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Abstract

The general Markov plus invariable sites (GM + I) model of biological sequence evolution is a two-class
model in which an unknown proportion of sites are not allowed to change, while the remainder undergo
substitutions according to a Markov process on a tree. For statistical use it is important to know if the
model is identifiable; can both the tree topology and the numerical parameters be determined from a joint
distribution describing sequences only at the leaves of the tree? We establish that for generic parameters
both the tree and all numerical parameter values can be recovered, up to clearly understood issues of ‘label
swapping’. The method of analysis is algebraic, using phylogenetic invariants to study the variety defined by
the model. Simple rational formulas, expressed in terms of determinantal ratios, are found for recovering
numerical parameters describing the invariable sites.
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1. Introduction

If a model of biological sequence evolution is to be used for phylogenetic inference, it is essen-
tial that the model parameters of interest – certainly the tree parameter and usually the numerical
parameters – be identifiable from the joint distribution of states at the leaves of the tree. Though
often unstated, the assumption that model parameters are identifiable underlies the use of both
Maximum Likelihood and Bayesian inference methods; identifiability of parameters is prerequi-
site to establishing statistical consistency of these methods. As increasingly complicated models,
incorporating across-site rate variation, covarion structure, or other types of mixtures, are imple-
mented in software packages, there is a real possibility that non-identifiability could confound
data analysis. Unfortunately, our theoretical understanding of this issue lags well behind current
phylogenetic practice.

One natural approach to proving the identifiability of the tree topology relies on the definition
of a phylogenetic distance for the model, and the 4-point condition of Buneman [1]. For instance,
Steel [2] used the log-det distance to establish the identifiability of the tree topology under the gen-
eral Markov model and its submodels. Such a distance-based argument shows additionally that 2-
marginalizations of the full joint distribution suffice to recover the tree parameter, since distances
require only two-sequence comparisons. Once the tree has been identified, the numerical param-
eters giving rise to a joint distribution for the general Markov model can be determined by an
argument of Chang [3].

While distance measures have been developed for GTR models with rate variation [4,5], these
require that one know the rate distribution completely, and identifiability of the rate distribution
itself has yet to be addressed. Identifiability of the popular GTR + I + C model of sequence evo-
lution was considered in [6], but there are significant gaps in the argument of that paper, as was
pointed out to us by Ané [7]. Thus, for general mixture models, and even rates-across-sites models
where no appropriate definition of a distance is known, proving the identifiability of the tree
parameter requires a different approach.

The alternative viewpoint of algebraic geometry is used in [8], to show the generic identifiability
of the tree parameter for the covarion model of [9] and for certain mixture models with a small
number of classes. Though this result is far more general than previous identifiability results, it
still fails to cover the type of rate-variation models currently in common use for data analysis,
and does not address identifiability of numerical parameters at all. Much more study of the iden-
tifiability question is needed.

In this paper, we focus on the general Markov plus invariable sites, GM + I, model of
sequence evolution, a model that encompasses the GTR + I model that is of more
immediate interest to practitioners. Note that previous work on GM + I by Baake [10]
focused on non-identifiability. In that paper parameter choices for the 2-state GM + I
model on two distinct 4-taxon trees are constructed that give rise to the same pairwise
joint distributions (2-marginals). As both sets of parameters have 50% invariable
sites, this shows that the identifiability of the tree parameter cannot generally hold on
the basis of 2-sequence comparisons, even if the distribution of rate factors is known.
Furthermore, it implies that a well-behaved phylogenetic distance (computed from 2-mar-
ginals) cannot be defined for this model, as existence of such a distance would imply tree
identifiability.
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Here we prove that all parameters for the GM + I model are indeed identifiable, through 4-se-
quence comparisons. By identifiable, we mean generically identifiable in a geometric sense: for a
fixed tree, the set of numerical parameters for which the joint distribution could have arisen from
either (a) a different tree, or (b) a ‘significantly different’ (in a sense to be made clear later) choice
of numerical parameters on the same tree, is of strictly lower dimension than that of the full
numerical parameter space. (For a concrete example of generic identifiability, recall the results
of Steel and Chang on the general Markov model: assumptions that the Markov edge matrices
Me have determinant 5 0,1 and that the distribution of states at the root has strictly positive en-
tries ensure identifiability of all parameters. These are generic conditions.) Thus for natural prob-
ability distributions on the parameter space, with probability one a choice of parameters is
generic.

Although identifiability of the tree parameter for GM + I follows from more general results in
[8], that paper did not consider identifiability of numerical parameters. Our arguments here are
tailored to GM + I and yield stronger results addressing numerical parameters as well as the tree.
Our approach is again based on the determination of phylogenetic invariants for the model. While
the invariants described in [8] are invariants for more general models than GM + I, the ones given
in this paper apply only to GM + I and its submodels, and are of much lower degree.

As a byproduct of the development of these GM + I invariants, we are led to rational formulas
for recovering all the parameters related to the invariable sites (proportion of invariable sites and
stationary distribution of these invariable sites) from a joint distribution. Indeed, these formulas
are crucial to our identification of numerical parameters.

These formulas can be viewed as GM + I analogs of the formulas for the proportion of invari-
able sites in group-based + I models that were found by the capture–recapture argument of [11].
In the group-based setting, those formulas were developed into a heuristic means of estimating the
proportion of invariable sites from data without performing a full tree inference. This has been
implemented in SplitsTree4 [12]. At this time, it remains unclear whether a useful heuristic
can be found for the formulas presented in this paper.

Recently, Jayaswal et al. [13] have described a software implementation for maximum likeli-
hood estimation under the GM + I model under consideration here. We refer to that paper for
remarks on the features of the model that make it an attractive one for certain biological data sets.

Since our algebraic methods at times employ computational commutative algebra software
packages, and these tool are not commonly used in the phylogenetics literature, we have included
sample code in Appendix A.

2. The GM + I model

Let T denote an n-taxon tree, by which we mean a tree with n leaves labeled by the taxa
a1; a2; . . . ; an and all internal vertices of valence at least 3. We say T is binary if all internal nodes
have valence exactly 3.

We begin by describing the parameterization of the j-state GM + I model of sequence evolu-
tion along T ;where j ¼ 4 corresponds to usual models of DNA evolution. The class size param-
eter d denotes the probability that any particular site in a sequence is invariable: conceptually, the
flip of a biased coin weighted by d determines if a site is allowed to undergo state transitions. If a
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site is invariable, it is assigned state i 2 ½j� ¼ f1; 2; . . . ; jg with probability pIðiÞ. Here
pI ¼ ðpIð1Þ; . . . ; pIðjÞÞ is a vector of non-negative numbers summing to 1 giving the state distribu-
tion for invariable sites.

All sites that are not invariable mutate according to a common set of parameters for the GM
model, though independently of one another. For these sites, we associate to each node (including
leaves) of T a random variable with state space ½j�. Choosing any node r of T to serve as a root,
and directing all edges away from r, let T r denote the resulting directed tree T. A root distribution
vector pGM ¼ ðpGMð1Þ; . . . ; pGMðjÞÞ, with non-negative entries summing to 1, has entries pGMðjÞ
specifying the probability that the root variable is in state j. For each directed edge
e ¼ ðv! wÞ of T r, let Me be a j� j Markov matrix, so that Meði; jÞ specifies the conditional
probability that the variable at w is in state j given that the variable at v is in state i. Thus entries
of all Me are non-negative, with rows summing to 1.

For the GM + I model on an n-taxon tree T with edge set E, the stochastic parameter space
S � ½0; 1�N is of dimension N ¼ 1þ ðj� 1Þ þ ðj� 1Þþ j E j jðj� 1Þ ¼ 2j� 1þ j E j jðj� 1Þ.
The parameterization map giving the joint distribution of the variables at the leaves of T is de-
noted by

/T : S ! ½0; 1�j
n

;

s 7!P :

We view P as an n-dimensional j� . . .� j array, with dimensions corresponding to the ordered
taxa a1; a2; . . . ; an, and with entries indexed by the states at the leaves of T. The entries of P are
polynomial functions in the parameters s explicitly given by

Pði1; . . . ; inÞ ¼ d�ði1; i2; . . . inÞpIði1Þ þ ð1� dÞ
X
ðjvÞ2H

pGMðjrÞ
Y

e

Meðjvi
; jvf
Þ

 !
: ð1Þ

Here �ði1; i2; . . . inÞ is 1 if all ij are equal and 0 otherwise, the product is taken over all edges
e ¼ ðvi ! vf Þ 2 E, and the sum is taken over the set of all possible assignments of states to nodes
of T extending the assignment ði1; . . . ; inÞ to the leaves: if V is the set of vertices of T then

H ¼ fðjvÞ 2 ½j�
jV jjjv ¼ ik if v is a leaf labeled by akg:

For notational ease, the entries of P, the pattern frequencies, are also denoted by
pi1...in ¼ P ði1; . . . ; inÞ.

We note that while a root r was chosen for the tree in order to explicitly describe the GM por-
tion of the parameterization of our model, the particular choice of r is not important. Under mild
additional restrictions on model parameters, changing the root location corresponds to a simple
invertible change of variables in the parameterization. (See [14,15], or [16] for details.) This justi-
fies our slight abuse of language in referring to the GM or GM + I model on T, rather than on T r,
and we omit future references to root location.

Note that Eq. (1) allows us to more succinctly describe any P 2 Imð/T Þ as

P ¼ ð1� dÞP GM þ dP I; ð2Þ
where P GM is an array in the image of the GM parameterization map on T and P I ¼ diagðpIÞ is an
n-dimensional array whose off-diagonal entries are zeros and whose diagonal entries are those of pI.
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3. Model identifiability

We now make precise the various concepts of identifiability of a phylogenetic model. To adapt
standard statistical language to the phylogenetic setting, for a fixed set A of n taxa and j P 2,
consider a collection M of pairs ðT ;/T Þ;where T is an n-taxon tree with leaf labels
A; and /T : ST ! ½0; 1�j

n

is a parameterization map of the joint distribution of pattern frequencies
for the model on T. We say the tree parameter is identifiable for M if for every
P 2 [ðT ;/T Þ2MImð/T Þ, there is a unique T such that P 2 Imð/T Þ. We say that numerical parameters
are identifiable on a tree T if the map /T is injective, that is if for every P 2 Imð/T Þ there is a un-
ique s 2 ST with /T ðsÞ ¼ P . We say the model M is identifiable if the tree parameter is identifiable,
and for each tree the numerical parameters are identifiable.

It is well known that such a definition of identifiability is too stringent for phylogenetics.
First, unless one restricts parameter spaces, there is little hope that the tree parameter be iden-
tifiable: one need only think of any standard model on a binary 4-taxon tree in which the
Markov matrix parameter on the internal edge is the identity matrix. Any joint distribution
arising from such a parameter choice could have as well arisen from any other 4-taxon tree
topology.

Even if such ‘special’ parameter choices are excluded so the tree parameter becomes identifiable,
identifiability of numerical parameters also poses problems, as noted by Chang [3]. For example,
consider the 3-taxon tree with the GM model. Then multiple parameter choices give rise to the
same joint distribution since the labeling of the states at the internal node can be permuted in
j! ways, as long as the Markov matrix parameters are adjusted accordingly [15]. The occurrence
of this sort of ‘label-swapping’ non-identifiability in statistical models with hidden (unobserved)
variables is well known, but is not of great concern. However, even for this model more subtle
forms of non-identifiability can occur, in which infinitely many parameter choices lead to the same
joint distribution. These arise from singularities in the model, and can be avoided by again
restricting parameter space. Such ‘generic’ conditions for the GM model have already been men-
tioned in the introduction.

We therefore refine our notions of identifiability. Because we are concerned primarily with
model where the maps /T are given by polynomials, we give a formulation appropriate to that
setting. Recall that given any collection F of polynomials in N variables, their common zero set,

V ðFÞ ¼ fz 2 CN jf ðzÞ ¼ 0 for all f 2 Fg;
is the algebraic variety defined by F . If the algebraic variety is a proper subset of CN , then it is said
to be proper.

Definition 1. Let M be a model on a collection of n-taxon trees, as defined above.

(1) We say the tree parameter is generically identifiable for M if for each tree T there exists a
proper algebraic variety X T with the property that

P 2 [ðT ;/T Þ2M/T ðST n X T Þ implies P 2 /T ðST n X T Þ for a unique T :

(2) We say that numerical parameters are generically locally identifiable on a tree T if there is a
proper algebraic variety Y T such that for all s 2 ST n Y T , there is a neighborhood of s on which
/T is injective.

22 E.S. Allman, J.A. Rhodes / Mathematical Biosciences 211 (2008) 18–33
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(3) We say the model M is generically locally identifiable if the tree parameter is generically iden-
tifiable, and for each tree the numerical parameters are generically locally identifiable.

Note that the notion of ‘generic’ here is used to mean ‘for all parameters but those lying on
a proper subvariety of the parameter space,’ and such a variety is necessarily of lower dimen-
sion than the full parameter space. Using the standard measure on the parameter space,
viewed as a subset of RN , this notion thus also implies ‘for all parameters except those in a
set of measure 0’.

In the important special case of parameterization maps defined by polynomial formulas, such
as that for the GM + I model, generic local identifiability of numerical parameters is equivalent to
the notion in algebraic geometry of the map /T being generically finite. In this case, there exists a
proper variety Y T and an integer k, the degree of the map /T , such that restricted to ST n Y T the
map /T is not only locally injective but also k-to-1: that is, if s 2 ST n Y T and P ¼ /T ðsÞ, then the
fiber /�1

T ðPÞ has cardinality k.
Because of the label swapping issue at internal nodes, for the GM model and GM + I on an n-

taxon tree T with vertex set V, fibers of generic points will always have cardinality at least
j!ðj V j �nÞ. Thus for these models, the best we can hope for is generic local identifiability of
the model (both tree and numerical parameters) where the generic fiber has exactly this cardinal-
ity. That in fact is what we establish in the next section.

4. Generic identifiability for the GM + I model

We begin our arguments by determining some phylogenetic invariants for the GM + I model.
The notion of a phylogenetic invariant was introduced by Cavender and Felsenstein [17] and Lake
[18], in the hope that phylogenetic invariants might be useful for practical tree inference. Their role
here, in proving identifiability, is more theoretical but illustrates their value in analyzing models.

For a parameterization /T given by polynomial formulas on domain ST � RN , we may uniquely
extend to a polynomial map with domain CN , given by the same polynomial formulas, which we
again denote by /T : CN ! Cjn

.

Remark 2. Extending parameters to include complex values is solely for mathematical
convenience, as algebraic geometry provides the natural setting for our viewpoint. The collection
of stochastic joint distributions (arising from the original stochastic parameter space) is a proper
subset of Imð/T Þ.

The phylogenetic variety, V T , is the smallest algebraic variety in Cjn
containing /T ðCNÞ, i.e., the

closure of the image of /T under the Zariski topology,

V T ¼ Imð/T Þ � Cjn
:

Remark 3. V T coincides with the closure of Imð/T Þ ¼ /T ðCN Þ under the usual topology on CjN
.

However, while V T \ ½0; 1�j
n

contains the closure of /T ðST Þ under the usual topology, these need
not be equal.

E.S. Allman, J.A. Rhodes / Mathematical Biosciences 211 (2008) 18–33 23
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Let C½P � denote the ring of polynomials in the jn indeterminates fpi1...ing: Then the collection of
all polynomials in C½P � vanishing on V T forms a prime ideal IT . We refer to IT as a phylogenetic
ideal, and its elements as phylogenetic invariants. More explicitly, a polynomial f 2 C½P � is a phy-
logenetic invariant if, and only if, f ðP 0Þ ¼ 0 for every P 0 2 /T ðCjnÞ, or equivalently, if, and only
if, f ðP 0Þ ¼ 0 for every P 0 2 /T ðST Þ.

As we proceed, we consider first the special case of 4-taxon trees. We highlight the j ¼ 2 case, in
part to illustrate the arguments for general j more clearly, and in part because we can go further
in understanding the 2-state model.

Consider the 4-taxon binary tree T abjcd , with taxa a; b; c; d as shown in Fig. 1.
Suppose that P is a 2� 2� 2� 2 pattern frequency array, whose indices correspond to states

½2� ¼ f1; 2g at the taxa in alphabetical order. Then the internal edge e of T defines the split ab j cd
in the tree, and we define the edge flattening F e of P at e, a 22 � 22 matrix, by

F e ¼

p1111 p1112 p1121 p1122

p1211 p1212 p1221 p1222

p2111 p2112 p2121 p2122

p2211 p2212 p2221 p2222

0BBB@
1CCCA: ð3Þ

Notice that the rows of F e are indexed by the states at fabg and the columns by states at fcdg. The
flattening F e is intuitively motivated by considering a ‘collapsed’ model induced by e: taxa a and b
are grouped together forming a single variable fabg with 4 states, and the grouping fcdg forms a
second variable with 4 states.

This construction can be generalized in a natural way: suppose T is an n-taxon tree, and P a
j� � � � � j array with indices corresponding to the taxa labeling the leaves of T. Then for any
edge e in T, we can form from P the matrix F e of size jn1 � jn2 , where n1 and n2 are the cardinal-
ities of the two sets of taxa in the split induced by e.

From [16] (for a more expository presentation, see also [19]), we have:

Theorem 4. For the 2-state GM model on a binary n-taxon tree T, the phylogenetic ideal IT is
generated by all 3� 3 minors of all edge flattenings F e of P. Moreover, for the j-state GM model on
an n-taxon tree T, the phylogenetic ideal IT contains all ðjþ 1Þ � ðjþ 1Þ minors of all edge
flattenings of P.

Using this result, we can deduce some elements of the phylogenetic ideal for the GM + I model
for any number of taxa n P 4 and any number of states j P 2.

Proposition 5 (Phylogenetic invariants for GM + I).

a

b

c

d

Fig. 1. The 4-taxon tree T abjcd .

24 E.S. Allman, J.A. Rhodes / Mathematical Biosciences 211 (2008) 18–33
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(1) For the 4-taxon tree T abjcd and the 2-state GM + I model, the cubic determinantal polynomials

f1 ¼
p1112 p1121 p1122

p1212 p1221 p1222

p2112 p2121 p2122

�������
������� and f 2 ¼

p1211 p1212 p1221

p2111 p2112 p2121

p2211 p2212 p2221

�������
�������

are phylogenetic invariants. These are the two 3� 3 minors of the matrix flattening F abjcd of Eq.
(3) that do not involve either of the entries p1111 or p2222.

(2) More generally, for n P 4 and j P 2, consider the j-state GM + I model on an n-taxon tree
T. Then for each edge e of T, all ðjþ 1Þ � ðjþ 1Þ minors of the flattening F e of P that avoid all
entries pii...i; i 2 ½j� are phylogenetic invariants.

Proof. We prove the first statement in detail. From Eq. (2), for any P ¼ /T ðsÞ we have
P ¼ ð1� dÞP GM þ dP I; where P GM is a 4-dimensional table arising from the GM model
on T and P I ¼ diagðpIÞ is a diagonal table with entries giving the distribution of states for
the invariable sites. Flattening these tables with respect to the internal edge of the tree, we
obtain

F abjcd ¼ ð1� dÞF GMþ dF I ¼ ð1� dÞ

~p1111 ~p1112 ~p1121 ~p1122

~p1211 ~p1212 ~p1221 ~p1222

~p2111 ~p2112 ~p2121 ~p2122

~p2211 ~p2212 ~p2221 ~p2222

0BBB@
1CCCAþ d

pIð1Þ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 pIð2Þ

0BBB@
1CCCA:
ð4Þ

By Theorem 4, all 3� 3 minors of F GM vanish. Since the ‘upper right’ and ‘lower left’ minors of
F abjcd are the same as those of F GM, up to a factor of ð1� dÞ3, they also vanish.

Straightforward modifications to this argument give the general case. h

For arbitrary n;j, the GM + I model should have many other invariants than those found here.
Among these is, of course, the stochastic invariant

fsðPÞ ¼ 1�
X
i2½j�n

pi:

In the simplest interesting case of the GM + I model, however, we have the following computa-
tional result.

Proposition 6. The phylogenetic ideal for the 2-state GM + I model on the 4-taxon tree T abjcd of Fig.
1 is generated by fs and the minors f1; f2 above;

IT ¼ hfs; f1; f2i:

Proof. A computation of the Jacobian of the parameterization /T : S � C13 ! C24

shows it has
full rank at some points, and so V T is of dimension 13. If I ¼ hfs; f1; f2i; then I � IT . Another
computation shows that I is prime and of dimension 13. Thus, necessarily I ¼ IT . (The code
for these computations is given in Appendix A.) h

E.S. Allman, J.A. Rhodes / Mathematical Biosciences 211 (2008) 18–33 25
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Let V abjcd ; V acjbc; V adjbc be the varieties for the 2-state GM + I models for the three 4-taxon bin-
ary tree topologies, with corresponding phylogenetic ideals Iabjcd ; Iacjbd ; Iadjbc. Of course Proposi-
tion 6 gives generators for each of these ideals – two 3� 3 minors of the flattenings of P
appropriate to those tree topologies, along with fs. A computation (see Appendix A) shows that
these three ideals are distinct. Therefore the three varieties are distinct, and their pairwise inter-
sections are proper subvarieties. Thus for any parameters s not lying in the inverse image of these
subvarieties, T is uniquely determined from /T ðsÞ. Thus we obtain

Corollary 7. For the 2-state GM + I model on binary 4-taxon trees, the tree parameter is generically
identifiable.

As dimðV abjcdÞ ¼ 13, and the parameter space for /T is 13 dimensional, we also immediately
obtain that the map /T is generically finite. This yields

Corollary 8. For the 2-state GM + I model on a binary 4-taxon tree, numerical parameters are
generically locally identifiable.

Note that this approach does not yield the cardinality of the generic fiber of the parameteriza-
tion map, which is also of interest. We will return to this issue in Theorem 13.

Further computations show that dimðV abjcd \ V acjbd \ V adjbcÞ ¼ 11. As this intersection
contains all points arising from the GM + I model on the 4-taxon star tree, which is an
11-parameter model, this is not surprising. In fact, one can verify computationally that
the ideal Iabjcd þ Iacjbd þ Iadjbc is the defining prime ideal of the star-tree variety. We also note
that the ideal Iabjcd þ Iacjbd decomposes into two primes, both of dimension 11. Thus the
variety defined by this ideal has two components, one of which is the variety for the star
tree.

In principle, the ideal IT of all invariants for the GM + I model on an arbitrary tree T can be
computed from the parameterization map /T via an elimination of variables using Gröbner bases
[20]. However, if all invariants for the j-state GM model on T are known, they can provide an
alternate approach to finding IT which, while still proceeding by elimination, should be less com-
putationally demanding.

To present this most simply, we note that because our varieties lie in the hyperplane de-
scribed by the stochastic invariant, it is natural to consider their projectivizations, lying in
Pjn�1 rather than Cjn

. The corresponding phylogenetic ideals, which we denote by J T , are
generated by the homogeneous polynomials in IT , and do not contain the stochastic
invariant. Conversely, IT is generated by the elements of J T together with the stochastic
invariant.

In addition, we need not restrict ourselves to the GM model, but rather deal with any phylo-
genetic model parameterized by polynomials.

Proposition 9. Suppose ~/T : CN ! Cjn
is a parameterization map for some phylogenetic model M

on T, with corresponding homogeneous phylogenetic ideal eJ T . Let

/T : CN � Cj ! Cjn

be the parametrization map for the Mþ I model given by

/T ðs; ðd; pIÞÞ ¼ ð1� dÞ~/T ðsÞ þ ddiagðpIÞ:

26 E.S. Allman, J.A. Rhodes / Mathematical Biosciences 211 (2008) 18–33
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Let P 0 denote the collection of all indeterminate entries of P except those in P eq ¼ fpii...i j i 2 ½j�g.
Then the homogeneous phylogenetic ideal J T for the Mþ I model on T is JT ¼ ðeJ T \ C½P 0�ÞC½P �.
Thus JT can be computed from eJ T by elimination of the variables in P eq.

Proof. Extend the parameterization maps ~/T ;/T to parameterizations of cones by introducing an
additional parameter,

eUT ðs; tÞ ¼ t~/T ðsÞ;
UT ðs; ðd; pIÞ; tÞ ¼ t/T ðs; ðd; pIÞÞ:

Then ImðUT Þ ¼ Cj � projðImðeUT ÞÞ;where Cj corresponds to coordinates in P eq and ‘proj’ de-
notes the projection map from P-coordinates to P 0-coordinates. As J T is the ideal of polynomials
vanishing on ImðUT Þ; and eJ T \ C½P 0� the ideal vanishing on projðImðeUT ÞÞ, the result follows. h

Using this, in Appendix A we give an alternate computation to show both part (1) of Propo-
sition 5, and Proposition 6. While this computation is quite fast, a more naive attempt to find
GM + I invariants directly from the full parameterization map using elimination was unsuccess-
ful, demonstrating the utility of the proposition. Moreover, we can use this proposition to com-
pute all 2-state GM + I invariants on the 5-taxon binary tree as well. This leads us to

Conjecture 10. On an n-taxon binary tree, the ideal of homogeneous invariants for the 2-state
GM + I model is generated by those 3� 3 minors of edge flattenings that do not involve the variables
p11...1 and p22...2, together with the stochastic invariant.

Although we are unable to determine all GM + I invariants for the 4-taxon tree for general j,
using only those described in Proposition 5 we can still obtain identifiability results through a
modified argument.

Proposition 11. For the j-state GM + I model on binary 4-taxon trees, j P 2, the tree parameter is
generically identifiable.

Proof. By the argument leading to Corollary 7, it is enough to show the varieties
V abjcd ; V acjbd ; and V adjbc are distinct. Considering, for example, the first two, we can show that
the varieties V abjcd and V acjbd are distinct, by giving an invariant f 2 Iacjbd and a point
P 0 2 V abjcd such that f ðP 0Þ 6¼ 0.

Using Proposition 5, we pick an invariant f 2 Iacjbd as follows: in the flattening F acjbd according to
the split ac j bd, choose any collection of jþ 1 ac-indices with distinct a and c states, e.g.,
f12; 13; . . . ; 1j; 21; 23g. Using the same set as bd-indices, this determines a ðjþ 1Þ � ðjþ 1Þ-minor f.

We pick P 0 ¼ /T abjcd
ðsÞ using the parameterization of Eq. (1) by making a specific choice of

parameters s. On T abjcd , with the root r located at one of the internal nodes, choose parameters s
as follows: let pGM; pI be arbitrary but with all entries of pGM positive. Pick any d 2 ½0; 1Þ. For the
four terminal edges choose Me to be the j� j identity matrix Ij. For the single internal edge e of
T, choose any Markov matrix Me with all positive entries. For such parameters, the entries of the
joint distribution P 0 ¼ /T abjcd

ðsÞ are zero except for the pattern frequencies piijj, where the states at
the leaves a and b agree and the states at the leaves c and d agree. Since the entries of Me and the
root distributions are positive, each of the piijj > 0.
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But considering the flattening F acjbd of P 0 ¼ /T abjcd
ðsÞ with respect to the ‘wrong’ topology

T acjbd , we observe that the j2 non-zero entries piijj of F acjbd all lie on the diagonal of F acjbd ,
in the positions with ij as both ac-index and bd-index. Furthermore, by our choice of f, a
subset of them forms the diagonal of the submatrix whose determinant is f. Therefore
f ðP 0Þ 6¼ 0. h

Proposition 12 (Recovery of invariable site parameters).

(1) For the 4-taxon tree T abjcd and the 2-state GM + I model, suppose P ¼ /T ðsÞ. Then generically
the parameters in s related to invariable sites can be recovered from P by the following formulas:

d ¼ jA1j þ jA2j
jBj ; pI ¼

1

jA1j þ jA2j
ðjA1j; jA2jÞ;

where B ¼ p1212 p1221

p2112 p2121

� �
,

A1 ¼
p1111 p1112 p1121

p1211 p1212 p1221

p2111 p2112 p2121

0B@
1CA; A2 ¼

p1212 p1221 p1222

p2112 p2121 p2122

p2212 p2221 p2222

0B@
1CA:

(2) More generally, for the j-state GM + I model on T abjcd , the invariable site parameters can be
recovered from a generic point in the image of the parameterization map by rational formulas
of the form

d ¼
P

i2½j�jAij
jBj ; pI ¼

1P
i2½j�jAij

ðjA1j; jA2j; . . . ; jAnjÞ:

Here j B j is any j� j minor of F abjcd that omits the all rows and columns indexed by ii, and
j Ai j is the ðjþ 1Þ � ðjþ 1Þ minor obtained by including all rows and columns chosen for B
and in addition the ii row and ii column.

Proof. We give the complete argument in the case j ¼ 2 first. For a joint distribution P 2 Imð/T Þ,
write F abjcd ¼ ð1� dÞF GM þ dF I as in Eq. (4). Since A1 is the ‘upper left’ 3� 3 submatrix of F abjcd ,
using linearity properties of the determinant, and that all 3� 3 minors of F GM evaluate to zero, we
observe that

j A1 j ¼ ð1� dÞ3
~p1111 ~p1112 ~p1121

~p1211 ~p1212 ~p1221

~p2111 ~p2112 ~p2121

�������
�������þ

dpIð1Þ 0 0

0 ð1� dÞ~p1212 ð1� dÞ~p1221

0 ð1� dÞ~p2112 ð1� dÞ~p2121

�������
�������

¼ dpIð1Þ
ð1� dÞ~p1212 ð1� dÞ~p1221

ð1� dÞ~p2112 ð1� dÞ~p2121

���� ����:
Thus we have j A1 j¼ dpIð1Þ j B j. Now, if j B j6¼ 0, then
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dpIð1Þ ¼
j A1 j
j B j :

As j B j does not vanish on all of V T , we have a rational formula to compute dpIð1Þ for generic
points on V T .

Similarly, since A2 is the ‘lower right’ submatrix of F abjcd , then

dpIð2Þ ¼
j A2 j
j B j :

Adding these together, we obtain the stated rational expression for d.
Assuming additionally the generic condition that d 6¼ 0, then we find

pI ¼
j A1 j

j A1 j þ j A2 j
;

j A2 j
j A1 j þ j A2 j

� �
:

Thus the parameters d; pI are generically identifiable for GM + I on T.
One readily sees the argument above can be modified for arbitrary j. h

Note that when j > 2 the above proposition gives many alternative rational formulas for the
invariable site parameters, as there are many options for choosing the matrix B.

We now obtain our main result.

Theorem 13. The j-state GM + I model on n-taxon binary trees, with n P 4;j P 2, is generically
locally identifiable. Furthermore, for an n-taxon tree with V vertices, the fibers of generic points of
V T under the parametrization map have cardinality j!ðj V j �nÞ. Thus for generic points, label
swapping at internal nodes is the only source of non-identifiability.

Proof. Suppose T is an n-taxon tree with P ¼ /T ðsÞ. Choose some subset of 4 taxa, say
fa; b; c; dg, and suppose the induced quartet tree is T abjcd . Then P abcd , the 4-marginalization
of P, is easily seen to be of the form P abcd ¼ /T abjcd

ðsabcdÞ where sabcd ¼ gðsÞ and g is a surjective
polynomial function. But the tree T abjcd is generically identifiable by Proposition 11, and thus
invariable site parameters in sabcd are generically identifiable by Proposition 12. As these coin-
cide with the invariable site parameters in s, and generic conditions on sabcd imply generic con-
ditions on s, the invariable site parameters are generically identifiable for the full n-taxon
model.

As an n-taxon binary tree topology is determined by the collection of all induced quartet
tree topologies, one can now see that T is generically identifiable. Alternately, using the
identified invariable site parameters, and assuming the additional generic condition that d 6¼ 1,
note that

P GM ¼
1

ð1� dÞ ðP � dP IÞ

is a joint distribution arising from general Markov parameters. Thus generic identifiability of the
tree can also by obtained from Steel’s result for the GM model [2] applied to P GM.

The generic identifiability of the remaining numerical parameters follows from Chang’s
argument [3] applied to P GM. Chang’s approach also indicates the cardinality of the generic fiber
is j!ðj V j �nÞ due to the label swapping phenomenon. h
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5. Estimating invariable sites parameters

The concrete result in Proposition 12 gives explicit rational formulas for recovering param-
eters relating to invariable sites from the joint distribution. These can be viewed as generaliza-
tions of the formulas found in [11] for group-based models. As [11] develops the group-based
model formulas into a heuristic means of estimating the invariable site parameters from data
without performing a full Maximum Likelihood fit of data to a tree under a Mþ I model, one
might suspect the formulas of Proposition 12 could be used similarly without the need to as-
sume M was group-based, or approximately group-based. We emphasize that however useful
such an estimate might be, it would not be intended to replace a more statistical but time-con-
suming computation, such as obtaining the Maximum Likelihood estimates for these parame-
ters. (See [13].)

However, it is by no means obvious how to use these formulas well even for a heuristic estimate.
First, for a 4-taxon tree we have many choices for the matrix B, in fact

j2 � j

j

� �2

of them, so even for j ¼ 4, there are 245025 basic sets of the formulae. Moreover, while these
simple formulae emerged from our method of proof, one could in fact modify them by adding
to any of them a rational function whose numerator is a phylogenetic invariant for the
GM + I model, and whose denominator is not. Since the invariant vanishes on any joint distribu-
tion arising from the model, the resulting formulae will still recover invariable site information for
generic parameters. Thus there are actually infinitely many formulas for recovering invariable site
parameters.

One can nonetheless consider simple averaging schemes using only the basic formulas of
Proposition 12 and find that on simulated data they perform quite well at approximately
recovering invariable site parameters from empirical distributions. However, averaging the
large number of formulas give here, and then also averaging over a large sample of quartets,
as is proposed in [11], is more time consuming than one might wish for a fast heuristic. More-
over, one must be aware that the denominator in these formulas may vanish on an empirical
distribution – it is certain to be non-zero only for true distributions for GM + I arising from
generic parameters.

Nonetheless, it would be of interest to develop versions of these formulas with good statistical
estimation properties, as the GM + I model encompasses models such as the GTR + I model
which is often preferred in biological data analysis to group-based + I models.

Appendix A. Code for computational algebra software

The following code is also available on the authors’ websites.

A.1. Computation for Proposition 6

To show the variety has dimension 13, we execute the following Maple code:
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pa:=Matrix([[p,1�p]]); Mae:=Matrix([[1�a,a],[r,1�r]]);
Meb:=Matrix([[1�b,b],[s,1�s]]); Mef:= Matrix([[1�e,e],[t,1�t]]);
Mfc:=Matrix([[1�c,c],[u,1�u]]); Mfd:= Matrix([[1�d,d],[v,1�v]]);
P:=Array(1..2,1..2,1..2,1..2);
for i from 1 to 2 do for j from 1 to 2 do for k from 1 to 2 do for l from 1 to 2 do

P[i,j,k,l]:=0;
for m from 1 to 2 do for n from 1 to 2 do

P[i,j,k,l]:=P[i,j,k,l]+pa[1,i]*Mae[i,m]*Meb[m,j]*Mef[m,n]*Mfc[n,k]*
Mfd[n,l];

od;od;
P[i,j,k,l]:=(1�w)*P[i,j,k,l];

od;od;od;od;
P[1,1,1,1]:=P[1,1,1,1]+w*q: P[2,2,2,2]:=P[2,2,2,2]+w*(1�q):
Q:=ListTools[Flatten](convert(P,listlist)):
J:=VectorCalculus[Jacobian](Q,[a,b,c,d,e,r,s,t,u,v,p,q,w]):
K:=subs(a=1/3,b=1/5,c=1/7,d=1/11,e=1/13,r=1/17, s=1/19,t=1/23,u=1/29,

v=1/31,p=1/3,q=1/5,w=1/7,J):
LinearAlgebra[Rank](K);

Using Singular [21], we complete the proof:

LIB "matrix.lib"; LIB "primdec.lib";
ring r=0, (p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15),dp;
// Define matrix flattening F_{ab|cd} and polys fs, f1, f2

matrix Fab[4][4]=p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15;
matrix UR[3][3]=submat(Fab,1..3,2..4); matrix LL[3][3]=submat(Fab,2..4,

1..3);
poly f1=det(UR); poly f2=det(LL);
poly fs=p0+p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12+p13+p14+p15�1;
ideal I=fs,f1,f2; // define ideal I

dim(std(I)); // compute dimension of r/I

primdecGTZ(I); // compute primary decomposition of I to show prime

A.2. Computation for intersections of V abjcd ; V acjbd ; V adjbc

Continuing the Singular session above, we execute the following:

/* Define ideals Iac, Iad corresponding to two alternative tree

topologies for 4-taxon trees. (So, I = Iab in this notation.) */
// Flattening for ac|bd split

matrix Fac[4][4]=p0,p1,p4,p5,p2,p3,p6,p7,p8,p9,p12,p13,p10,p11,p14,p15;
poly f3=det(submat(Fac,1..3,2..4)); poly f4=det(submat(Fac,2..4,1..3));
ideal Iac=fs,f3,f4;
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// Flattening for ad|bc split

matrix Fad[4][4]=p0,p2,p4,p6,p1,p3,p5,p7,p8,p10,p12,p14,p9,p11,p13,p15;
poly f5=det(submat(Fad,1..3,2..4)); poly f6=det(submat(Fad,2..4,1..3));
ideal Iad=fs,f5,f6;
reduce(f1,std(Iac)); // non-zero answer shows f1 not in Iac

reduce(Iac,std(I)); // non-zero shows f3,f4 not in I

ideal J=I,Iac; dim(std(J)); // show dim is 11

ideal K=J,Iad; dim(std(K)); // show dim is 11

primdecGTZ(K); // show K prime, and thus ideal for star tree

A.3. Computation of 2-state GM + I ideal, 4-taxon trees, using Proposition 9

The following Singular code performs the needed elimination for a binary tree:

ideal Igm=minor(Fab,3);
// Eliminate the ‘diagonal’ variables

ideal Igmi=elim1(Igm,p0*p15);

For the star tree, the 2-state GM ideal is known from [16]. Thus elimination can be used to find
GM + I invariants. We also show this result agrees with K above.

ideal Igm=minor(Fab,3),minor(Fac,3),minor(Fad,3);
// Eliminate the ‘diagonal’ variables

ideal Igmi=elim1(Igm,p0*p15),fs;
reduce(K,std(Igmi)); // all 0’s indicates ideal containment

reduce(Igmi,std(K)); // all 0’s indicates ideal containment
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