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Abstract It wasrecently observed by de Vienne et al. (Syst Biol 60(6):826-832,2011)
that a simple square root transformation of distances between taxa on a phylogenetic
tree allowed for an embedding of the taxa into Euclidean space. While the justification
for this was based on a diffusion model of continuous character evolution along the
tree, here we give a direct and elementary explanation for it that provides substantial
additional insight. We use this embedding to reinterpret the differences between the NJ
and BIONIJ tree building algorithms, providing one illustration of how this embedding
reflects tree structures in data.

Keywords Phylogenetic trees - Distance methods - Multidimensional scaling -
Neighbor joining

Mathematics Subject Classification 92D15 - 92B10 - 51K99

1 Introduction

Metric trees are the primary mathematical structures underlying phylogenetics, and
many of its statistical analyses. A recent work by de Vienne et al. (2011) made the
observation that taxon relationships representable by such trees naturally corresponded
to configurations of points in Euclidean space. More specifically, given any metric tree
relating a collection of taxa X = {x;}, there is a collection of points P = {¥(x;)}
in a Euclidean space such that the distances between the points ¥ (x;) are exactly
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the square roots of the tree distances between the taxa x;. This Euclidean point
configuration represents the same information as the tree, and can offer a valuable
alternative perspective, as much intuition and many standard statistical techniques
are focused on Euclidean spaces. For instance, in the above cited and a subsequent
work (de Vienne et al. 2012), the Euclidean tool of principal component analysis
(PCA) is applied to phylogenetic applications in a more natural way than in previous
efforts.

The argument given by de Vienne et al. (2011) for this fundamental correspon-
dence between trees and certain point configurations follows three steps: (1) a tree
distance matrix is related to the covariance matrix of a diffusion model of continuous
character evolution along the tree; (2) the covariance matrix is positive definite; and
(3) classical multidimensional scaling allows one to find Euclidean points realizing
distances associated to such a matrix. Unfortunately, the argument given for step (1)
was incomplete, so a full justification was lacking.! However, the simplicity of the
conclusion suggests there should be a simpler direct explanation, not appealing to the
diffusion model. The original motivation for this work was to provide one, based only
in Euclidean geometry.

Our approach, however, also yields substantial new understanding, in illuminating
finer geometric features of the point configurations associated to metric trees. Both
the splits (bipartitions of the taxa corresponding to edges) of the tree and individual
edge lengths are reflected in the point configuration in simple ways. Specifically, the
splits correspond to partitions of the point configuration into orthogonal sets, and dot
products of vectors between points recover the length in the tree of the common path
between those taxa.

We further show how the improvement to the neighbor joining (NJ) algorithm
giving the BIONJ algorithm for tree construction from dissimilarity data can be moti-
vated by the point configuration. In particular, this offers a perspective on BIONJ as
an iterative process involving least squares in the configuration space. Though this
is perhaps not what was meant by the call by Gascuel (1997) for “further explo-
ration concerning the relationship of this (BIONJ) theory with that of generalized
least-squares,” we believe it illustrates well the value of the point configuration
viewpoint.

The existence of the point configuration can also be deduced from more general
theorems in distance geometry (cf. the survey of Critchley and Fichet 1994). However,
the explicit treatment we give here seems most useful in the phylogenetic context, as
the angular features of the configuration become apparent.

! The gap in the argument is as follows: If D denotes the n x n matrix of pairwise distances between taxa on
some metric tree, and F = [, — %IIT where 1 is a column of ones, then by multidimensional scaling theory
the desired Euclidean embedding exists if and only if the “doubly centered” matrix H = (—1/2)FDF is
positive semidefinite. The covariance matrix X of the diffusion process on a rooted version of the tree is
positive definite, and de Vienne et al. (2011) suggest that H = X. However, this relationship is invalid:
X is positive definite, while H is not; X depends on the root location, while H does not. The correct
relationship, that H = F X F, was not established. While the gap can be filled by proving this equality
directly, our approach is simpler and more easily yields additional results.

@ Springer



Phylogenetic trees and Euclidean embeddings

2 Metric trees and point configurations

The Euclidean point configuration corresponding to a tree is best understood by first
considering a configuration corresponding to not just the leaves of the tree, but rather
all nodes, including internal ones.

Let T be a metric phylogenetic tree (rooted or unrooted, not necessarily binary)
with leaves uniquely labelled by the taxa in a set X. Let V. = V(T') be the set of
all m nodes in the tree, with X viewed as a subset of V. Then T has m — 1 edges,
which we arbitrarily order as ey, e3, .. ., ;,—1. We assume every edge length, w(e;),
is strictly positive. For any two nodes v, u € V, let P, , denote the oriented path (i.e.,
the ordered set of edges) from v to u in the tree 7. The tree metricd : V x V. — RZ0
is then defined by

d(v,u) = Z w(e).

ecPyy
Definition 1 Let T be a metric phylogenetic tree, with the conventions above. Fix a
choice of a base node v € V. Then the square root embedding of the nodes of T is
W, 1 V. — R 1 defined by ¥, (1) = (a1, @2, . .., dm—_1), where

i = .
0, otherwise.

B [J_w(ei), if e € Py,

We refer to the ith coordinate in R”~! as the ¢;-coordinate.

Figure 1 illustrates how the square root embedding sends the 4 nodes of a 3-taxon
metric tree into R3. Note that in the figure the Euclidean distance between ¥, (x1) =

(V. 0,0) and ¥, (x2) = (0, /w5, 0) is

Py (x1) = Wy (x2) || = \/(«/w_l)2 + (=Jw2)? + 02 = Vwi + wy = Vd(x1, x2).

Thus the fact that the Euclidean distance between ¥, (x1) and ¥, (x3) is the square
root of the tree distances between x| and x; is a simple consequence of the Pythagorean
Theorem.

That this generalizes to all trees will be shown as part of Theorem 1 below. The
key observation is the following.

Lemma 1 Let v, vy, vy € V(T). Then

Wy (v) — Y (02) = V1, V25 -« o Yin=1)
Jw(e;) whene; € Py, ande; ¢ Py o,,

where y; = 1 —+/w(e;) whene; € P, ande; ¢ P, y,,
0 otherwise.

In particular;, y; # 0 exactly when e; € Py, ,,.
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T3

Fig.1 A 3-leaf unrooted tree with vertices x1, xp, x3, v, and edge lengths w1, wy, w3 (left) and the image
of its vertices in R3 (right) under the square root map ¥,

Proof Note that the e-coordinate of ¥, (v;) is v/w(e) only when e € P, ,,, and zero
otherwise. Similarly the e-coordinate of ¥, (v2) is «/w(e) only when e € P, ,, and
zero otherwise. Then it immediately follows that the e;-coordinate of ¥, (vy) — ¥, (v2)
is given by the stated formula for y;.

The edges on the path Py, ,, are those which lie in exactly one of P, ,, and Py y,.
Therefore the nonzero coordinates of ¥, (vy) — ¥, (v2) correspond to the edges on the
path Py, y,. O

Theorem 1 Let vy, vy, v3,v4 € V(T). Then

Wy (v2) = W (V1)) - (P (vg) — ¥ (v3)) = :l:z w(e) ey

ecP

where P = Py, y, N Py, 4, is the subpath common to Py, v, and Py, y,. The sign is
positive if the subpath is oriented in the same direction in both paths and is negative
if oppositely oriented. In particular,

W (v2) = W (D) || = Vd(vr, v2).

Proof By interchanging v3 and v if necessary, it is sufficient to consider the case
that P is oriented in the same direction in both paths. By Lemma 1, any e-coordinate
which is non-zero in both ¥, (v2) — ¥, (v) and ¥, (v4) — ¥, (v3) arises from e € P,
and has absolute value «/w(e) in both. Letting v’ denote the node on P closest to v,
the sign of such an e-coordinate in both these vectors is positive if e falls before v in
P, and negative if after. Either way, the contribution to the product in Eq. (1) is w(e),
so that claim is established. Taking v; = v and v3 = vy, the last claim follows. O
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Note that the right hand side of Eq. (1) is independent of the base node v, suggesting
the particular choice of v is inessential. Its precise effect is captured by the following.

Proposition 1 Given a fixed ordering of the edges of T, and a pair of nodes vy, vy
of T, the maps ¥, and ¥,, differ by coordinate reflections and translation. More
specifically there is a reflection R in some coordinates of R™~' and some vector
a € R"~ such that

¥, (v) = R¥,, (v) +aforall vin V(T).
Proof From Lemma 1 note
lpm (v) — lpv] (v1) = R(sz(v) - lI/vz (v1))

where R is the reflection that changes sign in e-coordinates with e € Py, ,,. Thus the
above formula for ¥, (v) holds with a,, ,, = —R¥,, (v1). O

Since the choice of the base node only changes the image of the square root embed-
ding by a Euclidean isometry, we generally suppress the v in the notation, writing
¥ = Y,. Note that the definition of the embedding depends on several other arbitrary
choices as well: Reordering the edges of 7' permutes the coordinates of R”~!. And if
instead of using positive square roots in the definition of ¥, we used negative ones in
particular coordinates, this would only result in reflecting the image in some coordi-
nate hyperplanes. Thus even allowing for such choices, the image is determined up to
an isometry of Euclidean space.

By restricting from ¥ (V) to the set ¥ (X) we obtain a configuration of points in
Euclidean space corresponding only to the leaves of the tree. If X has n taxa, the
affine span of ¥ (X) is at most of dimension n — 1, which shows that there is a point
configuration in R"~! with pairwise distances equal to the square root of the tree
distances between taxa. This is the sort of configuration produced by de Vienne et al.
(2011).

3 Further features of the point configuration

Since a point configuration arising from a metric tree via the square root embedding
reflects tree distances, it is far from arbitrary. For instance, the following theorem
shows that embedded taxa always span spaces of the maximum dimension possible.

Theorem 2 Let L C V be any subset of the nodes of T, with n = |L|. Then ¥ (L)
spans an affine space of dimension exactly n — 1.

Proof If n = 1, then ¥ (L) is one point, and so spans a space of dimension 0.

Now suppose that for any L’ C V with 1 < |L’| < n that the dimension of the
affine span of ¥ (L’) is |L'| — 1. Consider a set L of n nodes. Choose w € L to be any
leaf of the subtree of T spanned by L, e to be the edge in that subtree containing w,
and v € L with v # w. Let the square root embedding be given by ¥,,.
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U (x3)

Fig. 2 A 4-taxon tree (left) and the 3-dimensional image of its leaves under the square root embedding
(right). The dotted and dashed lines are the edges of a tetrahedron, with lengths the square root of tree
distances. The dashed lines connect taxa in each set of the split {x1, x2} | {x3, x4}, and are thus orthogonal.
The dotted lines connect taxa across the split sets, so any pair such as ¥ (x1)¥ (x3) and ¥ (x2)¥ (x4) form an
acute angle. All 6 vertices of the tree can be embedded only in 5-dimensional space. The tree shown inside
the tetrahedron is the projection of the tree in 5-space onto the 3-space spanned by the leaves; distances
along it are not those of the 5-dimensional embedding

Now L’ = L ~ {w} has n — 1 elements, so ¥ (L’) spans an (n — 2)-dimensional
space. Note that the e-coordinate of all points in ¥, (L") is 0. However the e-coordinate
of ¥, (w) is positive, and so ¥, (w) is not in the affine span of ¥, (L’). Therefore the
dimension of the span of ¥, (L)is(n —2)+1=n—1. O

Since the affine span of the |L| = n points in ¥ (L) is n — 1 dimensional, basic
facts of Euclidean geometry imply that any other point configuration of n points with
the same pairwise distances can be obtained from it by a unique Euclidean isometry
of R"—1 (i.e., by rotation, reflection, and translation). The point configuration is thus
essentially unique.

While the point configuration ¥ (X) corresponding to the taxa on a metric phy-
logenetic tree was designed to encode tree distances between taxa, these distances
determine the full tree, so the configuration must contain all the information that the
tree does. In particular, the configuration must reflect all splits in the tree in some geo-
metric way. As a motivating image, Fig. 2 shows a 4-taxon tree and the tetrahedron
whose vertices form the corresponding configuration. Note the edge ¥ (x1)¥ (x2) is
orthogonal to the edge ¥ (x3)¥ (x4). In addition, any two edges of the tetrahedron
between these two orthogonal edges form an acute angle. These characteristics appear
more generally, as the following shows.

Theorem 3 Let L1, Ly be two disjoint subsets of V. The following are equivalent:

(a) The minimal spanning trees of L1 and Ly in T have no edges in common.

(b) The affine spans of W (L) and ¥ (L,) are orthogonal.

(c) Forallvy, vy € L1, wy, wy € Ly, the vectors ¥ (v1) — ¥ (w1) and ¥ (vy) — ¥ (w))
form an acute or right angle.
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Proof To see (a) and (b) are equivalent, note the affine span of ¥ (L;) is a translate of
the plane generated by the vectors ¥ (vy) — ¥ (v2) for vy, v2» € L;. Thus the spans are
orthogonal if, and only if,

(W (v) =¥ (v2) - (¥ (wr) —¥(w2)) =0

forallvy, v2 € Ly, wy, wa € Ly. Butby Theorem 1, this is equivalent to all paths P, o,
and Py, y, having no edges in common. This is in turn equivalent to the disjointness
of the sets of edges in the spanning trees.

For the equivalence of (a) and (c), note that the minimal spanning trees have an edge
in common if, and only if, there are points vi, v2 € Ly, wi, wp € Ly with Py, ,, and
Py, ,w, having at least one an edge in common, and with the common subpath oriented
in the same direction. But this is equivalent to Py, ,, and Py, ,, having an edge in
common, and common subpath oriented in the opposite direction. By Theorem 1, this
is exactly that

(1) =¥ (wy) - (¥(2) — ¥ (w2)) <0,

or that these vectors form an obtuse angle. O

One consequence of the equivalence of (a) and (c) is that no angle at a point in the
configuration is obtuse: Taking L1 = {v1, vp} and L, = {w}, the minimal spanning
tree for L has no edges, and hence none in common with those of L. Thus

W (v) =¥ (w)) - (¥(v2) —¥(w)) =0,

so these vectors form an acute or right angle.

For the following, by a generalized split of a tree T we mean a bipartition of the taxa
X induced by deleting an edge from some binary refinement of 7'. Since a generalized
split gives sets of taxa whose minimal spanning trees contain no common edges, we
immediately obtain:

Corollary 1 X{|X> is a generalized split of the tree T if, and only if, either (and hence
both) of the following hold:

(a) The affine spans of ¥ (X1) and ¥ (X»>) are orthogonal.
(b) Forall x1, xy € X1, X3, X4 € X3, the vectors ¥ (x1) — ¥ (x3) and ¥ (x2) — ¥ (x4)
form an acute or right angle.

Although expressed in geometric language, this statement is essentially the same
as the well-known 4-point condition: For a generalized split X1|X5 on a tree T with
x1, X2 € X1, x3, x4 € X,

d(x1, x2) +d(x3, x4) < d(x1,x3) +d(x2, x4) = d(x1, x4) + d(x2, x2).

Using d(x;, x;) = |¥ (x;) — ¥ (x;) ||2 one can check that the equality here is the same
as condition (a) and the inequality is the same as condition (b) of the Corollary.

@ Springer



M. Layer, J. A. Rhodes

4 Point configuration from distance data

If distances d (x;, x i) for n taxa are a tree metric, but the full tree is not yet known, then
the square root map as defined above is of course not directly usable. However, since by
Theorem 1 the point configuration is proved to exist, {y;} with [ly; —y ;| = \/d(x;, x;)
can be computed by the methods of classical multidimensional scaling suggested by
de Vienne et al. (2011), and implemented in most standard statistical software. In
concise form, for n taxa this procedure is:

1. From the n x n matrix D of pairwise distances between taxa, compute the “doubly
centered” positive semidefinite symmetric matrix H = —%F DF where F =
= %IIT, with 1 a column vector of 1s.

2. Compute a factorization H = X7 X, where X is a real (n — 1) x n matrix. X is
only determined up to multiplication on the left by an (n — 1) x (n — 1) orthogonal
matrix Q, since (0X)T(0X) =XT0T0x = xTX.

3. The columns of X give points in R”~! realizing the point configuration for the
taxa.

The points produced by this procedure have the additional feature that their centroid
is 0. The indeterminacy of X up to multiplication by Q reflects that distances within
the configuration are preserved by rotation and reflection. Note that this procedure
only produces the point configuration for the leaves of the tree, and not for the internal
nodes.

With only an estimate D ~ D of the true distances, one can still attempt to apply
the same procedure to D. If the errors are not too large, then H=— 5 LFDF will also
be positive semidefinite and the desired matrix factorization will still ex1st This gives
a point configuration approximating the true one, for which the various properties
outlined in the previous section will hold only approximately. Reasoning with this
approximate configuration, however, one can better understand some tree construction
algorithms, as we show in the next section.

5 Relationship to NJ and BIONJ Algorithms

The Neighbor Joining Algorithm (NJ) (Saitou and Nei 1987; Studier and Keppler
1988) provides the basic framework for a number of methods of building trees from
approximate distance data. Given dissimilarity values J;; between all taxa x;, x; € X
that are assumed to approximate a tree metric, it proceeds in an iterative fashion by
picking a likely cherry on the unknown tree using the neighbor joining criterion, and
then agglomerating those taxa. The BIONJ algorithm of Gascuel (1997) introduced
an important modification to NJ that improves performance on certain types of trees,
without significantly degrading it on others. (This modification is also adopted by
WEIGHBOR (Bruno et al. 2000), which further changes the cherry picking criterion.)
Here we present the BIONJ modification in a new light, as arising naturally from the
point configuration and Theorem 3.

BIONJ and NJ both use the same neighbor joining criterion, which need not be
discussed here, to pick the initial two taxa to be joined. If these are taxa x; and x7,
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then both algorithms replace the two by a single node v to which xy, x» will be joined
by edges as a tree is built. They then estimate lengths d (x1,v), d (x2, v) for these
edges, and calculate a dissimilarity §,; between v and the remaining taxai = 3, ...
by different formulae. Having reduced the number of taxa by one, both algorithms
iterate these steps.

The only difference between NJ and BIONJ with any implications for the topology
of the tree to be constructed is in the calculation of the §,; when taxa x| and x; are
joined at v. Since Gascuel (1994) has shown that one may add a constant (that is, a
number independent of 7) to such a formula without affecting the later behavior of the
criterion used for picking cherries, we may present the formulas for these calculations
most simply as follows: Both choose

Svi = Ad1; + (I — X))y, (2)

for some 0 < A < 1. NJ simply sets A = 1/2 while BIONJ chooses A to solve the
constrained minimization problem

n
minimize f () = D> 3281 + A1 = D@1 + 83 — 1) + (1 =278 ()
i=3
subjectto 0 < A < 1.

The individual terms in this sum are approximations of the variances of the §,;, as
derived by Gascuel (1997) under a reasonable model of distance error.

Now suppose that the dissimilarities are sufficiently close to a tree metric that via
multidimensional scaling they correspond to some Euclidean point configuration {z; }
with §;; = ||z; — z; 2. Then the formula in Eq.(2) used by both NJ and BIONJ can
be expressed as

Svi = Mz — 7z + (1 = W)z — 7|
= |Iaz1 + (1 = V22 — 7 |* + 2(1 — 1) |z1 — 22]|>.

Since the last term is independent of 7, it can be dropped to give an alternative formula
which would lead to the same tree topology:

Svi = Az + (1 — Mz — 7|

This has a simple geometric interpretation in terms of the point configuration: The
node v corresponds to a point Az; + (1 — A1)z, on the line segment between the points
z) and z, of the taxa being joined, located at proportion A of the way from z, to z;.
For NJ with A = 1/2 this is the midpoint, but for BIONIJ it depends on the solution of
the minimization problem (3).

The orthogonality described in part (a) of Theorem 3 implies that for a dissimilarity
thatis actually a tree metric, any choice of A will lead to the same tree topology: Indeed,
we need to check only that Syi (A) — Svi (X2) is independent of i. Since
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Sui(A1) — 8ui(h2) = [hiz1 + (1 — A)z2 — | — [hozy + (1 — A2)z2 — 7 ||
= (A1 —22)z1 — (A1 — A2)22) - (A1 + A2)71
+ 2—A1 — )2y — 22;)

we have

(30 = 802) = () = 85(12)) = it = A @1 —22) - 2021 — ;) =0

by the theorem.
Turning to the optimization problem (3) which determines A for BIONJ, the objec-
tive function f(X) can be expressed as

n
£0) =221z — 2> + 201 = Dz — > + |1z — z )
=3
—llzs —221*) + (1 = 1?22 — = |1?

n
=> Az -zl + 200 = V@ —z) - (22 —z) + (1 = 1?22 — 2|
i=3

n
=D Iz + (1 =Nz — 2%
i=3

Thus the minimization problem is to find the point on the line segment between z;
and z, that minimizes the sum of the squares of the distances to all other points. But

this has the same minimizer as
2

. | -
foy=|ra+0=hm——3> 7

i=3

as the derivatives of f and f are the same up to a positive constant factor. Thus the
calculation of A by BIONJ simply locates the point on the line segment between z;
and z; that is closest to the centroid of the remaining points. Figure 3 illustrates this,
through a sketch meant to represent the geometry in (n — 1)-dimensional space.

This viewpoint suggests an extension of the innovation of BIONJ: One could choose
A to give the point on the line segment between z; and z; that is closest to the convex
span of the remaining points. To put the three approaches on a common footing, for
Aispj =0, Ziz:l A= 1, 2?23 wj = 1 consider the objective function giving the
distance between a point in the span of z, z> to one in the span of the remaining
points,

2

2 n
g ) = | D iz — > wjz;
i—1 j=3

Then NJ avoids minimizing this function by choosing A = (1/2, 1/2), while BIONJ
simplifies the minimization in A by first setting ;; = 1/(n — 2). A third algorithm
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\Il(:nl) P

Fig.3 Once x| and x, have been identified as forming a cherry, the BIONJ algorithm finds the point p on
the segment ¥ (x1)¥ (x2) that is closest to the centroid ¢ of the embeddings of the other n — 2 taxa. In this
schematic depiction the other embedded taxa are represented as the vertices of a polygon, but should be
vertices of an (n — 3)-dimensional polyhedron. The two line segments drawn here would then be orthogonal
to all directions in that polyhedron. The NJ algorithm uses the midpoint of ¥ (x1)¥ (x2) in place of p. A
variant of BIONJ discussed in the text locates p on ¥ (x1)¥ (x2) closest to the polyhedron

would find the minimizer (A, p), and use A in Eq. (2). If a dissimilarity is an exact tree
metric, then BIONJ and the new algorithm would produce exactly the same A, due to
the orthogonality of Corollary 1; the closest point in the line segment to the convex
span of the other points will also be the closest point to the centroid of those points.
But for dissimilarities including noise, the new algorithm could potentially improve
performance, by allowing different weightings g = (u;) for the points not in the
cherry, just as BIONJ allows different weights A = (A ;) for the points in the cherry.
A fourth algorithm is also possible, in which one would solve a similar optimization
problem where once a split had been identified by repeated application of the usual
NI criterion, the objective function is built from the difference of weighted sums of
points for the two split set. (In other words, rather than using only two points in the
A-sum, we use all of the original points that have been agglomerated to form these.)
The constrained optimization problems for both of these new algorithms can actu-
ally be cleanly expressed in terms of the original dissimilarities d; ;, so itis not necessary
to calculate the z; (Layer 2014). However, when we tested these algorithms on sim-

@ Springer



M. Layer, J. A. Rhodes

ulated DNA sequences, performance was essentially the same as that of BIONIJ, as
measured by topological accuracy (average Robinson—Foulds distance from correct
topology, or percentage correct topology). For some trees and sequence lengths the
new algorithms might be a percentage point or two better in terms of average RF
distance, but for others they were worse by similar amounts. We did not find any trees
on which the new algorithms offered a substantial improvement. Moreover, these
algorithms introduce an additional computational burden of solving a quadratic min-
imization problem in many variables to determine A. Although there are excellent
software packages for doing this, they are not as fast as using BIONJ’s formula for A,
and so these approaches do not seem to be worthwhile in practice.

6 Conclusion

While distance methods for tree inference are seldom the first choice for data analy-
sis, they offer significant computational advantages over full Maximum Likelihood or
Bayesian analyses, and are still highly relevant to empirical work. For instance, a num-
ber of fast and statistically-consistent methods of species tree inference that proceed
by first constructing a distance matrix from a collection of gene trees, and then using
that to find the species tree (Liu et al. 2009; Mossel and Roch 2010; Liu et al. 2010;
Liu and Yu 2011; Jewett and Rosenberg 2012; Allman et al. 2013). We have shown
the Euclidean point configuration associated to intertaxon dissimilarities provides an
alternative viewpoint on the distance methods underlying these, and believe it may be
useful for future methodological progress as well.

Though our development of the point configuration avoided reference to the diffu-
sion model that motivated de Vienne et al. (2011), in the context of that model it is
still natural to view it as capturing the covariance. Though we omit details, the inde-
pendent contrasts introduced by Felsenstein (1985) in relation to such a model can be
seen as closely tied to computing a particular set of orthogonal directions in the point
configuration space, and inference of states at internal nodes of a tree reduces to linear
interpolation in the configuration space.

Finally, the more detailed understanding of the Euclidean point configuration we
have given should be applicable to obtaining a better understanding of uses of PCA
for phylogenetic purposes, such as by de Vienne et al. (2012). For instance, Theo-
rem 2 shows that there is always some loss of information in focusing on only some
principal components, while the embedding map itself allows one to investigate how
tree topology and edge lengths are reflected in individual components.
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