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Abstract. Understanding evolutionary relationships between species is a fun-
damental issue in biology. This article begins with a survey of the many ideas
that have been used to construct phylogenetic trees from sequence data. Ap-
proaches range from the primarily combinatorial, to probabilistic model-based
methods appropriate for developing statistical viewpoints.

The final part of this article discusses a thread of research in which al-
gebraic methods have been adopted to understand some of the probabilistic
models used in phylogenetics. Recent progress on understanding the set of
possible probability distributions arising from a model as an algebraic variety
has helped provide new theoretical results, and may point toward improved
approaches to phylogenetic inference.

1. Introduction

Phylogenetics is concerned with inferring evolutionary relationships between or-
ganisms. These are depicted by phylogenetic trees, or phylogenies, whose branching
patterns display descent from a common ancestor.

Before the advent of molecular data from biological sequences such as DNA
and proteins, construction of a tree for a collection of species required amassing
much detailed knowledge of phenotypic differences among them. If fossil evidence
of ancestral species was available, it might also be incorporated into the process.
Painstaking efforts of experts working for many years were required, yet results
might still be controversial, and difficult to justify objectively.

The availability of sequence data produced a revolution in several ways. First,
the volume of available data for any given collection of species grew tremendously.
Obtaining data became less of a problem than how to sort through it. Second,
since sequences are so amenable to mathematical description, it became possible
to formalize the inference process, bringing to bear mathematical tools. Although
there is still much room for further development of phylogenetics, even a glance at
current literature shows that phylogenies inferred from molecular data commonly
appear across a large swath of biological fields.

In these notes, we first give a quick survey of the main threads in phylogenetics.
As will be apparent, combinatorics, statistics, and computer science have all had
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large roles to play from the beginning. We conclude with more focused material
on recent work in which algebra has provided the framework. We hope that this
will provide both an example of how mathematically interesting problems arise in
biology, and how various mathematical tools may be brought to bear upon them.

Because of our diverse goals, the level of presentation will vary. We encourage
readers to consult the notes on further reading and the bibliography with which we
conclude.

The basic problem. Consider the set of species, or taxa,

X = {human, chimp, gorilla, orangutan, gibbon}
that we believe have descended from a common ancestor. If we sequence a gene
such as mitochondrial HindIII [HGH88] that they all share, we obtain, as the
beginning of much longer sequences:

Human AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCTCA...

Chimpanzee AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCTCA...

Gorilla AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCATCA...

Orangutan AAGCTTCACCGGCGCAACCACCCTCATGATTGCCCATGGACTCACATCCTCC...

Gibbon AAGCTTTACAGGTGCAACCGTCCTCATAATCGCCCACGGACTAACCTCTTCC...

We have already aligned the sequences, so that bases appearing in any column
are assumed to have arisen from a common ancestral base. Obtaining a good align-
ment may be obvious for some datasets, but quite difficult for others, requiring
mathematical tools we will not discuss here. We also assume no deletions or inser-
tions of bases have occurred. In fact, we allow only base substitutions where one
letter is replaced by another (A→G, A→C, etc.)

Similarities in the sequences lend support to our hypothesis of a common ances-
tor for this gene, while the evolutionary descent has left its record in the differences.
Our goal is to pick among all possible phylogenies that might relate these taxa the
one that fits ‘best’ with the data sequences. For instance, two possible trees are
shown in Figure 1, and naive consideration of the sequences above might find some
support for one over the other.

To be more precise, if X is a set of taxa, a phylogenetic X-tree is a tree with its
leaves bijectively labeled by elements of X. If an internal node of the tree has been
marked to designate the common ancestor, we call that node the root, and refer to
the tree as a rooted phylogenetic X-tree. Notice that we label only the leaves of
the tree, since we generally have no data for any taxa other than those currently
living.

Human

Chimp

Gibbon

Gorilla

Orangutan

Human

Chimp

Gibbon

Gorilla

Orangutan

Figure 1. Two possible phylogenetic trees.
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It is common in biology to focus on binary trees (i.e., trivalent, except bivalent
at a root) as being of primary interest. Most speciation events are believed to be
of the sort where only two species at a time arise from a parent species. While
multifurcations in a tree might be used to represent ignorance (so-called soft poly-
tomies), such as when several speciation events occurred so closely in time we are
unable to resolve their order, they seldom are believed to represent the true history.
For the remainder of this chapter, we consider only binary trees.

The large number of possible trees relating n taxa will turn out to be problem-
atic for most methods of phylogenetic inference. This is quantified in the following
basic combinatorial result, easily proved by induction.

Theorem 1.1. If |X| = n, then there are (2n−5)!! = 1 ·3 ·5 · · · (2n−5) distinct
unrooted binary phylogenetic X-trees, and (2n− 3)!! distinct rooted ones.

Before determining a tree that best fits the data we must of course specify what
we mean by ‘best fits.’ There are many approaches to this, and in the next few
sections we highlight those that have played the most important roles.

We should add that information in sequences other than base changes can
be used to infer phylogenies. Genomes occasionally undergo large scale changes,
in which genes may be reordered, duplicated, or lost. Because these changes are
rarer, they are all useful for inference much further back in evolutionary time than
the base changes we focus on here.

2. Parsimony

One natural criterion for choosing an optimal tree is to find one that requires
the fewest base substitutions. The most parsimonious tree (or trees) achieves this
minimum, and at least in circumstances when substitutions are rare is a reasonable
candidate for the best inferred evolutionary history.

Given aligned sequences and any proposed phylogenetic tree relating the taxa,
the Fitch-Hartigan algorithm can compute the minimal number of substitutions
required by that tree. Without proof that the algorithm is correct, we give a brief
example, illustrated in Figure 2.

First, the data sequences are placed at the leaves of the tree. We then work
upward, filling in possible sequences at adjacent nodes that should attain minimal
substitution counts. For instance, at the parent node above the two leaves at the

ACC ATC GTA GCA
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Figure 2. The Fitch-Hartigan algorithm for computing parsi-
mony scores.
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far left, writing either ATC or ACC would each require only 1 substitution, and we

can do no better. We label this node with A{ T
C
} C, and count that one mutation

has occurred. Proceeding to its parent, placing a T in the center site requires no
additional substitutions since a T might have occurred in both sequences below it.
At the first and third sites, however, substitutions were needed, and all possibilities
requiring only 1 substitution per site are listed. So far our substitution count is 3.
By filling in sequences at the root, we find we need 1 more substitution, for a total
count of 4 for this tree. Thus, 4 is the parsimony score of this tree.

The procedure is summarized by: For each node, look at the sequences at its
two children. At sites where there are no bases in common, write the union of the
sets appearing at the children and increase the substitution count by 1. At sites
where there are bases in common, write the intersection of the sets appearing at
the children and do not change the substitution count.

Two points should be made that may not be clear from this example: 1) the
minimal number of substitutions is independent of root location, so parsimony
compares only unrooted trees, and 2) Though it does produce the correct minimal
substitution count, the algorithm does not reconstruct all ancestral sequences that
achieve the minimal count on the tree. Additional steps are needed to do that, if
desired.

The Fitch-Hartigan algorithm is fast, in fact O(|X|L), where L is the number
of sites in the sequences. Unfortunately, this is for only one tree, though, and
performing it on all trees is more problematic.

Theorem 2.1 (Foulds and Graham, [FG82]). Determining the most parsimo-
nious tree is NP-hard.

Branch and bound approaches to searching tree space are sometimes effective,
and many heuristics for good searching have been developed and implemented in
software. These are believed to perform well in practice, but for a large data set,
one never knows for sure that a most parsimonious tree has been found.

A serious problem with parsimony, however, concerns its basic criterion. Sup-
pose that along a single edge of a tree a site evolved as A→C→T. The parsimony
criterion would, at best, recognize only one substitution as having occurred. Even
worse, for A→C→A it would count no substitutions. If such hidden mutations or
back substitutions occurred, parsimony can be misled.

In fact, using a simple probabilistic model of the substitution process on a
small tree (of the sort to be discussed in Section 4) Felsenstein was able to show
the following.

Theorem 2.2 (Felsenstein, [Fel78]). If multiple mutations can occur at a site
along any given edge, then there are plausible assumptions under which parsimony
will infer the incorrect tree.

Of course any method of inference may perform poorly when given insufficient
data. Felsenstein’s result concerns the method’s statistical inconsistency : Even as
the amount of data in accord with the model grows without bound, the wrong tree
is inferred.

The inconsistency of parsimony is disturbing to the statistically minded. Nonethe-
less, parsimony is still in use for inference of trees, though it is not the most popular
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method. As long as hidden mutations are believed to be rare, it may be a reasonable
approach.

3. Distance methods

The next class of methods share with parsimony a combinatorial flavor. We
begin by measuring pairwise dissimilarity between taxa, perhaps by using the Ham-
ming distance between their sequences,

d(a, b) =
number of sites differing between a and b

total number of sites
.

We then seek a metric tree, where each edge has a non-negative length (or weight),
so that cumulative lengths along the tree between taxa (values of the tree metric)
are close to the dissimilarity values. We view d(a, b) as some sort of measure of how
much mutation must have occurred along all edges of the tree between a and b.

Note that we do not refer to the dissimilarity d as a distance or metric, since
we should not expect it to agree with a tree metric exactly. Indeed, since we have a
finite amount of data (and assuming we believe some stochastic process lies behind
it), it will vary from any idealization due to its finiteness and inadequacies of our
model. In addition, the Hamming dissimilarity suffers from the same fundamental
problem as parsimony — it is insensitive to hidden mutations. After probabilistic
models are formalized in Section 4, we will be able to address this last point with
improved dissimilarity maps.

Imagine that using the Hamming dissimilarity, or some other measure of dif-
ference, we collapse sequence data into a dissimilarity table, like that in Table 1.

Table 1. Dissimilarity between sequences

a b c d
a .32 .56 .49
b .34 .27
c .37

In algorithmically building a tree from this data, the naive approach is to
assume the taxa that are closest in dissimilarity must be closest topologically. This
viewpoint applied to Table 1 leads us to join taxa b and d to an ancestral node, and
perhaps split their dissimilarity between the two edges. We might then combine b
and d into a group, averaging their distances to the other taxa, and thus reduce our
table size by one. Continuing in this way, we have outlined the clustering method
known formally as UPGMA (Unweighted Pair Group Method using Arithmetic
Means).

In fact, UPGMA is not a good method in most circumstances in phylogenetics.
To see why, note that the tree in Figure 3 exactly fits the data of Table 1. However,
UPGMA first joins b and d, and so it does not recover this tree. Metric close-
ness, and topological closeness are in conflict, and so UPGMA made a topological
mistake. (UPGMA also produces a rooted tree, with all leaves equidistant from
the root. This means all lines of descent from the common ancestor experienced
identical amounts of mutation. This implicit molecular clock assumption is often
not justifiable on biological grounds.)
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Figure 3. A metric tree exactly fitting the dissimilarity data of
Table 1.

To address this conflict between metric closeness and topological closeness, the
key observation is that for any metric tree with the topology shown in Figure 3,
regardless of the edge lengths the following inequality and equality hold:

(3.1) d(a, b) + d(c, d) ≤ d(a, c) + d(b, d) = d(a, d) + d(b, c).

In fact, this leads to a characterization of those dissimilarities that exactly fit metric
trees.

Theorem 3.1 (Buneman, [Bun71]). A dissimilarity map d on X arises from
a metric tree if, and only if, for every choice of 4 taxa a, b, c, d ∈ X, the following
4-point condition holds:

d(a, b) + d(c, d) ≤ max(d(a, c) + d(b, d), d(a, d) + d(b, c)).

Exercise 3.2. Prove Theorem 3.1 in the special case of 4-leaf trees.

The Neighbor Joining algorithm of Saitou and Nei [SN87, SK88] overcomes
the failings of UPGMA by efficiently finding a pair of taxa a, b to join that would,
for data exactly fitting a tree, satisfy Equation (3.1) for all pairs c, d. It thus is
guaranteed to produce the correct tree for ‘perfect’ data, and has been found to
perform well on simulated data. With running time O(|X|3) when dissimilarities
are already computed, it is quick, since it need not search among all possible trees.
NJ is widely used when a tree must be produced quickly, and is by far the most
popular distance-based method.

One criticism of NJ is that while its algorithmic approach is fast, it is unclear
what it optimizes: In what sense do we get the best tree? Although there are other
distance approaches with explicit optimality criteria (e.g., best L2 fit, best L1 fit, a
‘minimum evolution’ criterion), implementations in software then require searching
tree space, so the speed advantage of NJ is lost.

Another issue is that if a distance approach only compares sequences two-at-
a-time, it is ignoring much of the information in the data. Recent work [PS04a,
CL05] has sought to overcome this issue partially, yet still preserve some of the
speed of NJ, by considering sequences k-at-a-time.
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Figure 4. An n-taxon tree.

4. Base Substitution Models

Before going further with our survey of common phylogenetic methods, we
must introduce some of the probabilistic models of molecular evolution which other
methods use. Explicit models allow a firmer grounding in statistical theory.

Most probabilistic models of the mutation process focus on a single site in a
sequence, and only on base substitutions occurring at that site as evolution proceeds
down a tree. Other types of sequence changes — insertions, deletions, inversions
— require more complicated models than will be discussed here.

To introduce the form of the model, consider some fixed rooted tree such as the
one in Figure 4. At the root node, our site might have any of the 4 bases A,G, C, T
occurring. A root distribution vector πr = (πA πG πC πT ) gives the probabilities
of each occurring. On an edge e leading from the root, substitutions may occur, so
a 4× 4 Markov matrix Me specifies the 16 conditional probabilities of the various
substitutions A→A, A→G, etc. From πr and Me we can find the probabilities of the
various bases at the descendent node at the end of e. Thus if we specify a Markov
matrix for each edge of the tree, we have modeled how the entire evolutionary
process proceeds over the tree.

In formalizing this we model sequences built of an arbitrary κ-letter alphabet.
For each node of the tree we have a random variable which might assume any of κ
states, usually denoted by the elements of [κ] = {1, 2, . . . , κ}. The root distribution
vector πr gives probabilities of the various states for the variable at the root, while
κ× κ Markov matrices give transition probabilities of state changes from ancestral
to descendent node along each edge. Since an n-leaf trivalent tree has 2n−3 edges,
this number of Markov matrices must be specified. The parameters for the general
Markov model (GM), are then

(1) a leaf-labeled tree T ,
(2) a root distribution vector πr with non-negative entries summing to 1, and
(3) a Markov matrix Me (non-negative entries, each row summing to 1) for

each edge e.

For DNA, the number of states is κ = 4, but for protein sequences, which
are built from twenty amino acids, κ = 20. The case κ = 2 is also of interest
for DNA substitution models, if we group bases into purines R = {A,G} and
pyrimidines Y = {C, T}. We often refer to (π, {Me}) as the stochastic parameters,
distinguishing them from the tree parameter.
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Figure 5. Computing the expected pattern frequencies on T .

A key point in the use of a model such as this is that while it describes states
at all nodes of the tree, in fact only those at the leaves are observable, since the
leaves represent the extant taxa from which we may obtain data.

With the parameters of the model thus specified, we are interested in the joint
distribution P of states at the leaves a1, a2, . . . , an. The joint distribution P is an
n-dimensional κ× · · · × κ tensor (or table or array) with entries

P (i1, · · · , in) = Prob(a1 = ii, · · · , an = in).

The entries of P then are the expected frequencies of observing a pattern of states
such as (i1, · · · , in) at the leaves of the tree. These expected pattern frequencies
can be explicitly expressed in terms of the parameters of the model, as we explain
through an example.

Example 4.1. Consider the 4-taxon tree of Figure 5 rooted at v, with stochastic
parameters as labeled. Using α and β to represent the unobserved states at the two
internal nodes v and w, respectively, the expected pattern frequency P (i, j, k, l) =
pijkl is given by

pijkl =
κ∑

β=1

κ∑
α=1

παM1(α, i)M2(α, j)M3(α, β)M4(β, k)M5(β, l).

Note the form of this expression depends very much on the topology of the tree,
and in fact the topology can be recovered from the formula.

While the model outlined here describes the base substitution process at a single
site, for phylogenetic inference the data is aligned DNA sequences of some length L.
To apply the model to data, we make the additional assumption that each site in
the aligned sequences is a trial of the same probabilistic process. More carefully, we
assume that the evolutionary process at each site proceeds independently of all other
sites, but according to the same probabilistic process, with the same parameters.

This independent, identically distributed (i.i.d.) assumption is not desirable
from a biological viewpoint — substitutions at one site may well not be independent
of nearby sites, or even of distant sites if the three-dimensional structure of a protein
coded for by the gene folds to bring distant stretches together. Also, allowing
different substitution processes might better describe what goes on in the evolution
of various parts of the sequence.

Nonetheless, some form of the i.i.d. assumption is essential. It is only by viewing
each site as a trial of the same process that we obtain enough data to infer something
about the parameters. With this assumption, we can estimate the expected pattern
frequencies such as pijkl by the observed frequencies of patterns in the aligned
sequences p̂ijkl. Then formulas such as that in Example 4.1 play a role in our
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a1 a2

Figure 6. A 2-taxon tree.

inference of the root distribution, Markov matrices, and most importantly, the
tree.

We now wish to show that for most parameter choices we can produce the same
joint distribution at the leaves of a tree as we could with a different root location
and a related choice of parameters.

To develop this idea, first consider the 2-taxon tree of Figure 6, with a1 desig-
nated as the root. Let πa1 = (π1 π2 π3 π4) be the root distribution vector, and, for
e = (a1 → a2), let

Me = (mij) , mij = Prob(a2 = j | a1 = i),

be the matrix of conditional probabilities of base substitutions along the edge.
To compute the joint distribution P = Pa1a2 , a 4×4 matrix of expected pattern

frequencies, notice that the (i, j)-entry pij is πimij , or in matrix form,

(4.1) Pa1a2 = diag(πa1)Me =




π1m11 π1m12 π1m13 π1m14

π2m21 π2m22 π2m23 π2m24

π3m31 π3m32 π3m33 π3m34

π4m41 π4m42 π4m43 π4m44


 ,

where diag(πa1) denotes the diagonal matrix with entries from πa1 .
Now consider the same 2-taxon tree T in Figure 6, but with the root taken at

a2 instead. Then in terms of the stochastic parameters on T rooted at a1, define the
root distribution vector to be πa2 = πa1Me, the probabilities that leaf a2 is in each
of the four states. Let Me′ denote a Markov transition matrix for e′ = (a2 → a1)
that will be determined shortly.

Notice that viewing a2 as the root, the joint distribution is expressed as Pa2a1 =
(Pa1a2)

T . Thus we would like to find Me′ so that,

diag(πa2)Me′ = Pa2a1 = (Pa1a2)
T = (diag(πa1)Me)

T = MT
e diag(πa1).

If the entries of πa2 are all positive, then we may take

Me′ = diag(πa2)
−1

MT
e diag(πa1).

This establishes that, under mild conditions, there is a choice of parameters for T
rooted at a2 that give rise to the same joint distribution P as the parameters πa1

and Me for T rooted at a1. Hence, for the general Markov model, we can ‘move the
root’ without affecting the entries of the joint distribution array P . We formalize
these observations and extend the setting to n-taxon trees in Proposition 4.2.

Proposition 4.2. Fix an n-taxon tree T . Let r be some choice of root for T
(which may be a leaf, an internal node of valance 3, or along some edge). Then,
for generic choices of stochastic parameters Sr for the general Markov model rooted
at r, and for any other choice of a root s for T at either a leaf or an internal
node of valance 3, there is a uniquely determined choice of general Markov model
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parameters Ss for the model rooted at s producing the same joint distribution at the
leaves as Sr.

A consequence of Proposition 4.2 is that the location of the root in a tree T
is a biological problem, not a mathematical one. Under this model (and many
others as well), there is no way to mathematically identify a node in T as a most
recent common ancestor of the taxa in hand. (However by including an outgroup,
a taxon known to be distantly related to those under study, one can use biological
knowledge to locate a root.)

For this reason, we usually consider the inference of an unrooted tree as our
goal. In addition, for computations with a model, and in arguments, we are now
free to place roots wherever we find most convenient.

While the general Markov model is simple to explain, it has more parameters
than models typically used in practice. Once the tree parameter has been chosen
as a particular n-taxon tree, there are κ− 1 free choices to be made for πr, and for
each of the 2n − 3 edges, κ(κ − 1) free choices for entries in Me, giving a total of
κ− 1 + (2n− 3)κ(κ− 1) numerical parameters. Though this grows only linearly in
the number of taxa, the coefficient is rather large. For κ = 4, the total number of
parameters is already roughly 24n.

This large number of parameters has two effects. First, it slows down compu-
tations, which for a large number of sequences can be problematic. Second, using
a parameter-rich model allows us to better fit data, but may also allow overfitting.
If the data can be described by a model with fewer parameters, that model may
provide a better basis for inference.

Restrictions on the particular form of the stochastic parameters, some arising
from biological considerations and some for mathematical convenience, give rise to
submodels of the GM model. We discuss these, as well as some extensions to more
elaborate models next.

Group-based models. The Jukes-Cantor model for DNA is the biologically-
plausible model with the fewest parameters. It assumes a uniform root distribution
vector of π = (.25 .25 .25 .25) and edge transition matrices of the form

MJC =




1− a a
3

a
3

a
3

a
3 1− a a

3
a
3

a
3

a
3 1− a a

3
a
3

a
3

a
3 1− a


 ,

where a different value of a may be used for each edge. On each edge, all non-
identical base substitutions are equally likely, and the probability that some change
occurs at a site between the endpoints of the edge is given by the parameter a.
Note that the root distribution is an eigenvector of MJC , so a uniform distribution
of states will occur at each node in the tree.

Though this model is attractive for its simplicity, further realism can be in-
troduced by having two probabilities of changes, as we now describe. Because of
chemical similarities, the bases are classified as purines {A,G} and pyrimidines
{C, T}. Assigning probability a to in-class changes (transitions), and b to out-of-
class changes (transversions), we arrive at the Kimura 2-parameter model, with
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matrices

MK2P =




1− (a + 2b) a b b
a 1− (a + 2b) b b
b b 1− (a + 2b) a
b b a 1− (a + 2b)


 ,

where the rows and columns are ordered by the states A, G, C, T , (purines, fol-
lowed by pyrimidines). Typically a > b, since transitions are often observed more
frequently than transversions.

A slight generalization, introduced more for its mathematical structure than
for biological reasons, is the Kimura 3-parameter model with transition matrices of
the form

MK3P =




1− (a + b + c) a b c
a 1− (a + b + c) c b
b c 1− (a + b + c) a
c b a 1− (a + b + c)


 .

Notice the pattern to the entries is that of an addition table for the group
Z2 × Z2. In fact, if we identify the four bases with group elements by

A = (0, 0), G = (1, 0), C = (0, 1), T = (1, 1),

then a substitution X → Y is naturally encoded by the group element Y − X
since X + (Y −X) = Y . If a random choice of a group element determines what
substitution occurs, then the numbers 1 − (a + b + c), a, b, and c represent the
probabilities of each choice, explaining the form of MK3P .

This special structure has produced some quite interesting results for the K3P
model, and its specializations, the K2P and JC models. Although we will not
explain it here, the Hadamard conjugation of [Hen89, HP89] is a fundamental
result that introduced Fourier analysis as a tool for studying such models. This
was further developed in [SSE93].

General Time Reversible models. So far we’ve essentially taken a discrete
time approach to modeling substitutions, by specifying transition probabilities re-
lating states at the two ends of an edge. Substitutions may also be modeled as
a continuous time process. In fact, if we are interested in inferring elapsed time
between speciation events, we must take this approach so that those times become
parameters.

To formulate a continuous time model, we let Q denote a κ× κ instantaneous
rate matrix. The off-diagonal entries of Q represent rates at which the 12 non-
identical substitutions occur, and are thus non-negative numbers. The diagonal
entries are chosen so that the rows sum to zero. Associated to each edge e of T
is a parameter te, an edge length. If e = (v → w), then te represents the amount
of time elapsed during evolution of the sequence at v into the sequence at w. The
Markov transition matrix for e is then the matrix exponential, Me = exp(Qte).

When using continuous time models, we generally choose one rate matrix Q
for all edges of the tree. This imposes some commonality to the evolutionary
process on all edges of the tree that is biologically reasonable in some (but not
all) circumstances. It also dramatically reduces the dependency of the number of
parameters of the model on the number n of taxa to roughly 2n, since that is the
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growth rate of the number of edges, and we add only one new parameter, te, for
each edge.

It’s usually most convenient to require that the root distribution vector π = πr

be an eigenvector of Q with eigenvalue 0. This ensures that π is an eigenvector of
Me = exp(Qte) with eigenvalue 1, for all values of te. As a result, the model is a
stationary one, with state distribution the same at all nodes of the tree.

Along with this we often assume time-reversibility :

diag(π)Q = QT diag(π).

Imposing this condition, that diag(π)Q is symmetric, implies that diag (π) exp(Qte)
is symmetric for all te. But we saw in Equation (4.1) that diag (π) exp (Qte) rep-
resents the joint distribution of states at the two ends of e. Therefore, stationarity
with time-reversibility means that we can use the same parameters π, Q, te to model
evolution on an edge regardless of the orientation of the edge.

The general time-reversible (GTR) model is a rate-matrix model making both
the stationarity and time-reversible assumptions. These assumptions imply we can
‘move the root’ in a tree under the GTR model without affecting the entries of the
joint distribution P . As with the GM model, we will not be able to mathematically
determine a root location when we use the GTR model for inference. This is
convenient, since it means for inference we will not have to search over all rooted
trees, but rather over unrooted ones. In fact, the reason the GTR model is used is
precisely that it is the most general rate-matrix model with this property.

Exercise 4.3. Show that all pairs π, Q for the κ-state GTR model can be
specified by formulas involving (κ − 1) + κ(κ − 1)/2 scalar parameters, and thus,
after normalizing so that one edge has length 1, the GTR model on an n-taxon tree
has (κ− 1) + κ(κ− 1)/2 + (2n− 4) parameters.

Exercise 4.4. Show that the JC model is a special case of GTR, by finding
π, QJC explicitly.

Exercise 4.5. Show that the K2P model may be a special case of GTR, but
that there are choices of K2P parameters that are not instances of a GTR model.
More specifically, find π and all possible Q so that Me = exp(Qte) are K2P edge
transition matrices. Then find a relationship between the sets of eigenvalues of Me,
for each of the 2n− 3 edges e, that must hold if an arbitrary K2P model is a GTR
model.

Exercise 4.6. Consider the 2-taxon tree of Figure 6 rooted at a1. If πa1 =

(.23 .26 .24 .27) and Ma1a2 =




.96 .02 .01 .01

.06 .88 .02 .04

.01 .04 .93 .02

.05 .05 .04 .86


, compute the joint distribu-

tion of bases at the leaves P = Pa1a2 . Could this come from the GTR model?

Mixture models. It is unrealistic biologically to assume that all sites mutate
according to the same process. Certainly it is plausible that non-coding regions
of the genome might undergo substitutions at a faster rate than coding ones. But
even within genes, there may be variability.
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Triplets of bases form codons that specify an amino acid to appear in the
protein molecule for which the gene encodes, but the genetic code which relates
codons to amino acids has redundancy. There are 43 possible codons, but only 20
amino acids. Much of the redundancy of the code is such that different bases in
the third codon position may not affect the gene product. Thus the third position
may be more likely to experience a higher mutation rate.

Moreover, since some parts of the protein structures might be essential to the
viability of an organism, those sites coding for such parts may never be observed
to undergo any substitutions at all. Typically, then, we expect variability in the
mutation process among sites, but do not know how to partition the sites into
various classes according to their behavior.

A step toward improving our description of molecular evolution then is to
introduce a mixture model. In this formulation, each site in aligned sequences falls
into one of k classes and each of the k classes carries its own stochastic parameters.
Of course all sites share the same tree parameter. An additional k − 1 parameters
δi are needed to indicate the proportion of the sites that lie in the ith class, i =
1, · · · , k − 1, with δk = 1−∑k−1

i=1 δi giving the proportion in the last class.

For example, consider a situation in which some sites in our sequences are
believed to be unable to undergo substitutions, perhaps because of functional con-
straints on a protein product. We call these invariable sites. Notice that in aligning
sequences we usually have many sites that are in complete agreement, but we do
not necessarily believe they were invariable — they may have been able to undergo
substitutions, but simply did not. If we believe invariable sites exist, then we can-
not directly distinguish between the constant sites which are invariable and those
which were free to vary but did not.

To model this, we introduce the GM+I model. For a fixed rooted tree, the
parameters are 1) For the sites that can vary, a root distribution vector πGM

and Markov matrices {Me} for each edge of the tree, 2) For those sites that are
invariable, a root distribution vector πI , and 3) a mixing parameter δ indicating
the proportion of sites that mutate according to a GM process. The resulting joint
distribution P is a weighted sum

PGM+I = δPGM + (1− δ)PI ,

where PGM is the joint distribution for the varying sites, and PI the joint dis-
tribution for the invariable sites, an n-dimensional diagonal tensor formed from
πI .

GM+I is just one of many mixture models that can incorporate more biolog-
ical realism in modeling the base substitution process, and this example should
make clear what we mean by mixture models such as GM+GM+GM, GM+GM+I,
GTR+I, or JC+I.

The use of mixture models can greatly increase the number of stochastic pa-
rameters. For a k-class general Markov mixture model, for instance, the number of
stochastic parameters increases by more than a factor of k. While mixture models
are appealing since they conform better with our intuitive notion of how to model
base substitutions, the large number of parameters increases the risk of overfitting
data. At the extreme, one might imagine a mixture model with so many classes
that, for appropriate parameter choices, it might be capable of producing any joint
distribution at all. If such a model describes data, then we have no hope of inferring
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a tree, since no signal indicating the correct tree can be found in the observed joint
distribution.

One model of substitutions that is in widespread use, the GTR+I+Γ, is a
more restricted version of the mixtures above. It is a rates-across-sites model, and
cuts something of a compromise between mixing classes and keeping the number
of parameters down. Here a root distribution π, an instantaneous rate matrix Q,
edge lengths te, and a mixing parameter for the variable and invariable classes
are specified as in a GTR+I model. In addition, a Γ distribution describes the
distribution of a rate parameter λ for the different variable sites, with each site
undergoing substitution along an edge e according to Me = exp(Qλte). Thus while
we introduce a continuum of variable classes, we need only one new parameter,
the shape parameter for the Γ distribution. The model therefore assumes much
commonality to the substitution process, since the same Q is used on all edges and
for all variable sites. In practice, when a model such as GTR+I+Γ is used for
inference, it must be incorporated into software, and that means the Γ distribution
is discretized and only a small number of discrete classes are used.

Note that we have given no biological justification for preferring the Γ distribu-
tion to any other distribution. Indeed, there seems to be none. It is simply hoped
that by tuning the shape parameter, the distribution is flexible enough to capture
whatever variation in rates might exist.

5. Improved Dissimilarities from Models

With a probabilistic model in hand, we can sometimes create phylogenetic dis-
tances that better measure the amount of mutation that occurred in the evolution
of two sequences from their common ancestor. These can be used in place of the
Hamming dissimilarity in distance methods of inference, such as Neighbor Joining.

We sketch the idea for the Jukes-Cantor model with κ = 4. Suppose the
evolution of an ancestral sequence for taxon a1 to a descendent sequence for taxon a2

is modeled by the Jukes-Cantor model. Then we begin with a uniform distribution
π = (.25 .25 .25 .25) of states for a1, and substitution occurs according to a Markov
matrix of the form

(5.1) MJC =




1− a a
3

a
3

a
3

a
3 1− a a

3
a
3

a
3

a
3 1− a a

3
a
3

a
3

a
3 1− a


 = exp(Qt),

where t represents the amount of time of evolution along e and Q is the rate matrix

Q =




−1 1
3

1
3

1
3

1
3 −1 1

3
1
3

1
3

1
3 −1 1

3
1
3

1
3

1
3 −1


 .

By our choice of Q, we have chosen to measure time in such a way that the instan-
taneous rate at which (non-identical) base-substitutions occur is 1.

Exercise 5.1. By diagonalizing, show that Equation (5.1) implies

t = −3
4

ln
(

1− 4
3
a

)
.
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Since a represents the probability of a (non-identical) substitution being ob-
served when we compare a site in the sequences for a1 and a2, we can estimate a by
the Hamming distance between the sequences, â. We thus define the Jukes-Cantor
distance between the sequences as

dJC(a1, a2) = −3
4

ln
(

1− 4
3
â

)
.

This distance (which is really a dissimilarity, and not likely to be exactly in accord
with a tree metric when computed from data) is a measure of the total amount of
mutation per site that occurred between a1 and a2, including all those unobserved
substitutions which were hidden by subsequent substitutions. Its value is larger
than â to account for these.

Notice we assumed one of our sequences is the ancestral one, and when dealing
with data we typically have sequences only from extant species. However, the
Jukes-Cantor model is in fact a special case of the GTR model, so we may freely
choose any node on a tree as the root. With a little thought, we see that dJC

calculates the total substitutions per site that occurred in both lineages descending
to a1 and a2 from their common ancestor.

A more complete derivation of the Jukes-Cantor distance would show that it is
the maximum likelihood estimate for the total amount of substitution that occurred
between two sequences under the JC model. This is important, since it means its
use for estimating amounts of mutation is well-founded in statistical theory.

By similar means, phylogenetic distances can be defined for the Kimura models
and others. In practice, these are the sorts of distances that are used when a method
such as Neighbor Joining is used to construct a tree. Since dJC is estimating the
cumulative edge lengths between taxa, it should give distances that are close to
exactly fitting a tree, at least to the extent that the Jukes-Cantor model describes
our data accurately, and our sequences are sufficiently long so that â ≈ a.

However, distance formulas have not been discovered for all models. For in-
stance, for a GTR model with a rate distribution, such as GTR+Γ, a distance
formula can be given once one has specified the distribution. However, no distance
is known that is appropriate for an unknown distribution. Other mixture models,
such as GTR+I, also lack known distance formulas.

Use of an appropriate distance can improve a tree construction method such
as Neighbor Joining, making it statistically consistent. However, it does nothing
to address the problem that distances are based on two-sequence comparisons, and
therefore do not make full use of the data.

6. Statistical inference via Maximum Likelihood

With a model of mutation specified, we can also infer trees from data by using
the maximum likelihood approach not just to find distances between two taxa at a
time, but rather to estimate all the parameters of the model. The tree parameter
is of course the one we are most interested in, but we can not separate it from the
others in this approach.

For a fixed model (say GTR+I+Γ) a full maximum likelihood estimation of all
parameters from aligned sequences for n taxa would proceed as follows:

For each pattern i ∈ [κ]n, let ni denote the number of sites in the aligned
sequences in which that pattern is observed. Then
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(1) Loop on all (2n − 5)!! unrooted phylogenetic trees that might relate the
taxa.

(2) For each tree T , viewing the joint distribution at the leaves, P , as a
function of the stochastic parameters, consider the likelihood function

L(T, stochastic parameters)

= Prob(data | T, stochastic parameters)

=
∏

i∈[κ]n

Pni

i .

Determine the maximum value of this function, which is the likelihood of
the tree T .

(3) Report as the maximum likelihood tree the T which has the greatest
likelihood.

Obviously this scheme cannot be carried out exactly if the number of taxa is
large. First, there are too many trees to consider each, and so heuristic searches
among the trees must be performed. Second, even computing the likelihood for one
tree is difficult, since we must solve a multivariate optimization problem. This is
one reason why keeping the number of parameters in the model small is so desirable.
We must also be aware that attempts to optimize the numerical parameters may
find only local maxima, and fail to find the true global maximum.

Nonetheless, computer implementations of maximum likelihood inference are
heavily used because of the desirable statistical properties of the method. But as
the number of taxa is increased, it becomes impossible to complete the searches in
a reasonable amount of time.

Recently there has also been rapidly growing interest in using Bayesian ap-
proaches to phylogenetic inference as well, and software is available built on MCMC
algorithms. Since a complete survey should certainly outline this approach, we sug-
gest [Gas05] for a good overview.

7. Algebraic Methods in Phylogenetics

Although phylogenetic inference is regularly conducted by the methods out-
lined above, there is still much potential to improve both our methods and under-
standing of the problem. Even if one adopts a preferred inference method, be it
parsimony, maximum likelihood, or Bayesian approaches, the computational issues
in performing the method force compromises in carrying out the procedure. Any
new perspectives that can be developed have potential to guide us toward better
approaches.

In recent years, the perspectives of algebraic geometry have been brought into
phylogenetics. Though still very much under development, we turn now to intro-
ducing this viewpoint.

Phylogenetic invariants, ideals, and varieties. Consider a fixed n-taxon
tree T . Then any probabilistic model of molecular evolution on T defines a map
from stochastic parameter space to joint distribution space. For the GM model
on an n-taxon tree, for example, the number of stochastic parameters is K =
(κ−1)+(2n−3)κ(κ−1), so the stochastic parameter space S is a subset of [0, 1]K .
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Since the joint distribution P is an n-dimensional array, the GM model on T defines
a map φT :

φT : S −→ [0, 1]κ
n

(π, {Me}) 7−→ P.

Example 7.1. Recall Example 4.1, for a 4-taxon tree. There we saw that the
map φT was defined by the component functions

P (i, j, k, l) =
κ∑

β=1

κ∑
α=1

παM1(α, i)M2(α, j)M3(α, β)M4(β, k)M5(β, l),

so that each component function is a degree 6 polynomial in the scalar parameters,
with κ2 terms.

More generally, for the GM model on an n-taxon tree each of the component
functions of φT will be a degree 2n− 2 polynomial, with κn−2 terms. The precise
form of these polynomials reflects the topology of the tree T .

The fact that the function φT is polynomial suggests extending it beyond the
stochastic setting, to the complex numbers. Accordingly, if S ⊂ CK , then we have
a complex parameterization map

φT : CK −→ Cκn

,

(π, {Me}) 7−→ P,

defined by the same polynomial formulas. Here we are simply allowing π and Me

to have complex entries.

Definition 7.2. The phylogenetic variety for the GM model on T is VT =
Im(φT ), where the bar denotes (Zariski and standard) closure.

Definition 7.3. For any phylogenetic variety VT , let IT be the ideal of all
elements of the polynomial ring C[P ] in κn variables that vanish on VT . Then IT

is the phylogenetic ideal, and its elements are called phylogenetic invariants.

In essence, the phylogenetic variety VT is a higher dimensional ‘surface’ that
contains the (complex) joint distribution for all possible choices of (complex) nu-
merical parameters s = (π, {Me}) of GM on T .

One original motivation for studying phylogenetic varieties is that they group
together into one object, VT , all joint distributions for a model that are associated
to a particular tree topology. In applications, the tree topology is usually the pa-
rameter of greatest interest. If an observed distribution of pattern frequencies were
‘close’ to VT , that could be interpreted as support for inferring T . The vanishing,
or rather near-vanishing, of phylogenetic invariants could indicate ‘closeness,’ thus
potentially allowing the inference of T without having to estimate all the other pa-
rameters, as maximum likelihood requires. This would decouple the tree inference
problem from the problem of inferring all numerical parameters.

This approach to inference is still largely unrealized, however. It will, at the
very least, require considerable more sophistication than it has been presented with
here. If we want to check for the ‘near vanishing’ of invariants, and invariants form
an ideal, we might first consider only a finite set of invariants forming a basis for
the ideal. But what basis should we choose? It is not clear what a good choice
would be, but what choice we make will of course be reflected in the values the
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polynomials take on on data. Naive approaches to judging ‘near vanishing’ for one
basis may not correspond to ‘near vanishing’ for another. And regardless, all of
this should be grounded in some sort of statistical reasoning so we can understand
better how it should perform with data.

Remark 7.4. Extending the parameterization φT to the complex numbers
from the stochastic setting is done because an algebraically closed field provides
the easiest and most natural setting for understanding polynomial maps. Of course
complex parameters and complex joint distributions P are not so natural from a
biological or statistical viewpoint. As the goal ultimately is to understand the GM
model in a stochastic setting, a more appropriate setting might be real algebraic
geometry. That study, however, remains for the future.

Also, by taking the closure, some points in VT have been introduced that are
not in the image of the parameterization φT . While this is natural to an algebraic
geometer, we can also justify it in another way. If a point is in this closure, then
there are points on the parameterized portion of VT that are arbitrarily close to it.
If we have an observed joint distribution from data sequences, and we are trying
to determine if it is ‘close’ to the variety, then it makes no difference whether we
see if it is ‘close’ to the parameterized portion of the variety, or to any point on the
variety.

One can of course define phylogenetic varieties and invariants for other models,
such as JC or K3P, which have polynomial parameterization maps as well. For
most models, these varieties are irreducible (equivalently, the phylogenetic ideal is
prime), but see [AR06] for an exception. We continue to focus on the GM model
for most of our exposition.

Phylogenetic invariants were introduced independently in two papers, by Caven-
der and Felsenstein [CF87], and by Lake [Lak87], both for simpler models than
GM. Lake dealt only with linear invariants, while Cavender and Felsenstein consid-
ered higher degree ones as well, and even dealt with some issues of real vs. complex
geometry. Though using no language of algebraic geometry, [CF87] is still an
excellent introduction to the viewpoint.

Finding invariants. The dimension of stochastic parameter space, K, is much
smaller than the dimension of joint distribution space κn, and as a result there
should be many polynomials vanishing on VT . How to find them explicitly, though,
is not obvious.

But finding phylogenetic invariants is simply an instance of an implicitization
problem in algebraic geometry: Given a parameterized variety such as VT , with a
polynomial parameterization map φT , find an implicit description of it as the zero
set of polynomials. Once we have fixed a choice of model and T , we can write
down explicit formulas for the map φT . Then implicitization can be attempted
computationally, as a variable elimination problem using Gröbner bases (see, for
instance, [CLO97]).

As long as the model is simple (a small number κ of states and a small number
of parameters), and the tree is small (so the dimension κn of the space in which
VT lies is not too large), this can be done by software such as Maple, Macaulay2
[GS02], Singular [GPS01], or other computational algebra packages. However,
one quickly reaches the limits of current software as the number of states, the
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number of taxa, or the number of parameters in the model grows. Nonetheless,
such calculations are instructive to perform, whether to get a feel for the problem,
or for developing conjectures.

Exercise 7.5. Consider a 2-state model of Jukes-Cantor form, with uniform
root distribution and Markov matrices of the form

Me =
(

1− ae ae

ae 1− ae

)

on a 4-leaf tree. Using a leaf as a root, explicitly write down the map φT . You
should have 24 = 16 polynomials, expressing pijkl = P (i, j, k, l) in terms of the five
variables ae. Then, using computational algebra software, find a basis for the ideal
of phylogenetic invariants for this model and tree. These will be polynomials in the
16 variables pijkl found by elimination of the ae.

The model in this last exercise, called the 2-state symmetric model or Neyman
model, has as few parameters as possible to still be biologically plausible. This
was in fact the model Cavender and Felsenstein worked with in [CF87]. To un-
derstand the difficulty of finding invariants computationally, a reader might repeat
the exercise while either increasing the number of states in the model, increasing
the number of taxa, or both.

There are other drawbacks to a purely computational approach to finding in-
variants. To perform elimination, one specifies a term-order, a linear ordering on
monomials that induces a linear ordering on polynomials. This term-order affects
the form of the results of most computations, including the computed generators
of the ideal of invariants. Though one would like to understand how the model and
tree topology are reflected in the form of the invariants, this may not be apparent
from examining the output of a computation.

But what of non-computational approaches? How else can we find invariants?
For any tree and model, the one obvious relationship between pattern frequencies
is the trivial or stochastic invariant,∑

i∈[κ]n

pi − 1.

This simply makes the claim that at any site some pattern must occur. Beyond
this observation, finding invariants depends very much on both the model and the
tree.

We illustrate with a few examples from [CF87], so we work with the 2-state
symmetric model, denoting the states by 0 and 1, and consider a 4-leaf tree with
neighbor pairs a, b and c, d.

First, note the 2 states are treated symmetrically, since we have a uniform root
distribution and the Markov matrices are symmetric. This rather easily leads to
the fact that if i ∈ {0, 1}4 and i′ = (1, 1, 1, 1)− i is its complement, then pi−pi′ = 0.
This gives us 8 independent linear invariants, called symmetry invariants.

To find another invariant, note that for this model, we can also develop a
distance formula analogous to the Jukes-Cantor one. As the reader can show it is

d(x, y) = −1
2

ln(1− 2axy),

where axy denotes the expected frequency of differing sites in comparing the se-
quences for taxa x and y. Assuming we order the four taxa as a, b, c, d, then for
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instance aac can be computed by

aac =
∑

i,j

p1i0j + p0i1j .

Now the 4-point condition (3.1) tells us

d(a, c) + d(b, d) = d(a, d) + d(b, c).

So multiplying this by −2, substituting into it the formula above for the distance,
and exponentiating, we get the invariant

(7.1)


1− 2


∑

i,j

p1i0j + p0i1j








1− 2


∑

i,j

pi1j0 + pi0j1







−

1− 2


∑

i,j

p1ij0 + p0ij1








1− 2


∑

i,j

pi01j + pi10j





 .

Though this can be expressed more concisely by taking advantage of the stochastic
invariant, we have established that there is a quadratic invariant that is tied to the
topological structure of the tree. This polynomial vanishes only for the 4 leaf tree
where a and b are neighbors, and does not vanish for generic joint distributions
arising from the other two 4-leaf topologies. Invariants such as this one are said to
be topologically informative.

In some ways the construction of this invariant, depending as it did on the
particular model’s distance formula and 4-point condition, was misleading in that it
is simply a different presentation of a distance idea. Invariants for more complicated
models, or even the other invariant for this model presented in [CF87], are not so
tied to distance ideas. On the other hand, this invariant does express in a direct
way the topology of the tree. It is highly desirable that invariants be associated to
particular features, such as edges or nodes, within a tree.

After phylogenetic invariants were introduced in 1987, much work focused on
linear invariants for different models. One reason for the emphasis on linear ones was
the understanding that these would vanish not only on joint distributions arising
from the basic model, but also on extensions of the model in which rate variation
across sites was allowed. It was established for some models that linear invari-
ants alone provided a statistically consistent method of inference. Unfortunately,
simulation studies showed that using linear invariants for tree inference typically
required very long data sequences to perform well in practice, much longer than
other methods.

Finding invariants, especially higher degree ones, also remained difficult. No-
table successes were achieved only for the group-based models. For them, Fourier
analysis on the (abelian) group allowed several different collaborations [ES93,
SSEW93] to construct invariants. The relevant Fourier transform ideas had al-
ready been introduced in the form of the Hadamard conjugation mentioned earlier.
This thread was further developed in [SS05], where it was recognized that the
change of variables associated with the Fourier transform showed the variety was
toric, and thus the ideal could be fully understood.

Remark 7.6. In finding phylogenetic invariants, we’d prefer to determine the
full ideal IT . However, a weaker goal is to merely determine a set of polynomials
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whose zero set is VT . That is, we might be able to find a set-theoretic definition of
the variety without determining a scheme-theoretic definition. Set-theoretic defin-
ing polynomials generate an ideal whose radical is the full ideal, but determining
that radical may be difficult.

The GM Model. In the setting of the GM model, when κ = 2 all invariants
can be understood as arising from topological features of a tree T , and for larger
κ that is at least conjecturally true. We will outline some of the results from
[AR05a] to elaborate on these claims. Note that many of the other models we
have mentioned are submodels of the GM model, and so invariants for GM are also
invariants for them.

First suppose the number of states for our model is κ = 2, with states denoted
by 0 and 1. We give a small example, for a tree with only a few taxa, in order to
clarify our notation. Consider the 5-taxon tree of Figure 7, and let P = (pi1···i5)
denote the joint distribution of bases at the leaves, under the GM model.

Focus on one of the internal branches of T , labeled by e in the figure. Deleting
e partitions the taxa as {a1, a2} and {a3, a4, a5}. This partition is called the split
induced by e. (An important combinatorial result, the Splits Equivalence Theorem,
states that a tree is uniquely determined by its set of splits. See [SS03] for a proof.)

Imagine now a statistical model based on the split induced by e: Group the
taxa a1a2, and the taxa a3a4a5, so each is on a leaf attached to a common ancestral
node. Then, the numbers of states at the leaves is 4 and 8 respectively, and we can
use binary notation to denote states at the leaves. For example, the four states at
leaf a1a2 are 00, 01, 10, 11. Forming the joint distribution for this ‘coarser’ model,
we get a 4× 8 matrix Flate(P ) given by

Flate(P ) =




p00000 p00001 p00010 p00011 p00100 p00101 p00110 p00111

p01000 p01001 p01010 p01011 p01100 p01101 p01110 p01111

p10000 p10001 p10010 p10011 p10100 p10101 p10110 p10111

p11000 p11001 p11010 p11011 p11100 p11101 p11110 p11111


 .

Here, for example, the (01, 000)-entry of Flate(P ) is the probability of observing
state 01 at leaf a1a2, and state 000 at leaf a3a4a5. Of course, this entry is precisely
p01000.

e

a1

a2

a5

a3

a4

Figure 7. A 5-taxon tree.



22 ELIZABETH S. ALLMAN AND JOHN A. RHODES

The other internal edge of T similarly induces the split {{a1, a2, a3}, {a4, a5}}
and a ‘coarser’ model with joint distribution given by the 8× 4 matrix

Flate2(P ) =




p00000 p00001 p00010 p00011

p00100 p00101 p00110 p00111

p01000 p01001 p01010 p01011

p01100 p01101 p01110 p01111

p10000 p10001 p10010 p10011

p10100 p10101 p10110 p10111

p11000 p11001 p11010 p11011

p11100 p11101 p11110 p11111




.

Here the rows are indexed by the states at a1a2a3 and columns by the states at
a4a5.

Each of the two matrices above are simply rearrangements of the entries of the
5-dimensional tensor P into 2-dimensional arrays. Each such flattening is associated
with a split, or internal edge, of T .

From these examples, it should be clear that for an n-leaf tree, where P is
n-dimensional, we can similarly define the matrices Flate(P ), where e is any edge
of the tree.

Theorem 7.7. [AR05a] For the GM model with κ = 2 states on an n-leaf tree
T , the phylogenetic ideal IT is generated by all 3 × 3 minors of Flate(P ) for all
edges e of T .

In the specific case of the 5-taxon tree of Figure 7, the theorem says all 3 × 3
minors of the two matrices above generate IT . We need not bother with flattenings
along pendant edges, since they have no 3× 3 minors.

Notice especially that Theorem 7.7 is a scheme-theoretic statement; it says
that all phylogenetic invariants are generated by the minors. Moreover, it relates
topological features of T (edges e) to invariants (minors).

It is worthwhile to outline some ideas that arise in the proof Theorem 7.7, to
gain more insight into how this result might be generalized to κ > 2 , and into the
special circumstances for κ = 2 that allow us to obtain a scheme-theoretic result.

We begin by examining the ‘coarser’ graphical models that gave rise to the
flattenings of a joint distribution P . If the root is placed at either end of the edge
e, then the coarser model may be depicted graphically as on the right in Figure 8.
If the tree on the right is denoted by Te, then from numerical parameters on T , it is
possible to derive numerical parameters on Te. These would be a root distribution
vector πr and two Markov matrices, with M1 of size κ×κ2, and M2 of size κ×κ3.
Note that this model on Te is not a phylogenetic one, since the number of states at
the leaves are differing powers of κ, though there are still κ states at the root.

Specifically, if by Proposition 4.2 we assume the root r of T is located at the
left end of e, then the root distribution vector π on Te can be taken to be that of
T . Then if Ma1 and Ma2 are the Markov matrices on the edges of T leading to a1

and a2 respectively, we define M1 by M1(i, (j, k)) = Ma1(i, j)Ma2(i, k). The matrix
M2 is constructed similarly, but involves entries from the Markov matrices on the
three other edges of T .
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r

M1 M2
e

κ3

{

κ2

}a1

a2

a3

a1a2

a4

a5
a3a4a5

Figure 8. A graphical model giving rise to edge invariants.

The relationship between the joint distribution Flate(P ) for the coarser model
on Te and its numerical parameters is now expressed as:

(7.2) Flate(P ) = MT
1 diag (π)M2.

Exercise 7.8. Verify Equation (7.2).

Equation (7.2) immediately reveals why phylogenetic invariants arising from
edge flattenings must exist for any tree T and any number of states κ. Since the
diagonal matrix diag (π) is of size κ× κ, Flate(P ) must have rank ≤ κ. The edge
invariants, (κ + 1)× (κ + 1)-minors from flattenings along edges, are phylogenetic
invariants indicating that Flate(P ) satisfies the given rank condition.

Remark 7.9. The well-known fact that the vanishing of all (k + 1) × (k + 1)
minors of a matrix implies its rank is at most k ensures these minors are in the
ideal defining the variety of rank ≤ k matrices. In fact, these minors generate that
ideal.

Definition 7.10. Suppose T is an n-taxon tree with κ states at each node,
and P a joint distribution of states at the leaves of T arising from the GM model
on T , or any submodel of the GM model. Let Flate(P ) denote the flattening of
P induced by an edge e of T . Then the collection of (κ + 1) × (κ + 1)-minors of
Flate(P ) is the set of edge invariants for e. The set of edge invariants of T is the
union of the sets of edge invariants for all edges of T .

We therefore have shown

Proposition 7.11. For any κ, the κ-state GM model on T , or any submodel,
the phylogenetic ideal contains all edge invariants.

Theorem 7.7 thus claims that edge invariants are essentially the only invariants
for GM when κ = 2. This was conjectured in [PS04b].

Though the construction of edge invariants is natural from the viewpoint of
statistical models, the proof of Theorem 7.7 involves different sorts of mathematical
ideas: a special fact about a certain Segre variety when κ = 2, group actions of
GL(2) and GL(4) on varieties, and some representation theory.

To hint at this material, we explain a connection between the κ-state GM model
on a 3-leaf tree and a classical object in algebraic geometry. More details can be
found in [GSS05, AR05a].
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Figure 9. The 3-taxon tree.

In Section 4, when stochastic models of the base substitution process were
introduced, we assumed that the root distribution vectors and rows of the Markov
matrices sum to 1. Indeed, the probabilistic interpretation of our model required
that. However, from a viewpoint of algebraic geometry, these conditions simply say
the row vectors are chosen from a certain affine subset of a projective space. If we
use projective coordinates, so vectors are determined only up to scalar multiples,
we view each row of the Markov matrices as an element of Pκ−1.

At the same time, we should view VT projectively. The stochastic invariant,
which states that the entries of P ∈ VT add to 1, tells us VT actually lies in an affine
subset of Pκn−1. A projective viewpoint means we drop the stochastic invariant,
and look for generators of a homogeneous ideal of phylogenetic invariants.

Consider then the 3-taxon tree T3 of Figure 9 in the projective setting for κ
states. Fix the root at the internal node f of T3 and suppose, momentarily, that
the state at the root is fixed as l. Then for each edge leading away from f , towards
taxon ai, we have a point vlai ∈ Pκ−1 that represents the lth row of a Markov
matrix. The entries of vlai = (vl1, · · · , vlj , · · · , vlκ) denote, up to a scaling factor,
the probability that state l at f becomes state j at ai.

Thus, if we form

P l = vla1 ⊗ vla2 ⊗ vla3 ∈ Pκ−1 × Pκ−1 × Pκ−1,

then P l is a point in the Segre product of three projective spaces whose entries (up
to scaling) are the expected frequency of observing pattern ijk conditioned on the
state at the internal node f being l.

Summing over all possible states at f , we obtain the joint distribution P is

P = P 1 + P 2 + · · ·+ Pκ.

(While not explicitly appearing, the root distribution has been accounted for in
the arbitrary scaling factors that appear in each P l when we choose particular
projective coordinates to express them.) Now just as sums of two points on a
projective variety gives points on secant lines to the variety, the (closure of the)
union of which is the secant variety, we can consider higher secant varieties as well.
Since we are summing κ points on the variety Pκ−1 × Pκ−1 × Pκ−1, we obtain

P ∈ VT3 = Secκ(Pκ−1 × Pκ−1 × Pκ−1),

the κ-secant variety of the Segre product of three Pκ−1.

More concretely, the joint distribution P has been decomposed as the sum of κ
rank 1 tensors, one for each possible state at the internal node f . This is precisely
the definition that P has tensor rank at most κ, and we have established that the
phylogenetic variety VT3 is the (closure of) the set of κ × κ × κ tensors of rank at
most κ.
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The concept of tensor rank, as the minimal number of rank 1 summands to
produce a tensor, parallels one of the many possible definitions of matrix rank. For
those who have not run across tensor rank before, we point out it is considerably
more subtle than its matrix analogue. For instance, there is still no straightforward
way to determine the rank of an arbitrarily chosen tensor, even in the 3-dimensional
case. Neither analogues of matrix minors, nor an algorithmic method analogous to
Gaussian elimination are known. However, because of the widespread appearance
of the concept in applications, there are approaches to finding decompositions as
sums of rank 1 tensors, though not necessarily minimal ones.

When κ = 2, however, things are simple. Indeed, the GM model on a 3-
taxon tree has only 7 parameters, and since the stochastic invariant cuts out a
7-dimensional subspace of C23

, one might conjecture there are no other invariants.
In fact, this is the case, and Sec2(P1×P1×P1) = P7. In other words, every 2×2×2
tensor is in the closure of the rank 2 ones. (Note this does not mean every such
tensor has rank 2.) This special fact plays an important role in [AR05a].

For κ = 3, the ideal defining Secκ(Pκ−1×Pκ−1×Pκ−1) was found in [GSS05],
using results from [Str83]. For κ = 4, polynomials are known that generate the
ideal only up to saturation with respect to another explicitly given variety, and then
taking a radical [AR03]. In this case there are 1728 independent quintics, which
are known to be all such quintics. See [Hag00] for computation of this dimension,
or [LM04] for a broader set of computations of dimensions of spaces of polynomials
vanishing on various secant varieties of Segre varieties.

Note also that for the 3-taxon tree, the construction of edge invariants yields
nothing, since there are no internal edges. This shows that any hope that edge
invariants might generate the ideal for κ > 2 fails even for the 3-taxon tree. At
the same time, however, the existence of 3-taxon invariants suggests a path to
understanding IT , for arbitrary trees T , through vertex flattenings.

More specifically, for an arbitrary tree, focus on a node v and flatten to a
‘coarser’ graphical model, as shown in Figure 10. Correspondingly, for the n-
dimensional joint distribution P ∈ VT , flatten

P 7→ Flatv(P ),

where Flatv(P ) is a κn1×κn2×κn3 tensor, n1 +n2 +n3 = n, obtained by grouping
taxa as in the tree. Again, the coarsening and flattening operations focus attention
on a local feature of T , in this case, the tri-partitioning of the n taxa that the node
v implies.

v
v

κ

κ

κ
κ

κ

κ
n1

κ
n3

κ
n2

κ

κ

Figure 10. A vertex flattening of a model.
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Figure 11. ‘Extending the edge’ gives rise to maps between varieties.

Now the variety associated to the coarsened model is Secκ(Pκn1−1 × Pκn2−1 ×
Pκn3−1), the variety of rank κ tensors of size κn1 × κn2 × κn3 .

Our next step is to develop the relationship between the varieties Secκ(Pκn1−1×
Pκn2−1 × Pκn3−1) and Secκ(Pκ−1 × Pκ−1 × Pκ−1). For this purpose, we introduce
the notation

V (κ; l1, l2, l3) = Secκ(Pl1−1 × Pl2−1 × Pl3−1)

for the variety for the model on the 3-leaf tree with κ states at the internal node,
and l1, l2, l3 states at the leaves.

For any joint distribution P ∈ V (κ; κ, κ, κ) observe that there is an ‘action’ by
κ× l3 complex matrices M in the third index of P . In modeling language, we think
of this action as ‘extending the edge’ leading to the third leaf by tacking on an
additional state-change process represented by the matrix M , as shown on the left
in Figure 11. This gives us a point P ∗3 M ∈ V (κ; κ, κ, l3). In terms of parameters,
if P = φT ((π, {M1, M2,M3})) where M3 is the matrix on the edge leading to the
third leaf, then P ∗3 M = φT (π, {M1,M2,M3M}), though the action extends to
the points on the variety that are not in the image of φT as well.

We may similarly define an ‘action’ of l3 × κ matrices N on V (κ; κ, κ, l3), as
depicted on the right in Figure 11. Then, for every choice of κ× l3 matrix M and
l3 × κ matrix N , we have maps

V (κ; κ, κ, κ)
∗3M−−−→
←−−−
∗3N

V (κ;κ, κ, l3).

These maps give rise to corresponding maps between the ideals defining the va-
rieties, whose compositions are related to GL(κ)-and GL(l3)-actions. With this
setup, a careful use of basic representation theory gives the following important
result.

Theorem 7.12. [AR05a] If li ≥ κ, and S is any set of polynomials defining
V (κ; κ, κ, κ) set-theoretically (resp., scheme-theoretically), then from S an explicit
set of polynomials defining V (κ; l1, l2, l3) set-theoretically (resp., scheme-theoretically)
can be constructed.

Because Theorem 7.12 relates phylogenetic invariants on T3 to sets of poly-
nomials defining the varieties V (κ;κn1 , κn2 , κn3) that appear in vertex flattenings,
it is one of the needed ingredients to determine a set-theoretic description of the
phylogenetic variety VT for the general Markov model on any n-taxon tree T . We
state the resulting theorem somewhat informally.
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Theorem 7.13. [AR05a] For the 3-taxon tree T3, let S be a set of polynomi-
als defining V (κ; κ, κ, κ) set-theoretically. Then, using vertex flattenings and the
construction of Theorem 7.12, for an arbitrary binary tree T a set of polynomials
set-theoretically defining VT for the general Markov model can be explicitly given.

An important consequence of Theorem 7.13 is that phylogenetic invariants for
the general Markov model are intimately related to the nodes and edges of T . The
local structure of a tree determines a collection of phylogenetic invariants defining
the variety VT . Note that (using different techniques) this sort of result for group-
based models had already been established in [SS05]. Possible ways this might be
useful will be discussed in the next section.

8. Potential uses of invariants

So far, invariants have not planned a large role in practical inference by biol-
ogists. However, now that we are beginning to understand them better, that may
well change. In this section we outline some of the ideas now under development.

Tree-building heuristics. A key property of the invariants we understand is
that specific polynomials can be tied to local structure of a tree (edges or nodes).
They might therefore be used to develop tests for only such local structures, without
consideration of the entire tree.

To elaborate, one inherent feature of maximum likelihood is that it not only
chooses the ‘best’ tree, but also ‘best’ values for all parameters. This is precisely
why ML inference can be such a large computational problem; it looks at every-
thing at once. However, for building a tree from data (and for some biological
questions) we might first look for strongly-supported splits of our taxa (in bio-
logical terminology, for monophyletic clades). If specific invariants can be tied to
edges (splits) and nodes (tripartitions), perhaps we can address the support for
each feature individually.

One step toward using this viewpoint to infer trees has been taken in [Eri05].
There an algorithm is given for building trees that is reminiscent of Neighbor Join-
ing in its ‘outside-first’ iterative approach. The scheme for joining taxa, though,
is based on edge invariants. Rather than evaluate polynomials, however, the sin-
gular value decomposition of matrices is used to determine approximate matrix
rank. Preliminary results on the algorithm’s performance were reported as posi-
tive, though not as strong as more standard methods. Nonetheless, the comparisons
were probably biased against the new method, since data was simulated according
to much simpler model than GM, that, among other things, assumes the same dis-
tribution of bases in all sequences. We believe that there is much room for further
development along these lines.

Even if we prefer to stick with a full maximum likelihood framework for in-
ference, we must acknowledge that implementations in software require heuristic
searches if more than a handful of taxa are involved. For the numerical parameters,
optimization is a well-studied problem and we might assume this part of the search
can be done adequately. For the tree parameter, though, how should we vary the
tree in order to increase likelihoods? Perhaps invariants can be used to identify
more weakly supported edges or nodes in the tree which should be removed in re-
configuring. If they are effective at suggesting how we might move toward optima
in tree-space, they may help speed up searches.
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Exact solutions of ML problems. Since for large problems, ML inference
must be done heuristically, it would be desirable to understand better under what
circumstances there might be one, or more, global optimum, and whether we have
many local optima. Invariants have placed a role in studying these questions,
by allowing ML estimation to be phrased as a constrained optimization problem,
with invariants providing the constraints. See [CHHP00, CHP01, CKS03] for
some examples of this sort of work. [HKS05] provides a more general setting for
computational algebra approaches to ML, as well as phylogenetic examples.

The “Small Trees website’ [CGS05] is a good resource allowing an easy inter-
face from trees and models to computational algebra package formulations. Finally
[CL05] suggests how solving ML problems well on small trees can, with a general-
ized Neighbor Joining approach, lead to construction of large trees.

Identifiability of tree topologies for models. An important issue in deal-
ing with any statistical model is identifiability : Given a joint distribution arising
from the model, is it possible to recover the parameters leading to the distribution?
Clearly, identifiability of any parameters of interest is a necessary condition to our
estimating them well. Indeed, proofs of the statistical consistency of ML begin with
proofs of identifiability.

Identifiability has been established for many phylogenetic models routinely used
(for instance, GTR+I+Γ; GM, and hence any submodel of GM). Provided a dis-
tance can be defined for the model, the 4-point condition can be used to identify
topologies. In fact, since distances require comparing only two sequences at a time
(i.e., are based on 2-dimensional marginalizations of the joint distribution P ), iden-
tifying the tree does not even require the full joint distribution. On the other hand,
[Baa98] established that the tree could not be identified by 2-sequence compar-
isons for the model GM+I. In general, identifiability for mixture models of this sort
has been poorly understood. Even for GTR+(rate distribution), proofs of identi-
fiability of the tree require that the rate distribution be known. See [SSH94] and
[BGP05].

Recently some specific invariants that have not been discussed here have been
used to obtain some general results on identifiability of tree topologies. In [AR05b]
it is shown that for a mixture model where the number of classes is less than
the number of states (e.g., at most 3 classes for a 4-state model for DNA), tree
topology is identifiable for generic choices of parameters. This result makes no
assumptions of any commonality to the substitution process among the different
classes; they need not be based on any common rate matrix. The result also applies
to a covarion model [TS98] in which sites in a sequence may only be free to vary
in some (unknown) parts of the tree, switching between variable and invariable and
back as evolution proceeds over the tree

To prove such identifiability results, an algebraic mutation model is introduced
which allows more states at internal nodes of the tree than at the leaves. In this very
general setting, it is possible to show that parameters are generically identifiable,
and then to argue that each of the models listed above is a specialization of this
model, and that generic identifiability is maintained after specialization. The key
steps in the proof involve finding invariants that express appropriate rank conditions
similar to those that arose in the edge flattenings and vertex flattenings of Theorems
7.7 and 7.13.
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9. Further Reading and Software Packages

For mathematicians interested in learning more about phylogenetics, we suggest
a few books. Felsenstein’s book [Fel04], written for a diverse audience, is the most
complete survey of the field, with many references. The text [SS03] by Semple and
Steel is more mathematical, emphasizing the combinatorial aspects. Pachter and
Sturmfels, in [PS05], provide an excellent introduction to the algebraic viewpoint.
The volume [Gas05] provides a collection of articles on many more aspects of
phylogenetics than we have been able to even touch on here.

For undergraduate teaching, the only presentation we know of any material on
the mathematics behind phylogenetics appears in [AR04].

There are many software packages used by biologists for phylogenetic inference.
PHYLIP, which is freely available over the web from the Felsenstein lab is a good
collection of programs to begin exploring. Most published biological papers will
indicate what software was used for inference, so finding pointers to other packages
is relatively easy.
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