalid to claim a proof from examples. Moreover, with 4 parameters

α, a, π, p to vary, it is not clear how confident one should be of even having

explored the parameter space well enough to make a solid conjecture. In light
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of the example we give in Section A.2, justifying Rogers’ claim would require a

much more detailed analysis of the functions ν and µ than Rogers attempts.

If this first gap in the proof were filled, a second problem would remain.

Though less fundamental to the overall argument, this gap would mean that

identifiability of the model would be established for generic parameters, but

that there might be exceptional choices of parameters for which identifiability

failed. (‘Generic’ here can be taken to mean for all parameters except those

lying in a set of Lebesgue measure zero in parameter space. More informally,

for any reasonable probability distribution placed on the parameter space,

randomly-chosen parameters will be generic.)

Although the origin of this problem with non-generic parameters is clearly

pointed out by Rogers, it is open to interpretation whether he attempts to

extend the proof to all parameter values at the very end of the article. However,

as the abstract and introductory material of [11] make no mention of the issue,

this point at the very least seems to have escaped many readers attention.

This gap occurs because the published argument requires that the non-zero

eigenvalues of the GTR rate matrix Q be three distinct numbers. On page

718, at the conclusion of the main argument, it is stated that “Therefore, if the

substitution rate matrix has three distinct eigenvalues, the parameters of the

I+Γ rate heterogeneity will be uniquely determined.” The author then goes on

to point out that for the Jukes-Cantor and Kimura 2-parameter models this

assumption on eigenvalues is violated, but “[f]or real data sets, however, it is

unlikely that any two or all three of the eigenvalues will be exactly identical.”

Leaving aside the question of what parameters one might have for a model

which fits a real data set well, Rogers here clearly indicates that his proof of

identifiability up to this point omits some exceptional cases. In the concluding

lines of the paper, he points out that these exceptional cases can be approxi-

mated arbitrarily closely by parameters with three distinct eigenvalues. While

this is true, such an observation cannot be used to argue that the exceptional
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cases are not exceptional, as we will discuss below in Section A.3. It is unclear

whether the concluding lines of [11] were meant to ‘fill the gap’ or not.

Of course, one might not be too concerned about exceptional cases. Indeed,

if the first flaw were not present in his argument, then Rogers’ proof would

still be a valuable contribution in showing that for ‘most’ parameter values

identifiability held. One might then look for other arguments to show identifi-

ability also held in the exceptional cases. Nonetheless, it is disappointing that

the exceptional cases include models such as the Jukes-Cantor and Kimura 2-

parameter that are well-known to biologists and might be considered at least

reasonable approximations of reality in some circumstances.

A.2. A counterexample to the graphical argument

It seems that the origin of the first flaw in Rogers’ argument is in a belief

that the three enumerated properties he proves are exhibited in his Figure 2

result in the claimed properties of his Figure 3. In this section, we show this

implication is not valid, by exhibiting a function whose graph has the three

properties, but when the graph analogous to Figure 3 is constructed, it has

multiple inflection points.

Let

f(x) =
∫ x

0
exp

(
exp

(−10(t− 1)2
)− (1− t)2

10

)
dt.

Then f(0) = 0, and

f ′(x) = exp
(

exp
(−10(x− 1)2

)− (1− x)2

10

)
,

so f ′(x) > 0 and f is increasing. Furthermore, one sees that f ′(x) decays

quickly enough to 0 as x → ∞, so that f(x) has a horizontal asymptote as

x →∞.

To see that f(x) has a single inflection point where the graph passes from

convex to concave, it is enough to show f ′(x) has a unique local maximum and

no local minima. But this would follow from g(x) = ln(f ′(x)) having a unique
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local maximum and no local minima. Since

g(x) = exp
(−10(x− 1)2

)− (1− x)2

10
,

and the two summands here have unique local maxima at x = 1 and no local

minima, g must as well. Thus f exhibits the enumerated properties of Rogers’

Figure 2. For comparison, we graph f in our Figure 2 below.

0

1

2

3

4

2 4 6 8 10

Figure 2: The graph y = f(x).

The analog of Figure 3 for the function f would show the points (f(τ1x), f(τ2x)).

If we choose τ1 = 1, τ2 = 2, we obtain the graph shown in our Figure 3.

Obviously, the curve in Figure 3 has multiple — at least three — inflection
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Figure 3: The points (f(x), f(2x)).

points. Although we will not give a formal proof here that this curve has

multiple inflection points, it is not difficult to do so.

A.3. Identifiability for generic parameters vs. all parameters

The second gap in Rogers’ argument arises because it is possible to have

identifiability for generic parameters, but not for all parameters. Even if

identifiability of generic parameters has been proved, then one cannot easily
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argue that identifiability must hold for the non-generic, exceptional cases as

well. To illustrate this, we give a simple example.

Consider the map φ : R2 → R2, defined by

φ(a, b) = (a, ab) .

Here a, b play the roles of ‘parameters’ for a hypothetical model, whose ‘joint

distribution’ is given by the vector-valued function φ.

Suppose (x, y) is a particular distribution which arises from the model (i.e.,

is in the image of φ), and we wish to find a, b such that φ(a, b) = (x, y). Then

provided x 6= 0 (or equivalently a 6= 0), it is straightforward to see that a, b

must be given by the formulas

a = x, b = y/x.

Thus for generic a, b (more specifically, for all (a, b) with a 6= 0) this hypothetical

model is identifiable.

Notice, however, that if (x, y) = (0, 0), the situation is quite different. From

x = 0, we see that we must have a = 0. But since φ(0, b) = (0, 0), we find that

all parameters of the form (0, b) lead to the same distribution (0, 0). Thus these

exceptional parameters are not identifiable. Therefore, we have identifiability

precisely for all parameters in the 2-dimensional ab-plane except those lying on

the 1-dimensional line where a = 0. These exceptional parameters, forming a

set of lower dimension than the full space, have Lebesgue measure zero within

it.

Notice that even though there are parameter values arbitrarily close to the

exceptional ones (0, b) which are identifiable (for instance, (ε, b) for any small

ε 6= 0), it is invalid to argue that the parameters (0, b) must be identifiable as

well.

This example shows that even if the first flaw in the argument of [11] were

repaired, the approach outlined there will at best give identifiability for generic
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parameters. The final lines of that paper are not sufficient to prove identifia-

bility for all parameter values.

Obviously the function φ given here could not really be a joint distribution for

a statistical model, since the entries of the vector φ(a, b) do not add to one, nor

are they necessarily non-negative. However, these features can be easily worked

into a more complicated example. If one prefers a less contrived example, then

instances of generic identifiability of parameters but not full identifiability occur

in standard statistical models used outside of phylogenetics (for instance, in

latent class models). We have chosen to give this simpler example to highlight

the essential problem most clearly.


