
MATH253X-UX1

Summer 2016
Midterm Exam 2 Name: Answer Key

Instructions. You have 90 minutes. Closed book, closed notes, no calculator. Show all your work in order
to receive full credit.

1. Show that lim
(x,y)→(−1,1)

xy + 1

2x2 − y2 − 1
does not exist.

Solution:

• Setting x = −1 and letting y → 1 to approach (−1, 1) along the line (−1, y), we see

lim
y→1

1− y

1− y2
=

1

2
.

• Setting y = 1 and letting x → −1 to approach (−1, 1) along the line (x, 1), we see

lim
x→−1

x+ 1

2x2 − 2
= −1

4
.

Since these limits are different, the original multivariable limit does not exist.

2. Use Lagrange multipliers to find the point(s) on the curve x2 − 2y2 = 1 closest from the point P (0, 2).

Solution: We want to minimize the distance from a point on the hyperbolic curve to P (0, 2). For
simplicity, let f(x, y) be the square of that distance:

f(x, y) = (x− 0)2 + (y − 2)2 = x2 + (y − 2)2.

Then our constraint is g(x, y) = x2 − 2y2 = 1 and we need also to satisfy:

∇f = λ∇g ⇒ 〈2x, 2(y − 2)〉 = λ 〈2x,−4y〉 ⇒

{
2x = 2λx

2(y − 2) = −4λy

The first equation has two solutions:

• either x = 0, then from the constraint, 0− 2y2 = 1 which has no real solution for y;

• or λ = 1, then from the second equation:

2y − 4 = −4y ⇒ y =
2

3

and so plugging into the constraint x2 = 1 + 2
(
4
9

)
= 17

9 so we have the points
(
±

√
17
3 , 2

3

)
.

Both have the same f(x, y) value so they are both points we’re looking for:

(
±
√
17

3
,
2

3

)
.

3. Find an equation of the tangent plane to the following surface at the point (x0, y0, z0) = (2, 1,−1):

x ln y − 3yz2 + 1 = xz.

Solution: Let F (x, y, z) = x ln y − 3yz2 − xz = −1. Then,

∇F (2, 1,−1) =

〈
ln y − z,

x

y
− 3z2,−6yz − x

〉 ∣∣∣
(2,1,−1)

= 〈0 + 1, 2− 3, 6− 2〉 = 〈1,−1, 4〉

and so the equation of the tangent plane is:

(x− 2)− (y − 1) + 4(z + 1) = 0 ⇒ x− y + 4z + 3 = 0 .
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4. For each of the iterated integrals below, sketch the region of integration then convert as indicated. DO
NOT evaluate.

(a) Rewrite

∫ 0

−2

∫ x2

0

3xy dy dx in the order dx dy.

Solution:

x

y
y = x2 ∫ 4

0

∫ −√
y

−2

3xy dx dy

(b) Rewrite

∫ π
4

−π
2

∫ 1

0

r2 dr dθ in rectangular coordinates.

Solution: From the picture below, we need to split the integral. The order dx dy is a bit easier as

the split is at y = 0 but we still need to solve for y when θ = π
4 and r = 1, i.e. y = 1 sin π

4 =
√
2
2 .

Inner bounds are from the y-axis x = 0, the circle x2 + y2 = 1, and y = x:

x

y

r = 1

∫ 0

−1

∫ √
1−y2

0

√
x2 + y2 dx dy +

∫ √
2

2

0

∫ √
1−y2

y

√
x2 + y2 dx dy

5. Compute the mass m of the planar lamina with density ρ(x, y) = y2 shown below.

x

y

1−1

1

2−2

2

Solution:

m =

∫∫
R

y2 dA =

∫ π
2

0

∫ 2

0

r2 sin2 θ r dr dθ =

∫ π
2

0

[
r4

4
sin2 θ

]2
0

dθ =

∫ π
2

0

4 sin2 θ dθ

=

∫ π
2

0

2(1− cos(2θ)) dθ =
[
2θ − sin(2θ)

]π
2

0
= π .

6. Consider the function:
f(x, y) = x3 − 12xy + 8y3.

(a) Find and classify all critical points of f(x, y).

Solution:

• Find the critical points from solving ∇f =
−→
0 :

∇f =
−→
0 ⇒

〈
3x2 − 12y,−12x+ 24y2

〉
= 〈0, 0〉 ⇒

{
x2 = 4y

x = 2y2
⇒

{
4y4 = 4y

x = 2y2
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The first equation simplifies to y(y3 − 1) = 0 so either y = 0 or y = 1. Substituting back into
the second equation gives us the two critical points (0, 0) and (2, 1).

• Apply the Second Partials Test to classify them:

fxx = 6x , fyy = 48y , fxy = −12 ⇒ d = fxxfyy − f2
xy = 288xy − 144 = 144(2xy − 1)

d(0, 0) = −144 < 0 so we have a saddle point at (0, 0, 0) ;

d(2, 1) = 144(3) > 0 and fxx(2, 1) = 12 > 0 so f has a local minimum at (2, 1) .

(b) Find the absolute minimum and maximum values of f(x, y) in the rectangular region R defined by

0 ≤ x ≤ 1

2
and 0 ≤ y ≤ 1.

Solution: The absolute min/max can happen only at either the critical points within R or on the
boundary of R:

• out of the critical points, only (0, 0) is part of R;

• we will need to check the vertices (0, 0), (0, 1), (1/2, 0), and (1/2, 1);

• along x = 0 for 0 ≤ y ≤ 1:

g(y) = f(0, y) = 8y3 ⇒ g′(y) = 24y2

and g′(y) = 0 for y = 0 and we find again (0, 0);

• along x = 1/2 for 0 ≤ y ≤ 1:

g(y) = f(1/2, y) =
1

8
− 6y + 8y3 ⇒ g′(y) = −6 + 24y2

and g′(y) = 0 for y = ± 1
2 ; only (1/2, 1/2) is in R;

• along y = 0 for 0 ≤ x ≤ 1
2 :

g(x) = f(x, 0) = x3 ⇒ g′(x) = 3x2

and g′(x) = 0 for x = 0 and we find again (0, 0);

• along y = 1 for 0 ≤ x ≤ 1
2 :

g(x) = f(x, 1) = x3 − 12x+ 8 ⇒ g′(x) = 3x2 − 12

and g′(x) = 0 for x = ±2; neither points are in R.

We now plug in all values of those points into f to find the absolute min/max:

x y f(x, y)

0 0 0

0 1 8 absolute max

1
2 0 1

8

1
2 1 17

8

1
2

1
2

− 15
8 absolute min
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7. Evaluate the following.

(a) the volume below the plane 6x+ 3y + 2z = 6 in the first octant:

Solution:

−2

2

−2 −1
1 2

1

2

3

x

y

z

Rewrite 2z = 6−6x−3y so z = 3−3x− 3
2y

and the base is bounded (from setting
z = 0) by the line: 6x + 3y = 6, i.e.
2x + y = 2 for x, y ≥ 0. So we can write
0 ≤ y ≤ 2 − 2x and in x solve for the
upper bound by setting y = 0 in the line.
Then the volume is:

V =

∫ 1

0

∫ 2−2x

0

3− 3x− 3

2
y dy dx =

∫ 1

0

[
(3− 3x)y − 3

4
y2
]y=2−2x

y=0

dx

=

∫ 1

0

3(1− x)(2− 2x)− 3

4
(2− 2x)2 − 0 dx =

∫ 1

0

6(1− x2)− 3(1− x)2 dx

=

∫ 1

0

3(1− x)2 dx =
[
− (1− x)3

]1
0
= 0 + 1 = 1 .

(b) the surface area of the cone z =
√
x2 + y2 above the region R bounded by the graphs of y = −x,

x = 2y − y2, y = 0 and y = 1 as sketched below:

Solution: The gradient is ∇z = 〈zx, zy〉 =〈
x√

x2 + y2
,

y√
x2 + y2

〉
so noting that

R is horizontally simple, we have that the
surface area of the cone above R is:

x

y

1−1

1
y = −x

y = 1
x = 2y − y2

SA =

∫∫
R

√
1 + z2x + z2y dA =

∫ 1

0

∫ x=2y−y2

x=−y

√
1 +

x2

x2 + y2
+

y2

x2 + y2
dx dy =

√
2

∫ 1

0

∫ 2y−y2

−y

dx dy

=
√
2

∫ 1

0

[
x
]2y−y2

−y
dy =

√
2

∫ 1

0

2y − y2 + y dy =
√
2

∫ 1

0

3y − y2 dy

=
√
2

[
3y2

2
− y3

3

]1
0

=
√
2

(
3

2
− 1

3
− 0

)
=

7
√
2

6
.
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(c) the volume of the solid bounded by the paraboloid z = x2+y2 and the inverted cone z = 6−
√

x2 + y2

using polar coordinates.

Solution: The cone is above the paraboloid and for
the base, we have a disk where the radius
can be found using the intersection of the
surfaces, i.e. set x2+y2 = 6−

√
x2 + y2 or

in polar r2 = 6− r for r =
√

x2 + y2 ≥ 0.
So r2 + r − 6 = 0 which has for solutions
r = −3, 2 and we keep r = 2. And so the
volume is: x

y

z

V =

∫ 2π

0

∫ 2

0

(6− r − r2) r dr dθ =

∫ 2π

0

∫ 2

0

6r − r2 − r3 dr dθ

=

∫ 2π

0

[
3r2 − r3

3
− r4

4

]2
0

dθ =

∫ 2π

0

12− 8

3
− 4− 0 dθ =

16

3

[
θ
]2π
0

=
32π

3
.

8. The bee population in a boxed beehive is given at each point (x, y, z) by

f(x, y, z) = x2 + y2 + xyz.

(a) At the point (3, 1, 2), what is the unit direction of greatest decrease in population?

Solution:
∇f(3, 1, 2) = 〈2x+ yz, 2y + xz, xy〉|(3,1,2) = 〈8, 8, 3〉, so the unit direction of greatest decrease is

− ∇f(3, 1, 2)

‖∇f(3, 1, 2)‖
= 〈− 8√

137
,− 8√

137
,

3√
137

〉.

(b) Find the directional derivative of f at (3, 1, 2) in the direction of v = 〈1, 2, 2〉?
Solution:
The direction we consider is u = v

||v|| , so u = 〈1/3, 2/3, 2/3〉. Then

Duf(3, 1, 2) = ∇f(3, 1, 2) · u = 〈8, 8, 3〉 · 〈1/3, 2/3, 2/3〉 = 8

3
+

16

3
+

6

3
= 10 .

(c) Use the chain rule (no direct substitution) to find
df

dt
in terms of t if x(t) = 4 − t2, y(t) = 3t − 2

and z(t) = 3t3 − 1.

Solution:

df

dt
= ∇f ·

〈
dx

dt
,
dy

dt
,
dz

dt

〉
= 〈2x+ yz, 2y + xz, xy〉 ·

〈
−2t, 3, 9t2

〉
= (2x+ yz)(−2t) + (2y + xz)(3) + (xy)(9t2)

= −2t(2(4− t2) + (3t− 2)(3t3 − 1)) + 3(2(3t− 2) + (4− t2)(3t3 − 1)) + 9t2(4− t2)(3t− 2)

= −2t(9t4 − 6t3 − 2t2 − 3t+ 10) + 3(−3t5 + 12t3 + t2 + 6t− 8) + 9t2(−3t3 + 2t2 + 12t− 8)

= −18t5 + 12t4 + 4t3 + 6t2 − 20t− 9t5 + 36t3 + 3t2 + 18t− 24− 27t5 + 18t4 + 108t3 − 72t2

= −54t5 + 30t4 + 148t3 − 63t2 − 2t− 24


