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Abstract— Covarion models of character evolution describe
inhomogeneities in substitution processes through time.nl phy-
logenetics, such models are used to describe changing fuinctal
constraints or selection regimes during the evolution of lblogical
sequences. In this work the identifiability of such models fo
generic parameters on a known phylogenetic tree is establisd,
provided the number of covarion classes does not exceed thiees
of the observable state space. ‘Generic parameters’ as usbdre

means all parameters except possibly those in a set of measur

zero within the parameter space. Combined with earlier resits,
this implies both the tree and generic humerical parametersare
identifiable if the number of classes is strictly smaller tha the
number of observable states.

data, with authors referring to the model using terminolsggh

as ‘covarion’ [12], ‘covarion-like’ [7], [20], ‘site-spefic rate
variation’ [7], [10], ‘Markov-modulated Markov process8] [9],

or ‘temporal hidden Markov models’ [21]. We use the name
‘covarion’ in this paper for simplicity, although we acknladge
the model does not capture the full complexity of the process
originally proposed by Fitch and Markowitz [6]. Informallthe
covarion model allows several classesy( invariable, slow, and
fast), with characters evolving so they not only change betw
observable states, but also between classes. Though #®isla
never observed, it affects the evolutionary process owet.tiThe
model thus attempts to capture the fact that substitutidesra

Index Terms—phylogenetics, Markov processes on trees, co- may speed up or slow down at different sites in a sequence at

varion models, statistical consistency

I. INTRODUCTION

different times in their descent. Changing functional d¢raists
or selection regimes are possible sources of such a process.

Identifiability of even the tree parameter under the cowvario

Phylogenetic inference is now generally performed in a stazodel was not established with its introduction in [19], ples

tistical framework, using probabilistic models of the euan

strong efforts. In [2], the authors established that for ggien

of biological sequences, such as DNA or proteins. To rigsisou choices of covarion parameters tree topologies are inciei+

establish the validity of such an approach, a fundamentastipn
that must be addressed is whether the models in uselang-

fiable, provided the number of covarion classes is less than t
number of observable states. Thus for nucleotide modelsN# D

fiable From the theoretical distribution predicted by the modethere can be 3 classes, though for amino acid models of psotei
is it possible to uniquely determine all parameters? Paensie one can allow 19 classes, and for codon models of DNA up to 60

for simple models include the topology of the evolutionamyet
edge lengths on the tree, and rates of various types of tutisti

classes. ‘Generic’ here means that there could be some pam
choices for which identifiability fails, though they will beare

though more complicated models have additional parameters(of Lebesgue measure zero). In fact, if parameters are ohose

well. If a model is non-identifiable, one cannot show thafqen-
ing inference with it will bestatistically consistentinformally,

randomly, with any natural notion of random, one can be sure
the tree topology is identifiable.

even with large amounts of data produced by an evolutionary . o S .
process that was accurately described by the model, we mighfince the notion of generic identifiability is perhaps notiely
make erroneous inferences if we use a non-identifiable modelknown, and will play a key role in this work as well, we elaktera

Identifiability for the most basic phylogenetic models, Is&s
the Jukes-Cantor, Kimura, and all other time-reversiblelehm

on its meaning. For statistical models in general, it is most
desirable to establish identifiability over the full paraevespace.

follows from Chang's work on the general Markov model [5]However, such a strong claim may not hold, so that the best
However, for models with rate variation across sites, wheRossible result is to establish identifiability over most the

the distribution of rates is not fully known, only recenthave
the first positive results been obtained [2], [3], [1]. Despis
widespread use in data analysis, identifiability of the GTRH
model has yet to be addressed rigorously. (Unfortunatelytbof
of identifiability given in [17] has fundamental gaps, asleiped
in the appendix of [1].)

The covarion model, introduced in its basic mathematicahfo
by Tuffley and Steel [19], incorporates rate variation withi

lineages rather than across sites. Extensions of the basion of

the model have appeared in a variety of analyses of expetiine
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parameter space, and completely characterize all thosampar
eter choices for which identifiability fails. Generic iddiability
results are a little weaker than this, in that while identifigy

is established over most of the parameter space, they atiow f
ignorance about identifiability on a small subset of the peater
space. This exceptional subset of parameter space corahins
parameters for which identifiability fails, but may also tn
some parameters that are identifiable. Complex statisticalels
can be quite difficult to analyze, so that generic identifigbis
sometimes the strongest known result. For instance, thbigiglen
ri\/larkov models are widely used in bioinformatics and othed§ie
and generic identifiability was proved for HHMs in [16], wedum

of no improvements on that work in the nearly 40 years since
it appeared. Phylogenetic models are similar to HMMs in that
they posit unobserved variables, at the internal nodes oégy t
but typically have more complex parameterizations than H\VIM



Thus we consider their analysis to be even more challenging. model. The basic state change process is specified«by rarate

The question of identifiability of numerical parameters floe Matrix @, whose off-diagonal,j-entry gives an instantaneous rate
covarion model was left open by [2]. In this article, we assun{> 0) &t which a character in stateenters statg. Each row of@
the tree topology is known, and establish identifiability toe Must add to 0. As a consequencghas a unique left eigenvector
numerical parameters of several variants of the covariodeno 7 With eigenvalue O, the stationary vector f9r Time reversibility
for generic parameter choices, provided the number of amvar iS mathematically formulated as the assumption thag ()@ is
classes is strictly less than the number of observablesstite Symmetric. Character change along a rooted metricrésthen
certain versions of a covarion model, this can be strengtihéa modeled as follows: The entries af give the probability that a
allow one more class. so that the number of classes and alterycharacter is in the various states at the root of the treenghlo
states may be the same. each edge: of T, directed away from the root, the conditional

We consider three variants of the covarion model, whichrekte Probabilities of state changes are given by the Markov matri
the Tuffley-Steel model, and have previously appeared irksvorMe = exp(Qte), whereic > 0 is the edge length. From this
of others, though without our formal terminology: Tisealed [nformation one can compute the probability of any spedifca
covarion model,sCov, assumes all classes undergo substitutio® States at the leaves of the tree. Due to the time reveitgibil
according to a common process but at rescaled rateseghal assumption, the location of the root within the tree acjuais
stationary distribution covarion mode¢Cov, generalizes this to MO effect on this probability distribution. Thus the paraene_of
allow in-class substitution processes to vary more acrizsses, the model are the topology of the unrooted tiigethe collection
provided they have identical stationary distributions aass Of edge lengthgtc}, and the rate matri).
change rates are independent of the base. Finally, ig¢heral To present the covarion modelg, we first focus on the process
covarion modelCov, each class may undergo substitutions quité’ State change. It will be convenient to adopt terminologysm
differently as long as the entire process is time reversibte is aPPropriate to nucleotide sequences. In particular, ioudsing
the model described in [213Cov is developed in [9], andCov covarion models we limit our use of the word ‘state’ which is

is used in [10]. commonly used for all Markov models, because the number of
Note these models are nested, states at internal nodes of a tree differs from that at lease=n
though there is a relationship between them. We instead tefe
sCov C eCov C Cov, observable states as ‘bases, and to rate classes as &Llagues

% a leaf a state is simply a base, while at an internal nodata st

though each submodel is non-generic within its supermode i of | dab W tion th der that thi
Because identifiability is established here only for genperam- IS a par 9 a c:‘gss and a base. We caulion the reader that this
usage of ‘base’ is not standard in biology, as it encompatbees

eters, it is necessary to state and prove the generic iddoiliifj ) : ) .
y P 9 ty ases in nucleotide sequences, as well as the 20 amino acids

of all three covarion models to encompass the range of modé1 ol d the 61 cod . del of cod
used in practice. of protein sequences, and the codons in a model of codon

) ) _substitution. Also, while it is often natural to think of &dses’
In Section Il we formally present these models, and in Sactig,g being associated to rate scalings, this may be misleaging

il we state our results precisely. That section also presid geyeral of the models we formalize allow for more generality
an overview of the proof. For those whose primary interegf, use[k] = {1,2,...,x} to denote the set of bases afail =

is understanding the result, and who do not wish to delv& 2,...,cl to d7enote7the set of classes.

into _the full mathemaFicaI arguments_behind it, we §uggbat t To refer to entries of vectors and matrices of size it will
reading thr.ough Section il may suffice. The remalndgr of ﬂ’g}e convenient to index entries using interchangeably thgsg
paper provides the rather detailed arguments that are tedsten and the sef] x [s] with lexicographic order. Thus the index
rigorously establishing identifiability. )

We also note that many practitioners have conducted dag%éj)’ which should be interpreted as the ‘clasdase;” index,

o . . . .. iS equivalent to(:i — 1)c + j. Entries in ack x ck matrix, then,
analysis with models combining covarion features with ssrsite . - .
L . S can be referred to by an ordered pair of indices, each of which
rate variation, such as that modeled by a discretistribution. is an ordered pair ifie] x [1]
While the identifiability of such models has not been essiigd b P L ' h il b
rigorously as of yet, we view the main theorems of this pager a -€t ¢~ Pe positive integers. The most generatlass, -base

providing a first step toward understanding of these moreptexn covarion model, introduced by Whelan in [21], is specifiedha
models. following way:

This work was influenced by many useful discussions concern(l) For each: € [d, a base-change process for classs
Y Y described by a rate-matrig; of sizex x . We assume all

Egmftg\r/]am- tﬂggeﬁrgh?;ﬁehid ImtTopgat;i!EzntSs'rﬁfortlhewc:lseella Q; are distinct, so that no two classes undergo substitutions
- 9 ! ylog Ics. Sl at the same rates. For— 1 values ofi we require that the

?Zelsjerves particular thanks for explaining his forthcomimgrk off-diagonal entries of); are strictly positive so that all
) . . substitutions are possible, and the rows sum to 0. For the
o i ank e efrees o 1l I SUOUESIOT 97 emainng, we ony rere hat l o igonal entes
version of Section VI, and suégested the simpler argumaeatt th be non-negative and that rows sum to 0. _In partlcular, we
’ allow Q; for at most onei to be the 0-matrix, in order to

appears there now. model an invariable class.
(2) For each ordered pair of classés # i, a diagonal
matrix S;,;, of size x x x describes switching rates from
For the purpose of orientation, we briefly recall a simpler classi; to classiz. The entries ofS;,;, are non-negative.
phylogenetic model, the-state general time reversible (GTR) The requirement thats;,;, be diagonal will imply that

Il. THE PARAMETERIZATION OF THE COVARION MODELS



instantaneous base switches do not occur simultaneoushA further specialization fromeCov yields thescaled covarion
with class switches. mode| sCov(c, ), which assumes

(3) Let R be thecx x cx matrix which, when viewed ir x ¢ ] o ]
block form, has as its off-diagona , i»-block S;,;, and (6) For some rate matrix@Q and distinct non-negative
as itsith diagonal blockQ; — °;, Sii,. Note each row of 157255 Te, Qi = 13Q.
R sums to 0. We require that describe a time-reversible £ this submodel, the full covarion process has rate matrix
process; that is, for some vectgr with positive entries
summing to 1 the matrix R =diag(ri,r2,...,7¢) @ Q + S ® Ix. 2

diag(p) R Example 1:sCov(2,4) is just a generalization of the Tuffley-
Steel covarion model of nucleotide substitution [19]. Foiy a

is symmetric.
s1,s9 > 0, let

We may rescaleR, or equivalently all entries of the); and

Siyiy» SO that S = <_81 o1 ) , o=(01,02)= ( 2 _ ) .
trace(diag(p)R) = —1. 2. 782 s1+s2 S1+ 82

ThensS defines a time-reversible switching process with statipnar

Requwllng thls norma!lzatlon avoids a trivial non-idermtffility vectoro. For anyQ, = of a 4-base GTR model, taking= r; >
issue in which rescaling of edge lengths would have the same : o
we obtain a rate matrix with block structure

effect as rescalingr. It also imposes a scale on edge lengths sé
that the average instantaneous rate of (base,class) chander A\ (Q —s1l sl )
the Markov process is 1 per unit of edge length. We will assume sol r2Q —s2l)”’
throughout the rest of this paper that this normalizatios b@en \hile
made. Consequently, if two such matrices are multiples & on
another, we may conclude they are equal. = (o171, 0172, 0173, 0174, 0271, O2M2, 0273, O274).

Any matrix R with these properties will be called@varion |t ,., _ o then an invariable class is included, and this is exactly
rate matrix for the general covarion modelCov(c, x), With ¢ the Tuffley-Steel model.
classes and bases.

Example 2:1f ¢ > 3, the requirement foeCov(c, <) that the
class switching process described $¥e time-reversible implies

w = (o171, 0973, ..., OcTe) stronger relationships among its entries than merely rigui

rows sum to 0. If
where ther; € R” ando = (01,...,0.) € R® are vectors of

We may write

positive entries summing to 1. Then the symmetrydofg ()R —(s12 + 513) 512 $13

implies the symmetry ofliag(w;)Q; for eachi. Thus our as- S = 521 —(s21 + s23) 523 )
sumptions ensure th@, each define time-reversible processes. 831 532 —(s31 + s32)
Additionally we find and o are such thatliag(c)S is symmetric, then one can show

. . most easily by using symbolic algebra software, such asléla
04, diag(m;, )Siy i, = 04, diag(mi, )Siyi, - 1) f)r Singularglth);t gsy g p

These conditions are equivalent to the time-reversiboity?.
e . . 512523531 — 13521832 = 0,
A specialization ofCov(c, k) described in [9] assumes further

that and
T . 1
(4) The base substitution processes described bygthbave o= P —. (s21832, S12832, S12523).
equal stationary distributionss; = . 21932 7 212932 7 212923
(5) The switching matrices;, ;, are scalar, S&;,;, = Si;i, I, Let Q1,Q2, Q3 denotex-base GTR rate matrices with a com-
where I is the k x x identity matrix. mon stationary vectofr. Then, up to a scaling factor, the matrix
We refer to this as thequal stationary distribution covarion (Qi; — (s12 + s13)1 s19d s131
mode| denoted byeCov(c, k). so1l Q2 — (s21 + s23)1 s3]
The modeleCov(c, k) can also be conveniently described in s311 s3al Q3 — (831 + s32)1

tensor notation. For any vectors or matricas= (a;,;,) and is a rate matrix foreCov(3, ) with stationary vector
B = (bj,,), let A® B denote the tensor, or Kronecker, product.

Using ordered-pair indices as above, we order rows and e¢@um p = (017 oom o3m).
of A® B so the(iy, j1), (i2, j2) entry iSa;, ;,b;, j,. With the class

switching process fosCov specified by a x c rate matrixS with Such models are presented in [9].

off-diagonal entries;;, ;,, and rows summing to O, then Example 3:Let @1, Q- denotex-base GTR rate matrices, with
R = diag(Q1,Q2, ..., Qc) + S ® I, stationary vectorsry, wo. Let o = (01,02) be any vector of
®7 positive entries summing to 1, aBd= (s1, so, . . ., sx) any vector
p=0Qm.

of positive numbers. Then defining
The symmetry ofliag(u) R is equivalent to the symmetry of each
diag(m)Q; and of diag(e)S. Thus the class switching process
described bys is time-reversible as well. S21 = o1 diag(m1) diag(s),

S12 = o2 diag(ms) diag(s),



ensures that equation (1) is satisfied. For suitablthe matrix  all diagonal entries of allS;;; are non-zero. Therefore, despite
its important role in establishing the results, we do noeref

A(@r 5 e to irreducibility explicitly in statements of th hi onl

Sy Qs — S o irreducibility explicitly in statements of theorems whionly

make claims for generic parameter choices.
is thus a rate matrix for the modé€lov(2, <), and of the type
described in [21]. Ill. STATEMENT OF THEOREMS ANDOVERVIEW

To specify any of the covarion modeSov(c, k), eCov(c, k), We establish the following:
or sCov(c, x) on a topological tred’, in addition to R we must
specify edge lengthi.}. These deter.mme Markov matric@®: (¢, ) on ann-leaf binary treep > 7. If the tree topology
for each edge of the tree as follows: For every intemal €dge 5 known, then for generic choices of parameters all nurakric
of the tree, M. = exp(Rte) is cx x cx and describes (class, base)y,rameters are identifiable, up to permutation of classesided

Theorem 1:Consider the model€ov(c, k), eCov(c, k), and

substitutions over the edge. Lett.ir]g = (1 1 ... 1)€eR° ¢ < k for sCov andeCov, and provided: < « for Cov.
be a row vector, and,; the x x » identity, set . . . . .
. Combined with earlier work in [2], this shows:
J=10@li=(Ix I ... Is) . Corollary 2: Consider the model€ov(c, ), eCov(c, ), and

sCov(c, k) on ann-leaf binary tree,n > 7. Then for generic
é:hoices of parameters, the tree topology and all numeriaal p
ameters are identifiable, up to permutation of classesjiged

c < K.

Then on every pendant edgeof the tree,M. = exp(Rte)J isS
crk X k. Notice that serves to hide class information, by summin
over it, so that only bases may be observed.

Because the process defined W is reversible, we may
arbitrarily choose any internal vertex of the tree as the,ranod  In outline, the proof of the theorem is as follows: Section IV
using p as a root distribution compute the joint distribution oRddresses basic properties of eigenvectors and eigesvafua
bases at the leaves of the tree in the usual way for Markovigavarion rate matrix, and discusses the form of joint distions
phylogenetic models on trees. For aseaf tree, this distribution from covarion models on 2-leaf trees. This section provides

is naturally thought of as an-dimensionals x x x --- x x array. preliminary results needed for the main arguments, whi@nsp

. . ) ~ the remainder of this article.
Let P = P ® I., where P is a c x ¢ permutation matrix.

Then replacingk by PT RP simply permutes the classes. As no

information on classes is observed, it is easy to see thimbas

effect on the joint distribution of bases arising from a g

model. Thus we must account for this trivial source of non-

identifiability. ForsCov(c, &) this could be done by requiring the

r; be enumerated in descending order. However,dot(c,x) _ _ .

andeCov(c, x) there need not be any natural ordering of the Fig. 1. The 6-|ea/f tree on which arguments will be based, withese; and
. . . ..., . internal node, p’.

To treat all these models uniformly, we will seek identifiapi

only up to permutation of classes.

To establish identifiability of model parameters on a pattc
Note that as formulated above, the covarion models gemeraliree, our argument will require that there be a 6-leaf sebivith
mixture models on a single tree with a finite number of classebe particular topology shown in Figure 1. It is easy to se# th
Indeed, one need only choose the switching mastifor sCov  any tree with at least 7 leaves contains such a 6-leaf sulfffee
or eCov to be the zero matrix, or set alf; ;, = 0 for Cov, simplicity, we chose to state Theorem 1 and its corollarytfees
to describe across-site rate variation. However, suchceBoare of 7 or more taxa, even though they also hold for this 6-lead.ir
non-generic — of Lebesgue measure zero within the covarionin Section V the main thread of the proof begins. We use alge-
models. Since our main result allows for non-generic exoapt braic arguments built on a theorem of J. Kruskal [15] to datee
to identifiability, we caution that it does not rigorously pilg  the covarion Markov matrix\/ = exp(Rty) describing the total
anything about across-site rate variation models, thougls i substitution process over the central edgeof lengthtg, in the
perhaps suggestive. tree of Figure 1, up to permutation of the rows and columngs Th
At one point in our arguments we will in fact need an aspart of our argument is not very specific to the covarion model
sumption that rules out consideration of across-site rat@tion but rather applies to more general models provided the Marko
models. In Lemma 12, we require that the switching processatrices involved satisfy some technical algebraic caoomt
for Cov(c, k) is irreducible in the following sense: Say clasdVe therefore must show that Markov matrices arising from the
i communicatego classi’ when all diagonal entries of;;; covarion model, as exponentials of a covarion rate mateitisfy
are positive. Therclass irreducibility of R will mean that for these technical conditions, at least for generic paranuteices.
each pair of classes # i’ there is a chain of classes = Though this fact is completely plausible, establishinggibrously
i0,41,92,...,in = 4 With i, communicating toi;,,. For the requires rather detailed work, which is completed in Secti.
modelseCov andsCov, this definition is equivalent to the usualThis part of our argument is the reason Theorem 1 refers to
definition of irreducibility, [11], for the Markov processdcribed identifiability of ‘generic’ parameters and not all paraerst as
by the switching matrixS. Moreover, class irreducibility oz, well as the reason we requite< k.
together with the assumption that all entries of sagyeare non- Once the Markov matrix on the central edge of the tree is
zero implies irreducibility ofR in the usual sense. identified up to row and column permutations, to determire th
Note that class irreducibility holds for generic choices ofovarion rate matrix we must determine the correct row and
covarion parameters for all three covarion models, as geaigr column orderings, and take a matrix logarithm. We are able



to show there is a unique ordering of rows and columns thby ax x x matrix
produces a covarion rate matrix in part by taking advantdge o

_ T g
the pattern of zeros that must appear in such a rate matrerOt N = JT diag(p) eXpl(Rt)J
facts about rate matrices, such as the non-positivity @reiglues, = J" diag(p)U™ " exp(Bt)UJ
also play a role. We obtain an essential piece of information = JTUT exp(BHUJ
the ordering from the known ordering of bases at the leaves of T

S . = (UJ)" exp(Bt)(UJ).
the tree. All this is the content of Section VII.

Finally, once we have determined the covarion rate matamfr  \we formalize this observation with the following lemma.

this central edge, we use it in Section VIIl to determine the's | emmga 3: Let R be a covarion rate matrix fafov(c, x). Then

of edge lengths between any two leaves in the tree. By stdndg§ jetermines a matrix@ — diag(B1, ..., Ber) With 0 = B >

arguments, we may then determine the lengths of all india]iduﬁ2 > ...> B, and a ranks matrix K of sizecx x x such that

edges in the tree, so all parameters have been identified.  he probability distribution arising from the covarion nebavith

Note that the later steps of our arguments are constructiVa{e matrixiz on a one-edge tree of lengthis
in that one.c.ould apply them to a specific prot.)abil-ity distrib N = KT exp(BE)K.
tion to f’expllutly recover the paramete.rs producing it. Hmwr Proof: It only remains to justify that the rank ok — U/
Kruskal’s theorem is not constructive; it guarantees aumiget ;g However, sincé’ is non-singularrank K = rank.J = . M
of parameters but does not indicate a procedure for recayeri
them. A constructive version of Kruskal's theorem would egiv
an algorithm for the decomposition of three-dimensionabtes o o ) )
into minimal sums of rank 1 tensors. This is an interesting bu 1he basic identifiability result on which we build our later
challenging open problem, which would have applications fguments is a theorem of J. Kruskal [15]. (See also [14] [13
several other areas of applied mathematics as well. Howe/&f more expository presentations.) o
the particular case of Kruskal's theorem we use can also b0 =1,2,3, let N; be a matrix of size x r;, with n’; the
established by a longer argument, which we omit, along tresli Jth row of Ni. Let [N1, N2, N3] denote thex; x rg x r3 tensor
of the identifiability result in [5]. Using that approach ooktains defined by
an explicit parameter identification procedure that depesrdthe r
calculation of eigenvectors fatk x cx matrices. [N1, N2, N3] = Y nj ®n} @nj.

Jj=1
Thus the (k1,ko,k3) entry of [Ny, No, Ns] is
IV. DIAGONALIZING COVARION RATE MATRICES Z;:l Il}(k’l)l’l?(kg)ﬂ?(kg), and this ‘matrix tr|p|e product’
can be viewed as a generalization of the product of two nestric
?\yﬁth one matrix transposed).

Note that simultaneously permuting the rows of all fkig(i.e.,
replacing eachV; by PN; where P is anr x r permutation)
leaves[Ny, Na, N3] unchanged. Also rescaling the rows of each
N; so that the scaling factors; used for then’, i = 1,2,3

V. IDENTIFYING A MARKOV MATRIX ON THE CENTRAL EDGE

We summarize a few basic facts concerning the eigenvect
and eigenvalues of a covarion rate matfixunder the hypotheses
of the Cov(c, ) model.

If R is a rate matrix for Cov(c,x) then it is time-
reversible by assumption. Thudiag(p)R is symmetric, and

. 1/2 . —1/2 ; . . . .
diag(p)™/“ R diag(p) is as well. Therefore satisfycic?c? = 1 (i.e,, replacing eachV; by D; N;, whereD; is
diag(p)/ 2R diag(p) "% = cTBC diagonal andD; D D3 = I) also leavesNi, Na, N3] unchanged.

) ) That under certain conditions these are the only changemtea
for _somel/OQrthogonaIC and real diagonalB. Letting U = [N, N, N3] fixed is the essential content of Kruskal’s theorem.
C diag(p)' /=, we have To state the theorem formally requires one further definitio

R=U"BU, U= diag(p)‘UT. For a matrix N, the Kruskal rank of N will mean the largest

number; such that every set of rows of N are independent.
If R is class irreducible, then it is irreducible. Thus one of itdlote that this concept would change if we replaced ‘row’ by
eigenvalues is 0 and the others are strictly negative [1€]nvely ‘column,’” but we will only use the row version in this paper.
thus assume&B = diag(B1, B2, ..., Bex), Where0 = 81 > B2 >  With the Kruskal rank ofN denoted byrank - N, observe that

> for genericR.
> Ber g ranky N < rank N.

Note that for the mode$Cov(c, <), much more can be said
about this diagonalization. In [8], it is shown that the eigectors ~ Theorem 4:(Kruskal) Letj; = rankg N;. If
and eigenvalues for a scaled covarion rate maRiare related
to those of@Q and certain modifications of through a tensor
decomposition. then [Ny, N2, N3] uniquely determines theV,, up to simul-

) ) S ) ~ taneously permutating and rescaling the rows. That is, if

We now investigate the implications of the diagonalizat@n [, Ny, N3] = [N, N5, N3], then there exists a permutatign
covarion rate matrices for 2-taxon probability distrilom$ arising gnd diagonalD;, with Dy Dy D3 = I, such thatN] = PD;N;.
from the model. This will be useful for identifying edge lehg
in Section VIII.

J1+Jj2+3432>2r+2,

We will apply this result to identify parameters of a stodias
model with a hidden variable. In phylogenetic terms, the ehdsl
SupposeR = U~ BU is the diagonalization described aboveone on a 3-leaf tree, rooted at the central node. A hiddemlstari
A 2-taxon distribution, arising from edge lengthis described at the central node has states, and observed variables at the



leaves have: 1, ko, k3 States respectively. Markov matricgs, of
sizer x k;, describe transitions from the state at the central node to
those on leaf, with observed variables conditionally independent
given the state of the hidden variable. For edch 1,2,3, let

rn;» denote thejth row of M;. One then checks that the joint
distribution for such a model is given by

r Fig. 2. Viewing a model on a 5-leaf tree as a model on a 3-les. tr
1 2 3
[V; Ml,MQ,Mg] = E v;m; @ mj @ m;j.
Jj=1

Then with
Corollary 5: SupposeM;, i = 1,2,3, are r x x; Markov e
matrices, andv = (v1,...,v,) IS @ row vector of non-zero M :%3(%1@’ %2)7
numbers summing to 1. Let = rank g M;. If My = Mg(My @"°" Ms),
J1+d2 43 > 2r +2, Ms = Mz,
then [v; My, M2, Ms] uniquely determinesv, My, My, M3 up We obtain Markov matrices on a simpler 3-leaf tree rootedsat i
to permutation. That is[v; My, Mo, M3] = [v'; M|, M}, M}] central node. Retaining as root distribution the root dhistion v
implies that there exists a permutatidhsuch that)! = PM;  atp, the joint distribution for this simpler tree js; M, My, Ms].
andv’ = vpPT. The entries of the distribution for the 5-leaf tree and the 3-

Proof: This follows from Kruskal's theorem in a straight-€af tree are of course the same, though one is organized as

forward manner, using that the rows of each Markov matdx 5-dimensional array and the other as a 3-dimensional .array
sum to 1. m However, the reorganization into a 3-dimensional arrayrigial

) ) . in allowing us to apply Kruskal's theorem.

Remark 1:The corollary actually claims identifiability for ) .
generic parameters, where ‘generic’ is used in the sense O*_emma 6:0n thg 6-leaf tree of F'QUfe 1 rooted @tconsider
algebraic geometry. To see this, note that for any fixed ehoi@ Markov model withr states at all internal nodes ardstates
of a positive integerj;, those matrices\; whose Kruskal rank 2t eaves. Let the state distribution at the root be specified,
is strictly less thanj; form an algebraic variety. This is becausénd Markov matrices/; describe transitions on edge directed
the matrices for which a specific set ffrows are dependent is away from the root, so for internal edges the arer x r, and
the zero set of alj; x j; minors obtained from those rows. Then,On pendant .edges. grex ke
by taking appropriate products of these minors for differsets Suppose in addition
of rows we may obtain a set of polynomials whose zero set i¢1) all entries of bothv andv’ = vy are positive,
precisely those matrices of Kruskal rankj;. (2) the four matrices\ls (M4 ®"" Ms), Mo Mg(My&"" Ms),

M3 (M1 ®"°" Ms), and M Ms(M; ®"°" Ms), where M} =
diag(v')~tM{ diag(v), all have rankr.
(3) the Kruskal ranks of\f; and Mg are > 2.
Then My, M7, and v are uniquely determined from the joint
N =N ®"" Ny distribution, up to permutation. That is, from the jointtdisution

denote ther x st matrix that is obtained from row-wise tensorWe may determine matriceSy, N and a vectorw with No =

T _ pT _
products. That is, théth row of NV is the tensor product of the Pi MoPy, Ny = Py My, andw = vP, for some unknown

ith row of Ny and theith row of Ny. Although we do not need perm;rt(;agf nl\slilteatrk]\ifjgi.nce the matrices in (2) have rankvhich
a specific ordering of the columns of, we could, for instance, X )

define N by N(i, j + s(k — 1)) = Ny (i, ) Na (i, k). is equal to the number of their rows, they also have Kruskak ra

To interpret this row-wise tensor product in the context of
models, consider a rooted tree with two leaves, and a Mark%
model withr states at the root, ane; states at leat, i = 1, 2.
Then the transition probabilities from states at the roostates
at leaf: are specified by am x x; matrix M; of non-negative
numbers whose rows add to 1. The mathik = M; ®"°% My
will also have non-negative entries, with rows summing tdtd.
entries give transition probabilities from thestates at the root to
the k1 k2 composite stateat the leaves, formed by specifying th
state at both leaves. Thus this row tensor operation is galgn
what underlies the notion of a ‘flattening’ of a multidimensal
tensor that plays an important role in [4], [2].

To apply the Corollary of Kruskal’s theorem in a phylogeoeti
setting, we need one additional definition. Given matriggsof
sizer x s and Ny of sizer x t, let

First consider the 5-leaf subtree where edgge has been
leted, and edgesy and eg conjoined. Then by Corollary 5,
we may determines P, and the matrices?{ Ms(M; @"°% M),
PL Mg Mg(M, @™ Ms), and P{f M7 for some unknown permu-
tation P;.

Now reroot the tree of Figure 1 at, using root distribution’
and matrixM{, on edgeeg (directed oppositely), without affecting
the joint distribution at the leaves. Having done this, ideis

She 5-leaf subtree where edge 7 has been deleted. Anothiér app
cation of the corollary determines’ P, P2TM6(M4 Q"% Ms),
PT MMz (My @7 Ms), and P{ Mg.
Finally, from ther x % matricesA = P{l Mg Mg(My®"°% Ms)
Kruskal's result will actually be applied to a model on a 52nd B = Py Mg (M, ®" Ms), which by assumption have rank
leaf tree, by a method we now indicate. For the 5-leaf trde We may determine the x r matrix C' = P{ My Py: since both
shown in Figure 2, rooted at, suppose Markov matricesZ; A and B have rankr, the equationd = C'B uniquely determines
(not necessarily square) are associated to all edges toilescC- u
transition probabilities of states moving away from thetroo Note that for the covarion models, has positive entries by



assumption, and sinck is time reversible with stationary vectordoes not lie inXgcoy -

v, we will havev’ = v and Mj = My. Thus condition (1) will Since the sameR and {t;} arise from parameters for

automatically be satisfied in our application of the lemma. eCov(c, k), respectivelyCov(c, k), we have also found at least
The only potential obstacle to applying Lemma 6 to thene parameter choice for these models that does not &,

covarion model is that we must know that assumptions (2) af@spectivelyXcoy .

(3) on the ranks of various products of Markov matrices are me Now observe that the set of parameters for which any one of

While one would certainly suspect that at least for gendrmiaes the four specifiedcs x «* matrices has rank cx is the zero

of covarion parameters there would be no problem, itis mwiat  set of a collection of analytic functions. Such functions dze

to establish this rigorously. That is the content of the hexima. explicitly constructed by composing the parameterizatiap for

Let {f1,...,fn} be a finite collection of analytic functions each matrix with the polynomial functions expressing ¢hex cx
with common domainD C C”. Recall that theanalytic variety minors. Similarly, the set of parameters for which a pendaie
V =V(f1,..., fn) is the subset o on which all f; vanish. In matrix fails to have Kruskal rank 2 is the simultaneous zero set

the next lemma we will use the existence of a single poiddiny”  of a collection of analytic functions built from the compibsin of
to conclude that th& is of strictly lower dimension thai. This the parameterization of that matrix with tRe 2 minors. Thus the
step may not be familiar to most researchers in phylogenetisetX is the union of analytic varieties, and hence itself an aialy
so we recall a simpler instance. A powerful theorem conogrni variety. This set cannot be the entire parameter spaceg siec
analytic functions of a single complex variable is that if atave found one point that lies outside it. Therefdfés a proper
analytic functionf is not identically zero, then any zeros pfin  analytic subvariety, as claimed. As such, it is of dimensitictly
the interior of its domain must be isolated. Equivalentfythere less thanL. ]
is a single pointzp with f(z) # 0, then the zero set of is For all covarion parameters outside the Zebf Lemma 7, we
a zero-dlmensm.nal subset of the ong-dqnensmngl domaifi. of yay apply Lemma 6 and identifyr = PT exp(Rto) P> andy =
Our argument .S|mply uses a generahzatlo.n of this fact from tupl for some unknown permutationg;, P,. As X is of lower
theory of functions of several complex variables. dimension than the parameter space, it has Lebesgue measure
Lemma 7:ldentify the stochastic parameter spatef any of Thus for generic covarion parameters we may identifyand v.
the modelsCov(c, ), eCov(c, k) or sCov(c, k) on the 6-taxon
tree of Figure 1 with a full-dimensional subset®f so that the
parameterization map for the probability distribution igem by
analytic functions.
Let X C S be the subset on which either at least one of the In this section the particular parameter choice needed én th
four cx x x> matrices arising from cherries, proof of Lemma 7 is constructed. We thus consider only the
row model sCov, with the parameters), S, and {r;} as described
exp(Rts)(exp(Rt1)J & exp(Rt2) ), in Section 1l, andR as given by equation ({2).}We seek values

VI. CONSTRUCTION OF SCALED COVARION PARAMETERS
WITH CERTAIN PROPERTIES

exp(R(t3 + t9)) (exp(Rt1)J @™ exp(Riz)J), of these parameters and &f, t; > 0 so thatexp(Rt1)J @"°% J
exp(Rtg)(exp(Rt4)J @Y exp(Rts5)J), has rankcx andexp(Rt7)J has Kruskal rank at least 2. Note that
exp(R(te + to))(exp(Rts)J @ exp(Rts)J), sinceexp(Rt;)J @Y J is cx x £, it may only have the desired

rank whenc < k.

has rank< ck, or at least one of the two matrices . . . .
One might first consider taking, = 0, so

Rt7)J, Rtg)J . .
exp( 7) exp( 8) exp(Rtl)J QT J = J " J.

on the pendant edges, es has Kruskal rank< 2. Then ifc < &,
the setX is a proper analytic subvariety @&, and hence of
dimension< L.

Proof: For our argument, it will be convenient to exten ) : ' ]
the set of allowable edge lengths from > 0 to a larger set example. Our first step is to establish the following.
including t; = 0. Once the claim is established allowing zero- Lemma 8:Suppose that for eaghe [«], the vectors appearing
length edges, we may restrict to positive-length edges gasais thejth rows of the matrix power@™, m =1,...,c— 1 arein-
needed in other parts of our paper). This is simply because thependent. Then there exist ¢z > 0 such thaexp(Rt;)J®"™°"J
original and extended parameter spaces described hereth®avehas rankex and exp(Rt7)J has Kruskal rank at least 2.

However thisck x «? matrix has ranks < cx. Similarly, taking
t7 = 0, soexp(Rt7)J = J, fails to produce a matrix of Kruskal
cfank at least 2. Thus we must do more work to find the needed

same dimension, so the intersection of a proper analyticasigty Proof: We first show the existence of suchta Let M =
of the extended parameter space with the smaller parangetee s M (t) = exp(Rt).J. Because of the specific form df it is easy to
must also be a proper subvariety. see that any dependency relationship between the rowsst"

Consider first the edges, e2, e, e7 in the tree of Figure 1. In J is equivalent tox separate dependency relationships between
Section VI below it will be shown that when< « there is at least rows of M. Specifically, the rows of\/ ®@"°* .J are independent
one choice of a rate matrik for sCov(c, ), and edge lengths if, and only if, for each;j € [] the set of thec rows of M with
t1 >0, ty =0, t3 =0, t7 > 0 so0 thatexp(Rt3)(exp(Rt1)J ®@"°" index (1, 5), i € [c], are independent.
exp(Rt2)J) has rankek andexp(Rt7)J has Kruskal rank> 2. Letting X;(¢) denote thec x x submatrix of M(t) consisting
Assuming this result for now, by in addition choosing of the (i, ) rows, we claim that some x ¢ minor of X, (t) is
non-zero for all but a discrete set of valuestofSince there are
only finitely many; to consider, this implies the existence of the
we have found at least one parameter choices€asv(c, k) that desiredt;.

tg =0, tg =17, t6 =13, t5 =12, t4 =11



Fixing j, for notational ease let onto these column coordinates yields
x1(t) %1 (t) (0, (0)
X;(t) = , x(t) = det = L,7,
xc(t) Xe(t) )—((Cfl)(o)
where the bar denotes projection onto some choice @fordi- ule)

nates, to be specified later, so thdt) is a specificc x ¢ minor
of X;(1). ~(0) _(e—1) T i1 >
det 0),..., 0)) = L) det(2).
Sincez(t) is an analytic function, to establish that it is non-zero ¢ (X“(l)( ) X(e) )) 1:1_11 TuGy | 4e4(Z)
except at a discrete set of points, it is enough to show it ts no. _ (n) o
identically zero. Nowz(¢) is easily evaluated only at= 0, and Sincedet(Z) # 0, to see that:""/(0) # 0 it is enough to show

SO

unfortunatelyz(0) = 0 sincex;(0) is the standard basis vector © i
e; for all <. We will, however, showz(t) is not identically zero Z sgn () H Tty # 0
by showing the derivative (™ (0) is non-zero fom = c(c—1)/2. HESe =1

To obtain information on the derivativesz(.l)(o), observe that But the left hand side is a Vandermonde determinant, ancesinc
M(t) is the solution to the initial value problems’ = RM, ther; are distinct, it does not vanish. Thus the desire@xists.
M(0) = J. Thu3x§l)(0) is the (4, j) row of R'J. Moreover, since ~ For the existence of;, consider the(iy, j1) and (iz, j2) rows

S1T = o, of exp(Rt)J. If ji1 # j2, then these rows are independent when
. ) Lo T t = 0, hence for allt except a discrete set. Jfi = jo, then the
R'J = (diag(r1,72,...,7¢) @ Q + S @ Ix) (1c ® In) two rows are rows ofy;, (¢), and thus independent for all but a
. LT . -1 T m discrete set of by our work above. Since there are only finitely
= diag(r1,72,...,7e) 1lc ® Q"+ Z Yim ®Q, many pairs to consider, for all but a discrete set of valuedinee
m=1 exp(Rt)J has Kruskal rank> 2. [ |

for some vectorsy; ,,,. Thus, fori > 1, xgl)(O) is a linear  The existence of rate matric€® satisfying the hypotheses of
combination of thejth rows of @™, 1 < m < I, where thejth the last lemma is a consequence of the following one.

1 ; ]
row of Q" appears with coefficient;. Lemma 9: Suppose & x « rate matrixQ has at least distinct

Now with nn = ¢(c — 1)/2, eigenvalues and its right eigenvectors can be chosen to dlhve
x(n)(o) _ Z my det (xgm)(O), ’)-(((: c)(o)) ) non-'zero entrles.l Then for eaghe [x] the vectors appearing as
the jth rows of Q*, I = 0,...,c — 1, are independent.

A=(n1,...,nc)

o o Proof: Let Q = UDU ! be a diagonalization of). Then
where the summation is over non-negauve_ integer §o|utt_ons with u; denoting thejth row of U, the jth row of Q' is uleU—ll

m o+t ne =mnandmy = (,, ", ) is amultinomial 14 show these rows are independent, it is enough to show the
coefficient. Lettingzo = e; andz; be thejth row of Q" for y;p!,1=0,...,c—1 areindependent, or even that the projections
i > 1, we have shown thaigl)(o) lies in the span of{z;}._, of these vectors onto some choice otoordinates are indepen-
for all { > 0. This implies that any summand in equation (3ient. By choosing to project ontocoordinates corresponding to
must vanish if more tham + 1 of the n; satisfyn; < [, since distinct diagonal entries ob, we may reduce to the case where
in that case the rows in the determinant are dependent. Biiis ¢ x ¢ with distinct diagonal entries and the vectars € C*
n=c(c—1)/2=0+1+---+(c—1), hence non-zero terms canhave all non-zero entries.

arise only when\ is a permutation of0,1,...,¢—1). But if W is the c x ¢ matrix whoseith row is ulefl, then
With S. denoting the permutations dfi,...,c), andm = W =V diag(u;) whereV is a Vandermonde matrix constructed
M0,1,....c—1)» from the diagonal entries dp. By our assumptions, botii and
. . diag(u;) have non-zero determinants, 86 does as well. Thus
2M0)=m > det (s«&“ W=V, ... = (c)_l)(O)) the rows of W are independent. ]
pESe To see & satisfying the hypotheses of Lemma 9 exists, let
=m > sgn(u)det (xf?()l)(o), ,xff(;)”(o)). )

HES. QO = ) (lglm - ff]/@)

k(k—1

But with Z = (2§ ,...,22_;)”, we have shown be a generalized Jukes-Cantor matrix of sizeall of whose

(0) off-diagonal entries are equal, which has stationary vetto
Xu(l)(o) The eigenspaces af), are the span ofi, and its orthogonal
: =LuZ complement. For a diagonalizatiapy = UDoU ! we can thus
x(c—l)(o) choseU to be an orthogonal matrix all of whose entries are
(e) non-zero. (For instance, when = 4 we may choosd/ to be

where L, is ac x ¢ lower triangular matrix with diagonal entriesa Hadamard matrix.) Sinc&, has repeated diagonal entries,
L;; =L, By hypothesis, all rows of except the first form an perturb the non-zero entries slightly to obtain a diagonatrix

, (i) ; iti -1 gj
independent set, and sing#1Z = 0 for [ > 1 while zo17 = 1, D without repetitions, and le¢ = UDU™". SinceQ also has
the first row is not in the span of the others. Thihas ranke, 1 @S its stationary distribution, and singeis symmetric, it is
and some choice af of its columns are independent. Specifying® raté matrix of the sort needed.

that the bar over a matrix or row vector designates a prajecti Choosing such & and anyS and distinctr; for the sCov



parameters gives a particular choice of scaled covaricenpeters positions. Since the same argument applies to the subemtric
Q, S, {r;} such that there existsta > 0 whereexp(Rt;)J ® J obtained from theN; by deleting the rows and columns with
has rankck, and at7 > 0 such thatexp(Rt7)J has Kruskal rank the largest entries, repeated application shaws= N,. Thus

at least 2. P =Ps. [ ]

Thus Lemma 7 is fully established. Corollary 11: Supposev, M are of the form
_ _ pT

VIl. I DENTIFYING THE COVARION RATE MATRIX R v=pbh,  M=Piexp(R)P,

for some covarion rate matriR with stationary vectoj:, permu-

The next goal is to use = uP; and M = P{ exp(Rtg) Py, ) A - g
ttions Py, Py, and scalat. Then P; P, is uniquely determined.

as identified in Section V through Lemmas 6 and 7, to determi : - T

the covarion root distributiop. and the covarion rate matrig. Proof: Apply Lemma 10 todiag(v) M, with P = Py P,

It is of course enough to determitiety, wherety > 0 is the edge W = P2, andZ = diag(u) exp(£t). =

length, and then use the required normalizationRof As a consequence of this corollary, after multiplyig on the
Let us assumev has its entries in non-increasing orderfight by (P ;)" we may now assume we have

(This can be achieved by multiplying on the right by some _ T

permutation P, and M on the left by PT, thereby changing v=mnb  M=Pexp(R)P

the unknownP;.) Now sincediag(p) exp(Rt) is symmetric, and for some (unknown) permutatiaR. But thenM = exp(PT RPt),

diag(v) = P{ diag(p)P1, one can verify thatliag(v)M P4 P,  and since this matrix is diagonalizable with positive eigeues,

is symmetric as well. This shows there is at least one reimgler P7 RPt is determined by applying the logarithm to its diagonal-

of the columns of\/ that results irdiag(v)M being symmetric. ization.

Assume some such ordering of the columnabhas been chosen  Now PT RPt is simply a rescaled version at with the same

to ensure this symmetry. permutation applied to rows and columns. Thus there exists a
If v (equivalently, 1) has no repeated entries, these choicdgast one simultaneous permutation of the rows and colurfins o

have uniquely determined an ordering to the rows and colum#<d RPt which yields a rescaled covarion rate matrix. However,

of M, and forcedP, = P;. To see this, note the rows ofwe do not yet know if there is a unique such permutation, or a

M have a fixed correspondence to entries1qf which have unique such covarion rate matrix.

a unigue decreasing ordering. For the columns, note that theOne might suspect that the pattern of zero entries in the

symmetry ofdiag(v)M and the fact that..M” = 1., implies off-diagonal blocks of a covarion rate matrix should allome t

vM = v. However, if the columns of\/ are permuted byP, (almost) unique determination df¢ from this permuted form.

thenvMP = vP # v. We therefore can conclude= pP; and This is the content of the following lemma.

M = P exp(Rtg) Py for some unknown permutatiof, . Lemma 12:Let Ry, R, be rate matrices foCov(c, x), with
Sincer may have repeated entries, the above argument onyf class irreducible, as defined in Section Il. Suppose for

holds for generic choices of parameters. In order to avdiin permutationsP;, P, and scalars;, t> > 0, that

ducing any generic conditions other than those alreadyngris T T

from the application of Kruskal's theorem, we give an altgen Pr RiPity = Py RoPata.

argument using the following lemma. If ¢ # x thent; = to, and P = P P4 can be expressed as
Lemma 10:Suppose that a matrix/ has a factorization of the P = P ® P for somec x ¢ permutation? andx x x permutation
form M = PWT Zw for some real symmetric positive-definite P. Thus R; can be determined up to application of a permutation
m x m matrix Z, real m x n matrix W of rank n, andn x n  of the formP @ P.
permutationP. Then P is uniquely determined by/. If R1, Ry are rate matrices for eitheCov(c, k) or eCov(c, k),
Proof: The matrixZ defines an inner product di™, and then the same result holds for all
if w; denotes theth column of W, then the:, ; entry of the

. . T _ Note that a permutation of the forii @ P can be viewed as a
symmetric matrixN = W* ZW is

permutation of classes b¥, and a simultaneous permutation of

(wi,wj)z = wl Zw;. bases within all classes by.
) ) ' Proof: Using the normalization oR; and Ro, it is trivial
But for any inner product, ifc # y then to see that; = t,. Conjugating byP,, we obtainP” Ry P = R.

(x,2) + (y,y) > 2(z, y). Let N pe a matrix of the same size a?l, with ent_ry
1 (respectively, 0) wherever the corresponding entryRgf is
Now the matrixi¥" has distinct columns since it has rankThus positive (respectively non-positive). Lef; = G(R;) be the
the entries ofNV satisfy (undirected) graph whose adjacency matrixNs= N7”. Thus
@) the vertices ofGG; are labeled by the elements @f x [x], the
indices corresponding to rows and columnsiyf, and an edge
Suppose for some permutatioriy, P, the matricesN; = joins verticesi and;j exactly whenR (i, j) > 0 (or, equivalently,
PIM and Ny = Pf'M are both symmetric, and have entriesvhen R;(j,i) > 0). G; is the ‘communication graph’ of?;,
satisfying the inequalities (4). Note also théf and N2 have the expressing which instantaneous state changes can occur.
same set of rows. By assumptions onRk;, for each class with Q; # 0, the
Consider first the largest entry (or entries, in case of tids) vertices labeleds, j), j € [«], corresponding to all states in class
N7 and N,. Because the inequality in (4) is strict, a largest entry, form a clique {.e., the subgraph on these vertices is a complete
cannot appear off the diagonal. Thus the row (or rows)Npfand graph) of size<. Moreover, these cliques are each maximal, since
N, containing the largest entry (or entries) must occur in Hraes any vertex(i’, j/) outside of the clique has # i and is connected

Ng; +njj > QTLZ']'.
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to at most one vertex in the clique, namély;’), which has the Let PT M- denote the x x matrix, which was determined via

same base but different class. Lemma 6, describing permuted transition probabilities dgee7
Suppose first that # . In this case we show there are ndPf the tree of F|gAure~l.TAssum|n§’ = P® P by previous steps

other maximal cliques of size. To this end, suppose a vertex'" OUr analysis(P ® P)" exp(Rt7)J is known.

labeled (i, j) is in some other maximal cliqué of sizex. The ~ Lemma 13:SupposéV = P” exp(Rt).J for some permutation

only vertices adjacent to it outside of its class correspanthe P = P ® P, covarion rate matrix?, and scalart. Then P is

same basg. ThusC must contain at least one of these, $ay;j) uniquely determined.

where k # i. As the (k,j) vertex and any(i,l) vertex cannot Proof: Consider thex x x matrix, determined by known

be in a common clique ifi # I, C must contain only vertices information,

corresponding to l_)asje As there are: # « of these, they cannot JT diag (L)W = T pT diag(u)PPT exp(Rix)J

form a clique of sizex.

Now if we similarly constructGy = G(Rs), the statement = (Le® Io)(P" @ PT) diag(n) exp(Rtr)J
PTR, P = Ry means there is a graph isomorphism frata to = (1.PT @ I, PT) diag(u) exp(Rt7)J
G4, obtained by rglabellng _vernces according to_the perrmnat — (1e® ﬁT) diag(p) exp(Ri7)J
P. As such an isomorphism must take maximal cliques to ~r .
maximal cliques, we see thadt must map all states in aRr; = P7 (1c @ Ix) diag(p) exp(Ri7)J
class withQ; # 0 to all states in amk, class withQ; # 0. (As = pPTN,

the covarion model allows at most one class with = 0, this

also means that if eithe®; has a class witl@); = 0, then so does
fhat

the other, and these classes must also be mapped to onergnot

This implies P has the following structure: PartitioR into a

¢ x ¢ matrix of x x x blocks, corresponding to classes. All blocksyhere B is real diagonal ands has ranks. We may thus apply

of P are zero, except for one block in each row and column./tet| emma 10 to the product

be thec x ¢ permutation matrix with 1s in positions corresponding

whereN = J7 diag(u) exp(Rt7).J. From Lemma 3, we also have

N = KT exp(Bt7) K

T . ST T

to those non-zero blocks. The non-zero blocksadre alsas x « J* diag(v)W = P* K~ exp(Bt7)K

permutation matrices. to determineP. -
We next claim that the non-zere x  blocks in P are all  Thys for generic parameterg,and . are determined uniquely,

identical. To see this, consider how acts on a non-zero off- yj to the permutatio of classes.
diagonal blocks;,;, of R; through the formulaPT R, P: the
resulting block has the fornP{'s;,;, P, where P, and P, are
two of thex x x permutations appearing as blocksfBut this
must equal the corresponding block &%, which is diagonal.

Remark 2:That the restriction: < « is necessary for th€ov
model in Lemma 12 can be easily seen. For example, with
¢ = 2, the two rate matrices

Thus if all diagonal entries of;,;, are non-zero thew{ P, = -5 3 2 0

I, so Py = P5. The class irreducibility ofR; ensures that we ro L3 —4 0 1

obtain enough such equalities to see thatalare equal to some 412 0 -3 1]’

commonk x « permutation?. ThusP = P ® P. 0o 1 1 =2
Now for the modelsCov andeCov consider the case ef= «. -5 2 3

In this case, maximal cliques corresponding to either a fbeesk R — 112 =3 0 1

or a fixed class have the same cardinality, but there can be no 14 ?) (1) —14 12

other maximal cliques. Unless the graph isomorphism fi@m

to G maps some fixed-base clique to a fixed-class clique, oafe related by exchanging rates and classes. Note furthiebalth

earlier argument applies. R and R’ have 11,4 as their stationary distribution, so they lead
We therefore suppose that the baselique is mapped to the to the same observed distribution at a single leaf. Moredtey

classi clique, and argue toward a contradiction. This me&ns |ead to the same set of observable distributions at two seaven

maps vertices inG; labeled(k,j) for £ = 1,...,c to vertices one considers all possible edge lengths 0. Thus one cannot

labeled (¢,1) for I = 1,...,x in G2. As a result, every other uyse the observed distribution at one or two leaves to digisg

fixed-base clique inG; must also map to a fixed-class clique irbetween distributions arising from these two rate matrices

G, since all the fixed-base cliques 6% include some(i,1). Of course one might next attempt to use observed joint dis-
But the formulaP” Ry P = R, implies that each diagonal block tributions at multiple leaves to distinguish these paramsetor

of Ry must have as it — » off-diagonal entries the” — x  introduce additional generic conditions to obtain ideakifiity of

valuess;, ;, # 0 which appear in the off-diagonal blocks &f. numerical Cov parameters even when= x. As we have not

But this is impossible, since the base-change matrigesf Ry  pursued these directions, we do not claim identifiabilitysféor

are assumed not to be equal. B generic parameters in this case, but only that the argunggrea

We now have determineft andu up to separate permutationsa20ve do not establish it.

P of the bases and® of the classes. The ambiguity expressed

by P cannot be removed, as permuting classes has no effect on VIII. | DENTIFYING EDGE LENGTHS

the distributions defined by the model. Our next step is to useAs R is now known, all that remains is to determine edge
information on the ordering of the bases obtained at theekeadengths. By simple and well-known arguments [18], theselman
of the tree in order to determing. determined from knowing total distances between leaveqef t



tree. Thus the determination of all edge lengths is estadidy
the following.

Lemma 14:Fix a covarion rate matrixk, of size ck x ck.

Suppose & x x matrix N is in the image of the resulting covarion

model on a 2-taxon tree, with edge lengthThen N uniquely
determines.
Proof: From Lemma 3, we have that

N = KT exp(Bt)K,

where B = diag(ﬂlw"aﬂﬂﬁ)v 0=p5 > ﬂ2 > 2> fBen and K
is a realck x k matrix, of ranks. Furthermore, sinc& is known,
so are allg; and K.

With K = (k;;) and N = (n4j), this implies the diagonal [20]

entries of N are

Ni; = Z ki exp(B;t). (5)

j=1

As thek;; are real numbers and &} are non-positive, each term

in this formula is a non-increasing function ©fThusn;; = n;;(t)
is a non-increasing function af If we show that for some the
function n;; (t) is strictly decreasing, then from any value 1af
we may determing. But to establish that some;; is strictly

decreasing, we need only show there exists senamd some
J > 1 such thatk;; # 0, so that at least one term in equation (5

is a strictly decreasing function. However, Ashas ranks > 1,
we cannot havé:;; = 0 for all j > 1. [ |
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