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The Identifiability of Covarion Models in
Phylogenetics

Elizabeth S. Allman, John A. Rhodes

Abstract— Covarion models of character evolution describe
inhomogeneities in substitution processes through time. In phy-
logenetics, such models are used to describe changing functional
constraints or selection regimes during the evolution of biological
sequences. In this work the identifiability of such models for
generic parameters on a known phylogenetic tree is established,
provided the number of covarion classes does not exceed the size
of the observable state space. ‘Generic parameters’ as usedhere
means all parameters except possibly those in a set of measure
zero within the parameter space. Combined with earlier results,
this implies both the tree and generic numerical parametersare
identifiable if the number of classes is strictly smaller than the
number of observable states.

Index Terms— phylogenetics, Markov processes on trees, co-
varion models, statistical consistency

I. I NTRODUCTION

Phylogenetic inference is now generally performed in a sta-
tistical framework, using probabilistic models of the evolution
of biological sequences, such as DNA or proteins. To rigorously
establish the validity of such an approach, a fundamental question
that must be addressed is whether the models in use areidenti-
fiable: From the theoretical distribution predicted by the model,
is it possible to uniquely determine all parameters? Parameters
for simple models include the topology of the evolutionary tree,
edge lengths on the tree, and rates of various types of substitution,
though more complicated models have additional parametersas
well. If a model is non-identifiable, one cannot show that perform-
ing inference with it will bestatistically consistent. Informally,
even with large amounts of data produced by an evolutionary
process that was accurately described by the model, we might
make erroneous inferences if we use a non-identifiable model.

Identifiability for the most basic phylogenetic models, such as
the Jukes-Cantor, Kimura, and all other time-reversible models,
follows from Chang’s work on the general Markov model [5].
However, for models with rate variation across sites, where
the distribution of rates is not fully known, only recently have
the first positive results been obtained [2], [3], [1]. Despite its
widespread use in data analysis, identifiability of the GTR+Γ+I
model has yet to be addressed rigorously. (Unfortunately the proof
of identifiability given in [17] has fundamental gaps, as explained
in the appendix of [1].)

The covarion model, introduced in its basic mathematical form
by Tuffley and Steel [19], incorporates rate variation within
lineages rather than across sites. Extensions of the basic version of
the model have appeared in a variety of analyses of experimental

Department of Mathematics and Statistics, University of Alaska Fair-
banks, PO Box 756660, Fairbanks, AK 99775-6660; e.allman@uaf.edu,
j.rhodes@uaf.edu

The authors thank the Isaac Newton Institute and the National Science
Foundation. Parts of this work were conducted during residencies at INI, and
with support from NSF grant DMS 0714830.

data, with authors referring to the model using terminologysuch
as ‘covarion’ [12], ‘covarion-like’ [7], [20], ‘site-specific rate
variation’ [7], [10], ‘Markov-modulated Markov process’ [8], [9],
or ‘temporal hidden Markov models’ [21]. We use the name
‘covarion’ in this paper for simplicity, although we acknowledge
the model does not capture the full complexity of the process
originally proposed by Fitch and Markowitz [6]. Informally, the
covarion model allows several classes (e.g., invariable, slow, and
fast), with characters evolving so they not only change between
observable states, but also between classes. Though the class is
never observed, it affects the evolutionary process over time. The
model thus attempts to capture the fact that substitution rates
may speed up or slow down at different sites in a sequence at
different times in their descent. Changing functional constraints
or selection regimes are possible sources of such a process.

Identifiability of even the tree parameter under the covarion
model was not established with its introduction in [19], despite
strong efforts. In [2], the authors established that for generic
choices of covarion parameters tree topologies are indeed identi-
fiable, provided the number of covarion classes is less than the
number of observable states. Thus for nucleotide models of DNA
there can be 3 classes, though for amino acid models of proteins
one can allow 19 classes, and for codon models of DNA up to 60
classes. ‘Generic’ here means that there could be some parameter
choices for which identifiability fails, though they will berare
(of Lebesgue measure zero). In fact, if parameters are chosen
randomly, with any natural notion of random, one can be sure
the tree topology is identifiable.

Since the notion of generic identifiability is perhaps not widely
known, and will play a key role in this work as well, we elaborate
on its meaning. For statistical models in general, it is most
desirable to establish identifiability over the full parameter space.
However, such a strong claim may not hold, so that the best
possible result is to establish identifiability over most ofthe
parameter space, and completely characterize all those param-
eter choices for which identifiability fails. Generic identifiability
results are a little weaker than this, in that while identifiability
is established over most of the parameter space, they allow for
ignorance about identifiability on a small subset of the parameter
space. This exceptional subset of parameter space containsall
parameters for which identifiability fails, but may also contain
some parameters that are identifiable. Complex statisticalmodels
can be quite difficult to analyze, so that generic identifiability is
sometimes the strongest known result. For instance, thoughhidden
Markov models are widely used in bioinformatics and other fields,
and generic identifiability was proved for HHMs in [16], we know
of no improvements on that work in the nearly 40 years since
it appeared. Phylogenetic models are similar to HMMs in that
they posit unobserved variables, at the internal nodes of a tree,
but typically have more complex parameterizations than HMMs.
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Thus we consider their analysis to be even more challenging.

The question of identifiability of numerical parameters forthe
covarion model was left open by [2]. In this article, we assume
the tree topology is known, and establish identifiability ofthe
numerical parameters of several variants of the covarion model
for generic parameter choices, provided the number of covarion
classes is strictly less than the number of observable states. For
certain versions of a covarion model, this can be strengthened to
allow one more class, so that the number of classes and observable
states may be the same.

We consider three variants of the covarion model, which extend
the Tuffley-Steel model, and have previously appeared in works
of others, though without our formal terminology: Thescaled
covarion model,sCov, assumes all classes undergo substitutions
according to a common process but at rescaled rates. Theequal
stationary distribution covarion model, eCov, generalizes this to
allow in-class substitution processes to vary more across classes,
provided they have identical stationary distributions andclass
change rates are independent of the base. Finally, in thegeneral
covarion model, Cov, each class may undergo substitutions quite
differently as long as the entire process is time reversible. Cov is
the model described in [21],eCov is developed in [9], andsCov

is used in [10].
Note these models are nested,

sCov ⊂ eCov ⊂ Cov,

though each submodel is non-generic within its supermodels.
Because identifiability is established here only for generic param-
eters, it is necessary to state and prove the generic identifiability
of all three covarion models to encompass the range of models
used in practice.

In Section II we formally present these models, and in Section
III we state our results precisely. That section also provides
an overview of the proof. For those whose primary interest
is understanding the result, and who do not wish to delve
into the full mathematical arguments behind it, we suggest that
reading through Section III may suffice. The remainder of the
paper provides the rather detailed arguments that are essential to
rigorously establishing identifiability.

We also note that many practitioners have conducted data
analysis with models combining covarion features with across-site
rate variation, such as that modeled by a discreteΓ distribution.
While the identifiability of such models has not been established
rigorously as of yet, we view the main theorems of this paper as
providing a first step toward understanding of these more complex
models.

This work was influenced by many useful discussions concern-
ing covarion models that we had with participants of the Isaac
Newton Institute’s Programme in Phylogenetics. Simon Whelan
deserves particular thanks for explaining his forthcomingwork
[21].

We also thank the referees for their helpful suggestions, and
especially Christopher Tuffley, who noted a flaw in an earlier
version of Section VI, and suggested the simpler argument that
appears there now.

II. T HE PARAMETERIZATION OF THE COVARION MODELS

For the purpose of orientation, we briefly recall a simpler
phylogenetic model, theκ-state general time reversible (GTR)

model. The basic state change process is specified by aκ×κ rate
matrix Q, whose off-diagonali,j-entry gives an instantaneous rate
(> 0) at which a character in statei enters statej. Each row ofQ
must add to 0. As a consequence,Q has a unique left eigenvector
π with eigenvalue 0, the stationary vector forQ. Time reversibility
is mathematically formulated as the assumption thatdiag(π)Q is
symmetric. Character change along a rooted metric treeT is then
modeled as follows: The entries ofπ give the probability that a
character is in the various states at the root of the tree. Along
each edgee of T , directed away from the root, the conditional
probabilities of state changes are given by the Markov matrix
Me = exp(Qte), where te ≥ 0 is the edge length. From this
information one can compute the probability of any specification
of states at the leaves of the tree. Due to the time reversibility
assumption, the location of the root within the tree actually has
no effect on this probability distribution. Thus the parameters of
the model are the topology of the unrooted treeT , the collection
of edge lengths{te}, and the rate matrixQ.

To present the covarion models, we first focus on the process
of state change. It will be convenient to adopt terminology most
appropriate to nucleotide sequences. In particular, in discussing
covarion models we limit our use of the word ‘state’ which is
commonly used for all Markov models, because the number of
states at internal nodes of a tree differs from that at leaves, even
though there is a relationship between them. We instead refer to
observable states as ‘bases,’ and to rate classes as ‘classes.’ Thus
at a leaf a state is simply a base, while at an internal node a state
is a pair of a class and a base. We caution the reader that this
usage of ‘base’ is not standard in biology, as it encompassesthe
4 bases in nucleotide sequences, as well as the 20 amino acids
of protein sequences, and the 61 codons in a model of codon
substitution. Also, while it is often natural to think of ‘classes’
as being associated to rate scalings, this may be misleading, as
several of the models we formalize allow for more generality.
We use[κ] = {1, 2, . . . , κ} to denote the set of bases and[c] =

{1, 2, . . . , c} to denote the set of classes.

To refer to entries of vectors and matrices of sizecκ, it will
be convenient to index entries using interchangeably the set [cκ],
and the set[c] × [κ] with lexicographic order. Thus the index
(i, j), which should be interpreted as the ‘classi, basej’ index,
is equivalent to(i − 1)c + j. Entries in acκ × cκ matrix, then,
can be referred to by an ordered pair of indices, each of which
is an ordered pair in[c] × [κ].

Let c, κ be positive integers. The most generalc-class,κ-base
covarion model, introduced by Whelan in [21], is specified inthe
following way:

(1) For eachi ∈ [c], a base-change process for classi is
described by a rate-matrixQi of sizeκ×κ. We assume all
Qi are distinct, so that no two classes undergo substitutions
at the same rates. Forc − 1 values ofi we require that the
off-diagonal entries ofQi are strictly positive so that all
substitutions are possible, and the rows sum to 0. For the
remainingQi we only require that all off-diagonal entries
be non-negative and that rows sum to 0. In particular, we
allow Qi for at most onei to be the 0-matrix, in order to
model an invariable class.

(2) For each ordered pair of classesi1 6= i2, a diagonal
matrix Si1i2 of size κ × κ describes switching rates from
classi1 to classi2. The entries ofSi1i2 are non-negative.
The requirement thatSi1i2 be diagonal will imply that
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instantaneous base switches do not occur simultaneously
with class switches.

(3) Let R be thecκ × cκ matrix which, when viewed inc × c

block form, has as its off-diagonali1, i2-block Si1i2 and
as itsith diagonal blockQi −

P
i2

Sii2 . Note each row of
R sums to 0. We require thatR describe a time-reversible
process; that is, for some vectorµ with positive entries
summing to 1 the matrix

diag(µ)R

is symmetric.

We may rescaleR, or equivalently all entries of theQi and
Si1i2 , so that

trace(diag(µ)R) = −1.

Requiring this normalization avoids a trivial non-identifiability
issue in which rescaling of edge lengths would have the same
effect as rescalingR. It also imposes a scale on edge lengths so
that the average instantaneous rate of (base,class) changes under
the Markov process is 1 per unit of edge length. We will assume
throughout the rest of this paper that this normalization has been
made. Consequently, if two such matrices are multiples of one
another, we may conclude they are equal.

Any matrix R with these properties will be called acovarion
rate matrix for the general covarion model, Cov(c, κ), with c

classes andκ bases.

We may write

µ = (σ1π1, σ2π2, . . . , σcπc)

where theπi ∈ R
κ and σ = (σ1, . . . , σc) ∈ R

c are vectors of
positive entries summing to 1. Then the symmetry ofdiag(µ)R

implies the symmetry ofdiag(πi)Qi for each i. Thus our as-
sumptions ensure theQi each define time-reversible processes.
Additionally we find

σi1 diag(πi1)Si1i2 = σi2 diag(πi2)Si2i1 . (1)

These conditions are equivalent to the time-reversibilityof R.

A specialization ofCov(c, κ) described in [9] assumes further
that

(4) The base substitution processes described by theQi have
equal stationary distributions,πi = π.

(5) The switching matricesSi1i2 are scalar, soSi1i2 = si1i2Iκ,
whereIκ is theκ × κ identity matrix.

We refer to this as theequal stationary distribution covarion
model, denoted byeCov(c, κ).

The modeleCov(c, κ) can also be conveniently described in
tensor notation. For any vectors or matricesA = (ai1i2) and
B = (bj1j2), let A⊗B denote the tensor, or Kronecker, product.
Using ordered-pair indices as above, we order rows and columns
of A⊗B so the(i1, j1), (i2, j2) entry isai1i2bj1j2 . With the class
switching process foreCov specified by ac×c rate matrixS with
off-diagonal entriessi1i2 , and rows summing to 0, then

R = diag(Q1, Q2, . . . , Qc) + S ⊗ Iκ,

µ = σ ⊗ π.

The symmetry ofdiag(µ)R is equivalent to the symmetry of each
diag(π)Qi and of diag(σ)S. Thus the class switching process
described byS is time-reversible as well.

A further specialization fromeCov yields thescaled covarion
model, sCov(c, κ), which assumes

(6) For some rate matrixQ and distinct non-negative
r1, r2, . . . , rc, Qi = riQ.

For this submodel, the full covarion process has rate matrix

R = diag(r1, r2, . . . , rc) ⊗ Q + S ⊗ Iκ. (2)

Example 1:sCov(2, 4) is just a generalization of the Tuffley-
Steel covarion model of nucleotide substitution [19]. For any
s1, s2 > 0, let

S =

„
−s1 s1

s2 −s2

«
, σ = (σ1, σ2) =

„
s2

s1 + s2
,

s1

s1 + s2

«
.

ThenS defines a time-reversible switching process with stationary
vectorσ. For anyQ, π of a 4-base GTR model, taking1 = r1 >

r2 we obtain a rate matrix with block structure

λ

„
Q − s1I s1I

s2I r2Q − s2I

«
,

while

µ = (σ1π1, σ1π2, σ1π3, σ1π4, σ2π1, σ2π2, σ2π3, σ2π4).

If r2 = 0, then an invariable class is included, and this is exactly
the Tuffley-Steel model.

Example 2: If c ≥ 3, the requirement foreCov(c, κ) that the
class switching process described byS be time-reversible implies
stronger relationships among its entries than merely requiring
rows sum to 0. If

S =

0
@
−(s12 + s13) s12 s13

s21 −(s21 + s23) s23

s31 s32 −(s31 + s32)

1
A ,

and σ are such thatdiag(σ)S is symmetric, then one can show
(most easily by using symbolic algebra software, such as Maple
or Singular) that

s12s23s31 − s13s21s32 = 0,

and

σ =
1

s21s32 + s12s32 + s12s23
(s21s32, s12s32, s12s23).

Let Q1, Q2, Q3 denoteκ-base GTR rate matrices with a com-
mon stationary vectorπ. Then, up to a scaling factor, the matrix
0
@

Q1 − (s12 + s13)I s12I s13I

s21I Q2 − (s21 + s23)I s23I

s31I s32I Q3 − (s31 + s32)I

1
A

is a rate matrix foreCov(3, κ) with stationary vector

µ = (σ1π σ2π σ3π).

Such models are presented in [9].

Example 3:Let Q1, Q2 denoteκ-base GTR rate matrices, with
stationary vectorsπ1, π2. Let σ = (σ1, σ2) be any vector of
positive entries summing to 1, ands = (s1, s2, . . . , sκ) any vector
of positive numbers. Then defining

S12 = σ2 diag(π2) diag(s),

S21 = σ1 diag(π1) diag(s),
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ensures that equation (1) is satisfied. For suitableλ, the matrix

λ

„
Q1 − S12 S12

S21 Q2 − S21

«

is thus a rate matrix for the modelCov(2, κ), and of the type
described in [21].

To specify any of the covarion modelsCov(c, κ), eCov(c, κ),
or sCov(c, κ) on a topological treeT , in addition toR we must
specify edge lengths{te}. These determine Markov matricesMe

for each edgee of the tree as follows: For every internal edgee

of the tree,Me = exp(Rte) is cκ×cκ and describes (class, base)-
substitutions over the edge. Letting1c =

`
1 1 . . . 1

´
∈ R

c

be a row vector, andIκ the κ × κ identity, set

J = 1
T
c ⊗ Iκ =

`
Iκ Iκ . . . Iκ

´T
.

Then on every pendant edgee of the tree,Me = exp(Rte)J is
cκ×κ. Notice thatJ serves to hide class information, by summing
over it, so that only bases may be observed.

Because the process defined byR is reversible, we may
arbitrarily choose any internal vertex of the tree as the root, and
using µ as a root distribution compute the joint distribution of
bases at the leaves of the tree in the usual way for Markovian
phylogenetic models on trees. For ann-leaf tree, this distribution
is naturally thought of as ann-dimensionalκ× κ× · · ·×κ array.

Let P = P̂ ⊗ Iκ, where P̂ is a c × c permutation matrix.
Then replacingR by PT RP simply permutes the classes. As no
information on classes is observed, it is easy to see this hasno
effect on the joint distribution of bases arising from a covarion
model. Thus we must account for this trivial source of non-
identifiability. For sCov(c, κ) this could be done by requiring the
ri be enumerated in descending order. However, forCov(c, κ)

andeCov(c, κ) there need not be any natural ordering of theQi.
To treat all these models uniformly, we will seek identifiability
only up to permutation of classes.

Note that as formulated above, the covarion models generalize
mixture models on a single tree with a finite number of classes.
Indeed, one need only choose the switching matrixS for sCov

or eCov to be the zero matrix, or set allSi1i2 = 0 for Cov,
to describe across-site rate variation. However, such choices are
non-generic — of Lebesgue measure zero within the covarion
models. Since our main result allows for non-generic exceptions
to identifiability, we caution that it does not rigorously imply
anything about across-site rate variation models, though it is
perhaps suggestive.

At one point in our arguments we will in fact need an as-
sumption that rules out consideration of across-site rate variation
models. In Lemma 12, we require that the switching process
for Cov(c, κ) is irreducible in the following sense: Say class
i communicatesto class i′ when all diagonal entries ofSii′

are positive. Thenclass irreducibility of R will mean that for
each pair of classesi 6= i′ there is a chain of classesi =

i0, i1, i2, . . . , in = i′ with ik communicating toik+1. For the
modelseCov and sCov, this definition is equivalent to the usual
definition of irreducibility, [11], for the Markov process described
by the switching matrixS. Moreover, class irreducibility ofR,
together with the assumption that all entries of someQi are non-
zero implies irreducibility ofR in the usual sense.

Note that class irreducibility holds for generic choices of
covarion parameters for all three covarion models, as generically

all diagonal entries of allSii′ are non-zero. Therefore, despite
its important role in establishing the results, we do not refer
to irreducibility explicitly in statements of theorems which only
make claims for generic parameter choices.

III. STATEMENT OF THEOREMS ANDOVERVIEW

We establish the following:

Theorem 1:Consider the modelsCov(c, κ), eCov(c, κ), and
sCov(c, κ) on ann-leaf binary tree,n ≥ 7. If the tree topology
is known, then for generic choices of parameters all numerical
parameters are identifiable, up to permutation of classes, provided
c ≤ κ for sCov and eCov, and providedc < κ for Cov.

Combined with earlier work in [2], this shows:

Corollary 2: Consider the modelsCov(c, κ), eCov(c, κ), and
sCov(c, κ) on an n-leaf binary tree,n ≥ 7. Then for generic
choices of parameters, the tree topology and all numerical pa-
rameters are identifiable, up to permutation of classes, provided
c < κ.

In outline, the proof of the theorem is as follows: Section IV
addresses basic properties of eigenvectors and eigenvalues of a
covarion rate matrix, and discusses the form of joint distributions
from covarion models on 2-leaf trees. This section provides
preliminary results needed for the main arguments, which span
the remainder of this article.

e1

e3

e7 e8

e6

e5

e4
e9

e2

ρ ρ’

Fig. 1. The 6-leaf tree on which arguments will be based, withedgesei and
internal nodesρ, ρ′.

To establish identifiability of model parameters on a particular
tree, our argument will require that there be a 6-leaf subtree with
the particular topology shown in Figure 1. It is easy to see that
any tree with at least 7 leaves contains such a 6-leaf subtree. (For
simplicity, we chose to state Theorem 1 and its corollary fortrees
of 7 or more taxa, even though they also hold for this 6-leaf tree.)

In Section V the main thread of the proof begins. We use alge-
braic arguments built on a theorem of J. Kruskal [15] to determine
the covarion Markov matrixM = exp(Rt9) describing the total
substitution process over the central edgee9, of lengtht9, in the
tree of Figure 1, up to permutation of the rows and columns. This
part of our argument is not very specific to the covarion model,
but rather applies to more general models provided the Markov
matrices involved satisfy some technical algebraic conditions.
We therefore must show that Markov matrices arising from the
covarion model, as exponentials of a covarion rate matrix, satisfy
these technical conditions, at least for generic parameterchoices.
Though this fact is completely plausible, establishing it rigorously
requires rather detailed work, which is completed in Section VI.
This part of our argument is the reason Theorem 1 refers to
identifiability of ‘generic’ parameters and not all parameters, as
well as the reason we requirec ≤ κ.

Once the Markov matrix on the central edge of the tree is
identified up to row and column permutations, to determine the
covarion rate matrix we must determine the correct row and
column orderings, and take a matrix logarithm. We are able
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to show there is a unique ordering of rows and columns that
produces a covarion rate matrix in part by taking advantage of
the pattern of zeros that must appear in such a rate matrix. Other
facts about rate matrices, such as the non-positivity of eigenvalues,
also play a role. We obtain an essential piece of informationon
the ordering from the known ordering of bases at the leaves of
the tree. All this is the content of Section VII.

Finally, once we have determined the covarion rate matrix from
this central edge, we use it in Section VIII to determine the sum
of edge lengths between any two leaves in the tree. By standard
arguments, we may then determine the lengths of all individual
edges in the tree, so all parameters have been identified.

Note that the later steps of our arguments are constructive,
in that one could apply them to a specific probability distribu-
tion to explicitly recover the parameters producing it. However,
Kruskal’s theorem is not constructive; it guarantees a unique set
of parameters but does not indicate a procedure for recovering
them. A constructive version of Kruskal’s theorem would give
an algorithm for the decomposition of three-dimensional tensors
into minimal sums of rank 1 tensors. This is an interesting but
challenging open problem, which would have applications in
several other areas of applied mathematics as well. However,
the particular case of Kruskal’s theorem we use can also be
established by a longer argument, which we omit, along the lines
of the identifiability result in [5]. Using that approach oneobtains
an explicit parameter identification procedure that depends on the
calculation of eigenvectors forcκ × cκ matrices.

IV. D IAGONALIZING COVARION RATE MATRICES

We summarize a few basic facts concerning the eigenvectors
and eigenvalues of a covarion rate matrixR, under the hypotheses
of the Cov(c, κ) model.

If R is a rate matrix for Cov(c, κ) then it is time-
reversible by assumption. Thusdiag(µ)R is symmetric, and
diag(µ)1/2R diag(µ)−1/2 is as well. Therefore

diag(µ)1/2R diag(µ)−1/2 = CT BC

for some orthogonalC and real diagonalB. Letting U =

C diag(µ)1/2, we have

R = U−1BU, U−1 = diag(µ)−1UT .

If R is class irreducible, then it is irreducible. Thus one of its
eigenvalues is 0 and the others are strictly negative [11]. We may
thus assumeB = diag(β1, β2, . . . , βcκ), where0 = β1 > β2 ≥

· · · ≥ βcκ for genericR.

Note that for the modelsCov(c, κ), much more can be said
about this diagonalization. In [8], it is shown that the eigenvectors
and eigenvalues for a scaled covarion rate matrixR are related
to those ofQ and certain modifications ofS through a tensor
decomposition.

We now investigate the implications of the diagonalizationof
covarion rate matrices for 2-taxon probability distributions arising
from the model. This will be useful for identifying edge lengths
in Section VIII.

SupposeR = U−1BU is the diagonalization described above.
A 2-taxon distribution, arising from edge lengtht, is described

by a κ × κ matrix

N = JT diag(µ) exp(Rt)J

= JT diag(µ)U−1 exp(Bt)UJ

= JT UT exp(Bt)UJ

= (UJ)T exp(Bt)(UJ).

We formalize this observation with the following lemma.
Lemma 3:Let R be a covarion rate matrix forCov(c, κ). Then

R determines a matrixB = diag(β1, . . . , βcκ) with 0 = β1 >

β2 ≥ · · · ≥ βcκ, and a rankκ matrix K of sizecκ × κ such that
the probability distribution arising from the covarion model with
rate matrixR on a one-edge tree of lengtht is

N = KT exp(Bt)K.

Proof: It only remains to justify that the rank ofK = UJ

is κ. However, sinceU is non-singular,rank K = rank J = κ.

V. I DENTIFYING A MARKOV MATRIX ON THE CENTRAL EDGE

The basic identifiability result on which we build our later
arguments is a theorem of J. Kruskal [15]. (See also [14], [13]
for more expository presentations.)

For i = 1, 2, 3, let Ni be a matrix of sizer × κi, with ni
j the

jth row of Ni. Let [N1, N2, N3] denote theκ1 × κ2 × κ3 tensor
defined by

[N1, N2, N3] =

rX

j=1

n
1
j ⊗ n

2
j ⊗ n

3
j .

Thus the (k1, k2, k3) entry of [N1, N2, N3] isPr
j=1 n1

j (k1)n
2
j (k2)n

3
j (k3), and this ‘matrix triple product’

can be viewed as a generalization of the product of two matrices
(with one matrix transposed).

Note that simultaneously permuting the rows of all theNi (i.e.,
replacing eachNi by PNi where P is an r × r permutation)
leaves[N1, N2, N3] unchanged. Also rescaling the rows of each
Ni so that the scaling factorsci

j used for then
i
j , i = 1, 2, 3

satisfyc1jc2j c3j = 1 (i.e., replacing eachNi by DiNi, whereDi is
diagonal andD1D2D3 = I) also leaves[N1, N2, N3] unchanged.
That under certain conditions these are the only changes leaving
[N1, N2, N3] fixed is the essential content of Kruskal’s theorem.

To state the theorem formally requires one further definition.
For a matrixN , the Kruskal rank of N will mean the largest
numberj such that every set ofj rows of N are independent.
Note that this concept would change if we replaced ‘row’ by
‘column,’ but we will only use the row version in this paper.
With the Kruskal rank ofN denoted byrankK N , observe that

rankK N ≤ rankN.

Theorem 4:(Kruskal) Letji = rankK Ni. If

j1 + j2 + j3 ≥ 2r + 2,

then [N1, N2, N3] uniquely determines theNi, up to simul-
taneously permutating and rescaling the rows. That is, if
[N1, N2, N3] = [N ′

1, N ′

2, N ′

3], then there exists a permutationP
and diagonalDi, with D1D2D3 = I, such thatN ′

i = PDiNi.

We will apply this result to identify parameters of a stochastic
model with a hidden variable. In phylogenetic terms, the model is
one on a 3-leaf tree, rooted at the central node. A hidden variable
at the central node hasr states, and observed variables at the
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leaves haveκ1, κ2, κ3 states respectively. Markov matricesMi, of
sizer×κi, describe transitions from the state at the central node to
those on leafi, with observed variables conditionally independent
given the state of the hidden variable. For eachi = 1, 2, 3, let
m

i
j denote thejth row of Mi. One then checks that the joint

distribution for such a model is given by

[v; M1, M2, M3] =

rX

j=1

vjm
1
j ⊗ m

2
j ⊗ m

3
j .

Corollary 5: SupposeMi, i = 1, 2, 3, are r × κi Markov
matrices, andv = (v1, . . . , vr) is a row vector of non-zero
numbers summing to 1. Letji = rankK Mi. If

j1 + j2 + j3 ≥ 2r + 2,

then [v; M1, M2, M3] uniquely determinesv, M1, M2, M3 up
to permutation. That is,[v; M1, M2, M3] = [v′; M ′

1, M ′

2, M ′

3]

implies that there exists a permutationP such thatM ′

i = PMi

andv
′ = vPT .

Proof: This follows from Kruskal’s theorem in a straight-
forward manner, using that the rows of each Markov matrixMi

sum to 1.

Remark 1:The corollary actually claims identifiability for
generic parameters, where ‘generic’ is used in the sense of
algebraic geometry. To see this, note that for any fixed choice
of a positive integerji, those matricesMi whose Kruskal rank
is strictly less thanji form an algebraic variety. This is because
the matrices for which a specific set ofji rows are dependent is
the zero set of allji × ji minors obtained from those rows. Then,
by taking appropriate products of these minors for different sets
of rows we may obtain a set of polynomials whose zero set is
precisely those matrices of Kruskal rank< ji.

To apply the Corollary of Kruskal’s theorem in a phylogenetic
setting, we need one additional definition. Given matricesN1 of
sizer × s andN2 of sizer × t, let

N = N1 ⊗row N2

denote ther × st matrix that is obtained from row-wise tensor
products. That is, theith row of N is the tensor product of the
ith row of N1 and theith row of N2. Although we do not need
a specific ordering of the columns ofN , we could, for instance,
defineN by N(i, j + s(k − 1)) = N1(i, j)N2(i, k).

To interpret this row-wise tensor product in the context of
models, consider a rooted tree with two leaves, and a Markov
model with r states at the root, andκi states at leafi, i = 1, 2.
Then the transition probabilities from states at the root tostates
at leaf i are specified by anr × κi matrix Mi of non-negative
numbers whose rows add to 1. The matrixM = M1 ⊗row M2

will also have non-negative entries, with rows summing to 1.Its
entries give transition probabilities from ther states at the root to
theκ1κ2 composite statesat the leaves, formed by specifying the
state at both leaves. Thus this row tensor operation is essentially
what underlies the notion of a ‘flattening’ of a multidimensional
tensor that plays an important role in [4], [2].

Kruskal’s result will actually be applied to a model on a 5-
leaf tree, by a method we now indicate. For the 5-leaf tree
shown in Figure 2, rooted atρ, suppose Markov matricesfMi

(not necessarily square) are associated to all edges to describe
transition probabilities of states moving away from the root.

ρ

M1 M3

M7

M6

M5

M4

M2

~ ~

~

~

~

~

~

ρ

M3

M1
M2

Fig. 2. Viewing a model on a 5-leaf tree as a model on a 3-leaf tree.

Then with

cM1 = fM3(fM1 ⊗row fM2),

cM2 = fM6(fM4 ⊗row fM5),

cM3 = fM7,

we obtain Markov matrices on a simpler 3-leaf tree rooted at its
central node. Retaining as root distribution the root distribution v

at ρ, the joint distribution for this simpler tree is[v; cM1, cM2, cM3].
The entries of the distribution for the 5-leaf tree and the 3-
leaf tree are of course the same, though one is organized as
a 5-dimensional array and the other as a 3-dimensional array.
However, the reorganization into a 3-dimensional array is crucial
in allowing us to apply Kruskal’s theorem.

Lemma 6:On the 6-leaf tree of Figure 1 rooted atρ, consider
a Markov model withr states at all internal nodes andκ states
at leaves. Let the state distribution at the root be specifiedby v,
and Markov matricesMi describe transitions on edgeei directed
away from the root, so for internal edges theMi are r × r, and
on pendant edges arer × κ.

Suppose in addition

(1) all entries of bothv andv′ = vM9 are positive,
(2) the four matricesM6(M4⊗

rowM5), M9M6(M4⊗
rowM5),

M3(M1⊗
rowM2), andM ′

9M3(M1⊗
rowM2), whereM ′

9 =

diag(v′)−1MT
9 diag(v), all have rankr.

(3) the Kruskal ranks ofM7 andM8 are≥ 2.

Then M9, M7, and v are uniquely determined from the joint
distribution, up to permutation. That is, from the joint distribution
we may determine matricesN9, N7 and a vectorw with N9 =

PT
1 M9P2, N7 = PT

1 M7, and w = vP1 for some unknown
permutationsP1 andP2.

Proof: Note that since the matrices in (2) have rankr, which
is equal to the number of their rows, they also have Kruskal rank
r.

First consider the 5-leaf subtree where edgee8 has been
deleted, and edgese9 and e6 conjoined. Then by Corollary 5,
we may determinevP1 and the matricesPT

1 M3(M1 ⊗row M2),
PT

1 M9M6(M4⊗
row M5), andPT

1 M7 for some unknown permu-
tation P1.

Now reroot the tree of Figure 1 atρ′, using root distributionv′

and matrixM ′

9 on edgee9 (directed oppositely), without affecting
the joint distribution at the leaves. Having done this, consider
the 5-leaf subtree where edge 7 has been deleted. Another appli-
cation of the corollary determinesv′P2, PT

2 M6(M4 ⊗row M5),
PT

2 M ′

9M3(M1 ⊗row M2), andPT
2 M8.

Finally, from ther×κ2 matricesA = PT
1 M9M6(M4⊗

rowM5)

andB = PT
2 M6(M4 ⊗row M5), which by assumption have rank

r, we may determine ther × r matrix C = PT
1 M9P2: since both

A andB have rankr, the equationA = CB uniquely determines
C.

Note that for the covarion models,v has positive entries by
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assumption, and sinceR is time reversible with stationary vector
v, we will havev

′ = v and M ′

9 = M9. Thus condition (1) will
automatically be satisfied in our application of the lemma.

The only potential obstacle to applying Lemma 6 to the
covarion model is that we must know that assumptions (2) and
(3) on the ranks of various products of Markov matrices are met.
While one would certainly suspect that at least for generic choices
of covarion parameters there would be no problem, it is non-trivial
to establish this rigorously. That is the content of the nextlemma.

Let {f1, . . . , fn} be a finite collection of analytic functions
with common domainD ⊆ C

n. Recall that theanalytic variety
V = V (f1, . . . , fn) is the subset ofD on which allfi vanish. In
the next lemma we will use the existence of a single point inDrV

to conclude that theV is of strictly lower dimension thanD. This
step may not be familiar to most researchers in phylogenetics,
so we recall a simpler instance. A powerful theorem concerning
analytic functions of a single complex variable is that if an
analytic functionf is not identically zero, then any zeros off in
the interior of its domain must be isolated. Equivalently, if there
is a single pointz0 with f(z0) 6= 0, then the zero set off is
a zero-dimensional subset of the one-dimensional domain off .
Our argument simply uses a generalization of this fact from the
theory of functions of several complex variables.

Lemma 7: Identify the stochastic parameter spaceS of any of
the modelsCov(c, κ), eCov(c, κ) or sCov(c, κ) on the 6-taxon
tree of Figure 1 with a full-dimensional subset ofR

L so that the
parameterization map for the probability distribution is given by
analytic functions.

Let X ⊂ S be the subset on which either at least one of the
four cκ × κ2 matrices arising from cherries,

exp(Rt3)(exp(Rt1)J ⊗row exp(Rt2)J),

exp(R(t3 + t9))(exp(Rt1)J ⊗row exp(Rt2)J),

exp(Rt6)(exp(Rt4)J ⊗row exp(Rt5)J),

exp(R(t6 + t9))(exp(Rt4)J ⊗row exp(Rt5)J),

has rank< cκ, or at least one of the two matrices

exp(Rt7)J, exp(Rt8)J

on the pendant edgese7, e8 has Kruskal rank< 2. Then if c ≤ κ,
the setX is a proper analytic subvariety ofS, and hence of
dimension< L.

Proof: For our argument, it will be convenient to extend
the set of allowable edge lengths fromti > 0 to a larger set
including ti = 0. Once the claim is established allowing zero-
length edges, we may restrict to positive-length edges (as is
needed in other parts of our paper). This is simply because the
original and extended parameter spaces described here havethe
same dimension, so the intersection of a proper analytic subvariety
of the extended parameter space with the smaller parameter space
must also be a proper subvariety.

Consider first the edgese1, e2, e3, e7 in the tree of Figure 1. In
Section VI below it will be shown that whenc ≤ κ there is at least
one choice of a rate matrixR for sCov(c, κ), and edge lengths
t1 > 0, t2 = 0, t3 = 0, t7 > 0 so thatexp(Rt3)(exp(Rt1)J ⊗row

exp(Rt2)J) has rankcκ and exp(Rt7)J has Kruskal rank≥ 2.
Assuming this result for now, by in addition choosing

t9 = 0, t8 = t7, t6 = t3, t5 = t2, t4 = t1

we have found at least one parameter choice forsCov(c, κ) that

does not lie inXsCov.
Since the sameR and {ti} arise from parameters for

eCov(c, κ), respectivelyCov(c, κ), we have also found at least
one parameter choice for these models that does not lie inXeCov,
respectivelyXCov.

Now observe that the set of parameters for which any one of
the four specifiedcκ × κ2 matrices has rank< cκ is the zero
set of a collection of analytic functions. Such functions can be
explicitly constructed by composing the parameterizationmap for
each matrix with the polynomial functions expressing thecκ×cκ

minors. Similarly, the set of parameters for which a pendantedge
matrix fails to have Kruskal rank≥ 2 is the simultaneous zero set
of a collection of analytic functions built from the composition of
the parameterization of that matrix with the2×2 minors. Thus the
setX is the union of analytic varieties, and hence itself an analytic
variety. This set cannot be the entire parameter space, since we
have found one point that lies outside it. ThereforeX is a proper
analytic subvariety, as claimed. As such, it is of dimensionstrictly
less thanL.

For all covarion parameters outside the setX of Lemma 7, we
may apply Lemma 6 and identifyM = PT

1 exp(Rt9)P2 andν =

µP1 for some unknown permutationsP1, P2. As X is of lower
dimension than the parameter space, it has Lebesgue measure0.
Thus for generic covarion parameters we may identifyM andν.

VI. CONSTRUCTION OF SCALED COVARION PARAMETERS

WITH CERTAIN PROPERTIES

In this section the particular parameter choice needed in the
proof of Lemma 7 is constructed. We thus consider only the
model sCov, with the parametersQ, S, and {ri} as described
in Section II, andR as given by equation (2). We seek values
of these parameters and oft1, t7 > 0 so thatexp(Rt1)J ⊗row J

has rankcκ andexp(Rt7)J has Kruskal rank at least 2. Note that
sinceexp(Rt1)J ⊗row J is cκ×κ2, it may only have the desired
rank whenc ≤ κ.

One might first consider takingt1 = 0, so

exp(Rt1)J ⊗row J = J ⊗row J.

However thiscκ × κ2 matrix has rankκ < cκ. Similarly, taking
t7 = 0, so exp(Rt7)J = J , fails to produce a matrix of Kruskal
rank at least 2. Thus we must do more work to find the needed
example. Our first step is to establish the following.

Lemma 8:Suppose that for eachj ∈ [κ], the vectors appearing
as thejth rows of the matrix powersQm, m = 1, . . . , c − 1 are in-
dependent. Then there existt1, t7 > 0 such thatexp(Rt1)J⊗

rowJ

has rankcκ and exp(Rt7)J has Kruskal rank at least 2.
Proof: We first show the existence of such at1. Let M =

M(t) = exp(Rt)J . Because of the specific form ofJ , it is easy to
see that any dependency relationship between the rows ofM⊗row

J is equivalent toκ separate dependency relationships between
rows of M . Specifically, the rows ofM ⊗row J are independent
if, and only if, for eachj ∈ [κ] the set of thec rows of M with
index (i, j), i ∈ [c], are independent.

Letting Xj(t) denote thec × κ submatrix ofM(t) consisting
of the (i, j) rows, we claim that somec × c minor of Xj(t) is
non-zero for all but a discrete set of values oft. Since there are
only finitely manyj to consider, this implies the existence of the
desiredt1.
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Fixing j, for notational ease let

Xj(t) =

0
B@

x1(t)
...

xc(t)

1
CA , x(t) = det

0
B@

x̄1(t)
...

x̄c(t)

1
CA

where the bar denotes projection onto some choice ofc coordi-
nates, to be specified later, so thatx(t) is a specificc × c minor
of Xj(t).

Sincex(t) is an analytic function, to establish that it is non-zero
except at a discrete set of points, it is enough to show it is not
identically zero. Nowx(t) is easily evaluated only att = 0, and
unfortunatelyx(0) = 0 sincexi(0) is the standard basis vector
ej for all i. We will, however, showx(t) is not identically zero
by showing the derivativex(n)(0) is non-zero forn = c(c−1)/2.

To obtain information on the derivativesx(l)
i (0), observe that

M(t) is the solution to the initial value problemM ′ = RM ,
M(0) = J . Thusx

(l)
i (0) is the(i, j) row of RlJ . Moreover, since

S1T
c = 0,

RlJ = (diag(r1, r2, . . . , rc) ⊗ Q + S ⊗ Iκ)l(1T
c ⊗ Iκ)

= diag(r1, r2, . . . , rc)
l
1

T
c ⊗ Ql +

l−1X

m=1

y
T
l,m ⊗ Qm,

for some vectorsyl,m. Thus, for l ≥ 1, x
(l)
i (0) is a linear

combination of thejth rows of Qm, 1 ≤ m ≤ l, where thejth
row of Ql appears with coefficientrl

i.
Now with n = c(c − 1)/2,

x(n)(0) =
X

λ=(n1,...,nc)

mλ det
“
x̄

(n1)
1 (0), . . . , x̄

(nc)
c (0)

”
, (3)

where the summation is over non-negative integer solutionsto
n1 + · · · + nc = n and mλ =

` n
n1,...,nc

´
is a multinomial

coefficient. Lettingz0 = ej and zi be the jth row of Qi for
i ≥ 1, we have shown thatx(l)

i (0) lies in the span of{zi}
l
i=0

for all l ≥ 0. This implies that any summand in equation (3)
must vanish if more thanl + 1 of the ni satisfy ni ≤ l, since
in that case the rows in the determinant are dependent. But
n = c(c− 1)/2 = 0+ 1 + · · ·+ (c− 1), hence non-zero terms can
arise only whenλ is a permutation of(0, 1, . . . , c − 1).

With Sc denoting the permutations of(1, . . . , c), and m =

m(0,1,...,c−1),

x(n)(0) = m
X

µ∈Sc

det
“
x̄

(µ−1(1)−1)
1 (0), . . . , x̄

(µ−1(c)−1)
c (0)

”

= m
X

µ∈Sc

sgn(µ) det
“
x̄

(0)
µ(1)

(0), . . . , x̄
(c−1)
µ(c)

(0)
”

.

But with Z = (zT
0 , . . . , zT

c−1)T , we have shown
0
BBB@

x
(0)
µ(1)

(0)

...

x
(c−1)
µ(c)

(0)

1
CCCA = LµZ

whereLµ is a c× c lower triangular matrix with diagonal entries
Li,i = ri−1

µ(i)
. By hypothesis, all rows ofZ except the first form an

independent set, and sinceQl
1

T
c = 0 for l ≥ 1 while z01

T
c = 1,

the first row is not in the span of the others. ThusZ has rankc,
and some choice ofc of its columns are independent. Specifying
that the bar over a matrix or row vector designates a projection

onto these column coordinates yields
0
BBB@

x̄
(0)
µ(1)

(0)

...

x̄
(c−1)
µ(c)

(0)

1
CCCA = LµZ̄,

so

det
“
x̄

(0)
µ(1)

(0), . . . , x̄
(c−1)
µ(c)

(0)
”

=

 
cY

i=1

ri−1
µ(i)

!
det(Z̄).

Sincedet(Z̄) 6= 0, to see thatx(n)(0) 6= 0 it is enough to show

X

µ∈Sc

sgn(µ)
cY

i=1

ri−1
µ(i) 6= 0

But the left hand side is a Vandermonde determinant, and since
the ri are distinct, it does not vanish. Thus the desiredt1 exists.

For the existence oft7, consider the(i1, j1) and (i2, j2) rows
of exp(Rt)J . If j1 6= j2, then these rows are independent when
t = 0, hence for allt except a discrete set. Ifj1 = j2, then the
two rows are rows ofXj1 (t), and thus independent for all but a
discrete set oft by our work above. Since there are only finitely
many pairs to consider, for all but a discrete set of values wefind
exp(Rt)J has Kruskal rank≥ 2.

The existence of rate matricesQ satisfying the hypotheses of
the last lemma is a consequence of the following one.

Lemma 9:Suppose aκ×κ rate matrixQ has at leastc distinct
eigenvalues and its right eigenvectors can be chosen to haveall
non-zero entries. Then for eachj ∈ [κ] the vectors appearing as
the jth rows ofQl, l = 0, . . . , c − 1, are independent.

Proof: Let Q = UDU−1 be a diagonalization ofQ. Then
with uj denoting thejth row ofU , thejth row ofQl is ujD

lU−1.
To show these rows are independent, it is enough to show the
ujD

l, l = 0, . . . , c−1 are independent, or even that the projections
of these vectors onto some choice ofc coordinates are indepen-
dent. By choosing to project ontoc coordinates corresponding to
distinct diagonal entries ofD, we may reduce to the case where
D is c× c with distinct diagonal entries and the vectorsuj ∈ C

c

have all non-zero entries.
But if W is the c × c matrix whoselth row is ujD

l−1, then
W = V diag(uj) whereV is a Vandermonde matrix constructed
from the diagonal entries ofD. By our assumptions, bothV and
diag(uj) have non-zero determinants, soW does as well. Thus
the rows ofW are independent.

To see aQ satisfying the hypotheses of Lemma 9 exists, let

Q0 =
1

κ(κ − 1)

“
1

T
κ 1κ − κIκ

”

be a generalized Jukes-Cantor matrix of sizeκ, all of whose
off-diagonal entries are equal, which has stationary vector 1κ.
The eigenspaces ofQ0 are the span of1κ and its orthogonal
complement. For a diagonalizationQ0 = UD0U−1 we can thus
choseU to be an orthogonal matrix all of whose entries are
non-zero. (For instance, whenκ = 4 we may chooseU to be
a Hadamard matrix.) SinceD0 has repeated diagonal entries,
perturb the non-zero entries slightly to obtain a diagonal matrix
D without repetitions, and letQ = UDU−1. SinceQ also has
1κ as its stationary distribution, and sinceQ is symmetric, it is
a rate matrix of the sort needed.

Choosing such aQ and anyS and distinctri for the sCov
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parameters gives a particular choice of scaled covarion parameters
Q, S, {ri} such that there exists at1 > 0 whereexp(Rt1)J ⊗ J

has rankcκ, and at7 ≥ 0 such thatexp(Rt7)J has Kruskal rank
at least 2.

Thus Lemma 7 is fully established.

VII. I DENTIFYING THE COVARION RATE MATRIX R

The next goal is to useν = µP1 and M = PT
1 exp(Rt9)P2,

as identified in Section V through Lemmas 6 and 7, to determine
the covarion root distributionµ and the covarion rate matrixR.
It is of course enough to determineRt9, wheret9 > 0 is the edge
length, and then use the required normalization ofR.

Let us assumeν has its entries in non-increasing order.
(This can be achieved by multiplyingν on the right by some
permutationP , and M on the left by PT , thereby changing
the unknownP1.) Now sincediag(µ) exp(Rt) is symmetric, and
diag(ν) = PT

1 diag(µ)P1, one can verify thatdiag(ν)MPT
2 P1

is symmetric as well. This shows there is at least one reordering
of the columns ofM that results indiag(ν)M being symmetric.
Assume some such ordering of the columns ofM has been chosen
to ensure this symmetry.

If ν (equivalently,µ) has no repeated entries, these choices
have uniquely determined an ordering to the rows and columns
of M , and forcedP2 = P1. To see this, note the rows of
M have a fixed correspondence to entries ofν, which have
a unique decreasing ordering. For the columns, note that the
symmetry ofdiag(ν)M and the fact that1cκMT = 1cκ implies
νM = ν. However, if the columns ofM are permuted byP ,
thenνMP = νP 6= ν. We therefore can concludeν = µP1 and
M = PT

1 exp(Rt9)P1 for some unknown permutationP1.
Sinceν may have repeated entries, the above argument only

holds for generic choices of parameters. In order to avoid intro-
ducing any generic conditions other than those already arising
from the application of Kruskal’s theorem, we give an alternate
argument using the following lemma.

Lemma 10:Suppose that a matrixM has a factorization of the
form M = PW T ZW for some real symmetric positive-definite
m × m matrix Z, real m × n matrix W of rank n, and n × n

permutationP . ThenP is uniquely determined byM .
Proof: The matrixZ defines an inner product onRm, and

if wi denotes theith column of W , then thei, j entry of the
symmetric matrixN = W T ZW is

〈wi, wj〉Z = w
T
i Zwj .

But for any inner product, ifx 6= y then

〈x, x〉 + 〈y, y〉 > 2〈x, y〉.

Now the matrixW has distinct columns since it has rankn. Thus
the entries ofN satisfy

nii + njj > 2nij . (4)

Suppose for some permutationsP1, P2 the matricesN1 =

PT
1 M and N2 = PT

2 M are both symmetric, and have entries
satisfying the inequalities (4). Note also thatN1 andN2 have the
same set of rows.

Consider first the largest entry (or entries, in case of ties)of
N1 andN2. Because the inequality in (4) is strict, a largest entry
cannot appear off the diagonal. Thus the row (or rows) ofN1 and
N2 containing the largest entry (or entries) must occur in the same

positions. Since the same argument applies to the submatrices
obtained from theNi by deleting the rows and columns with
the largest entries, repeated application showsN1 = N2. Thus
P1 = P2.

Corollary 11: Supposeν , M are of the form

ν = µP1, M = PT
1 exp(Rt)P2,

for some covarion rate matrixR with stationary vectorµ, permu-
tationsP1, P2, and scalart. ThenPT

1 P2 is uniquely determined.
Proof: Apply Lemma 10 todiag(ν)M , with P = PT

1 P2,
W = P2, andZ = diag(µ) exp(Rt).

As a consequence of this corollary, after multiplyingM on the
right by (PT

1 P2)
T we may now assume we have

ν = µP, M = PT exp(Rt)P

for some (unknown) permutationP . But thenM = exp(PT RPt),
and since this matrix is diagonalizable with positive eigenvalues,
PT RPt is determined by applying the logarithm to its diagonal-
ization.

Now PT RPt is simply a rescaled version ofR with the same
permutation applied to rows and columns. Thus there exists at
least one simultaneous permutation of the rows and columns of
PT RPt which yields a rescaled covarion rate matrix. However,
we do not yet know if there is a unique such permutation, or a
unique such covarion rate matrix.

One might suspect that the pattern of zero entries in the
off-diagonal blocks of a covarion rate matrix should allow the
(almost) unique determination ofRt from this permuted form.
This is the content of the following lemma.

Lemma 12:Let R1, R2 be rate matrices forCov(c, κ), with
R1 class irreducible, as defined in Section II. Suppose for
permutationsP1, P2, and scalarst1, t2 > 0, that

PT
1 R1P1t1 = PT

2 R2P2t2.

If c 6= κ then t1 = t2, and P = P1PT
2 can be expressed as

P = bP ⊗ eP for somec× c permutationbP andκ× κ permutation
eP . ThusR1 can be determined up to application of a permutation
of the form bP ⊗ eP .

If R1, R2 are rate matrices for eithersCov(c, κ) or eCov(c, κ),
then the same result holds for allc.

Note that a permutation of the formbP ⊗ eP can be viewed as a
permutation of classes bybP , and a simultaneous permutation of
bases within all classes byeP .

Proof: Using the normalization ofR1 and R2, it is trivial
to see thatt1 = t2. Conjugating byP2, we obtainPT R1P = R2.

Let N be a matrix of the same size asR1, with entry
1 (respectively, 0) wherever the corresponding entry ofR1 is
positive (respectively non-positive). LetG1 = G(R1) be the
(undirected) graph whose adjacency matrix isN = NT . Thus
the vertices ofG1 are labeled by the elements of[c] × [κ], the
indices corresponding to rows and columns ofR1, and an edge
joins verticesi andj exactly whenR1(i, j) > 0 (or, equivalently,
when R1(j, i) > 0). G1 is the ‘communication graph’ ofR1,
expressing which instantaneous state changes can occur.

By assumptions onR1, for each classi with Qi 6= 0, the
vertices labeled(i, j), j ∈ [κ], corresponding to all states in class
i, form a clique (i.e., the subgraph on these vertices is a complete
graph) of sizeκ. Moreover, these cliques are each maximal, since
any vertex(i′, j′) outside of the clique hasi′ 6= i and is connected
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to at most one vertex in the clique, namely(i, j′), which has the
same base but different class.

Suppose first thatc 6= κ. In this case we show there are no
other maximal cliques of sizeκ. To this end, suppose a vertex
labeled(i, j) is in some other maximal cliqueC of size κ. The
only vertices adjacent to it outside of its class correspondto the
same basej. ThusC must contain at least one of these, say(k, j)

where k 6= i. As the (k, j) vertex and any(i, l) vertex cannot
be in a common clique ifj 6= l, C must contain only vertices
corresponding to basej. As there arec 6= κ of these, they cannot
form a clique of sizeκ.

Now if we similarly constructG2 = G(R2), the statement
PT R1P = R2 means there is a graph isomorphism fromG1 to
G2, obtained by relabeling vertices according to the permutation
P . As such an isomorphism must take maximal cliques to
maximal cliques, we see thatP must map all states in anR1

class withQi 6= 0 to all states in anR2 class withQj 6= 0. (As
the covarion model allows at most one class withQi = 0, this
also means that if eitherRi has a class withQi = 0, then so does
the other, and these classes must also be mapped to one another.)

This impliesP has the following structure: PartitionP into a
c× c matrix of κ×κ blocks, corresponding to classes. All blocks
of P are zero, except for one block in each row and column. LetbP
be thec×c permutation matrix with 1s in positions corresponding
to those non-zero blocks. The non-zero blocks ofP are alsoκ×κ

permutation matrices.
We next claim that the non-zeroκ × κ blocks in P are all

identical. To see this, consider howP acts on a non-zero off-
diagonal blockSi1i2 of R1 through the formulaPT R1P : the
resulting block has the formePT

1 Si1i2
eP2 where eP1 and eP2 are

two of theκ×κ permutations appearing as blocks ofP . But this
must equal the corresponding block ofR2, which is diagonal.
Thus if all diagonal entries ofSi1i2 are non-zero thenePT

1
eP2 =

Iκ, so eP1 = eP2. The class irreducibility ofR1 ensures that we
obtain enough such equalities to see that allePi are equal to some
commonκ × κ permutationeP . ThusP = bP ⊗ eP .

Now for the modelssCov andeCov consider the case ofc = κ.
In this case, maximal cliques corresponding to either a fixedbase
or a fixed class have the same cardinality, but there can be no
other maximal cliques. Unless the graph isomorphism fromG1

to G2 maps some fixed-base clique to a fixed-class clique, our
earlier argument applies.

We therefore suppose that the basej clique is mapped to the
classi clique, and argue toward a contradiction. This meansP

maps vertices inG1 labeled (k, j) for k = 1, . . . , c to vertices
labeled (i, l) for l = 1, . . . , κ in G2. As a result, every other
fixed-base clique inG1 must also map to a fixed-class clique in
G2, since all the fixed-base cliques ofG2 include some(i, l).

But the formulaPT R1P = R2 implies that each diagonal block
of R2 must have as itsκ2 − κ off-diagonal entries theκ2 − κ

valuessi1i2 6= 0 which appear in the off-diagonal blocks ofR1.
But this is impossible, since the base-change matricesQi of R2

are assumed not to be equal.

We now have determinedR andµ up to separate permutations
eP of the bases andbP of the classes. The ambiguity expressed
by bP cannot be removed, as permuting classes has no effect on
the distributions defined by the model. Our next step is to use
information on the ordering of the bases obtained at the leaves
of the tree in order to determineeP .

Let PT M7 denote thecκ×κ matrix, which was determined via
Lemma 6, describing permuted transition probabilities on edgee7

of the tree of Figure 1. AssumingP = bP ⊗ eP by previous steps
in our analysis,( bP ⊗ eP )T exp(Rt7)J is known.

Lemma 13:SupposeW = PT exp(Rt)J for some permutation
P = bP ⊗ eP , covarion rate matrixR, and scalart. Then eP is
uniquely determined.

Proof: Consider theκ × κ matrix, determined by known
information,

JT diag(ν)W = JT PT diag(µ)PPT exp(Rt7)J

= (1c ⊗ Iκ)( bPT ⊗ ePT ) diag(µ) exp(Rt7)J

= (1c bPT ⊗ Iκ ePT ) diag(µ) exp(Rt7)J

= (1c ⊗ ePT ) diag(µ) exp(Rt7)J

= ePT (1c ⊗ Iκ) diag(µ) exp(Rt7)J

= ePT N,

whereN = JT diag(µ) exp(Rt7)J . From Lemma 3, we also have
that

N = KT exp(Bt7)K

whereB is real diagonal andK has rankκ. We may thus apply
Lemma 10 to the product

JT diag(ν)W = ePT KT exp(Bt7)K

to determineeP .
Thus for generic parameters,R andµ are determined uniquely,

up to the permutationbP of classes.

Remark 2:That the restrictionc < κ is necessary for theCov

model in Lemma 12 can be easily seen. For example, withκ =

c = 2, the two rate matrices

R =
1

14

0
BB@

−5 3 2 0

3 −4 0 1

2 0 −3 1

0 1 1 −2

1
CCA ,

R′ =
1

14

0
BB@

−5 2 3 0

2 −3 0 1

3 0 −4 1

0 1 1 −2

1
CCA

are related by exchanging rates and classes. Note further that both
R and R′ have 1

414 as their stationary distribution, so they lead
to the same observed distribution at a single leaf. Moreover, they
lead to the same set of observable distributions at two leaves when
one considers all possible edge lengthst ≥ 0. Thus one cannot
use the observed distribution at one or two leaves to distinguish
between distributions arising from these two rate matrices.

Of course one might next attempt to use observed joint dis-
tributions at multiple leaves to distinguish these parameters, or
introduce additional generic conditions to obtain identifiability of
numericalCov parameters even whenc = κ. As we have not
pursued these directions, we do not claim identifiability fails for
generic parameters in this case, but only that the argumentsgiven
above do not establish it.

VIII. I DENTIFYING EDGE LENGTHS

As R is now known, all that remains is to determine edge
lengths. By simple and well-known arguments [18], these canbe
determined from knowing total distances between leaves of the
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tree. Thus the determination of all edge lengths is established by
the following.

Lemma 14:Fix a covarion rate matrixR, of size cκ × cκ.
Suppose aκ×κ matrix N is in the image of the resulting covarion
model on a 2-taxon tree, with edge lengtht. Then N uniquely
determinest.

Proof: From Lemma 3, we have that

N = KT exp(Bt)K,

whereB = diag(β1, . . . , βcκ), 0 = β1 > β2 ≥ · · · ≥ βcκ and K

is a realcκ×κ matrix, of rankκ. Furthermore, sinceR is known,
so are allβi andK.

With K = (kji) and N = (nij), this implies the diagonal
entries ofN are

nii =

cκX

j=1

k2
ji exp(βjt). (5)

As thekji are real numbers and allβi are non-positive, each term
in this formula is a non-increasing function oft. Thusnii = nii(t)

is a non-increasing function oft. If we show that for somei the
function nii(t) is strictly decreasing, then from any value ofnii

we may determinet. But to establish that somenii is strictly
decreasing, we need only show there exists somei and some
j > 1 such thatkji 6= 0, so that at least one term in equation (5)
is a strictly decreasing function. However, asK has rankκ > 1,
we cannot havekji = 0 for all j > 1.
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