Instructions. You have 90 minutes. Closed book, closed notes, no calculator. Show all your work in order to receive full credit.

1. Show that $\lim _{(x, y) \rightarrow(-1,1)} \frac{x y+1}{2 x^{2}-y^{2}-1}$ does not exist.

Solution:

- Setting $x=-1$ and letting $y \rightarrow 1$ to approach $(-1,1)$ along the line $(-1, y)$, we see

$$
\lim _{y \rightarrow 1} \frac{1-y}{1-y^{2}}=\frac{1}{2}
$$

- Setting $y=1$ and letting $x \rightarrow-1$ to approach $(-1,1)$ along the line $(x, 1)$, we see

$$
\lim _{x \rightarrow-1} \frac{x+1}{2 x^{2}-2}=-\frac{1}{4}
$$

Since these limits are different, the original multivariable limit does not exist.
2. Use Lagrange multipliers to find the point(s) on the curve $x^{2}-2 y^{2}=1$ closest from the point $P(0,2)$. Solution: We want to minimize the distance from a point on the hyperbolic curve to $P(0,2)$. For simplicity, let $f(x, y)$ be the square of that distance:

$$
f(x, y)=(x-0)^{2}+(y-2)^{2}=x^{2}+(y-2)^{2}
$$

Then our constraint is $g(x, y)=x^{2}-2 y^{2}=1$ and we need also to satisfy:

$$
\nabla f=\lambda \nabla g \quad \Rightarrow \quad\langle 2 x, 2(y-2)\rangle=\lambda\langle 2 x,-4 y\rangle \quad \Rightarrow \quad\left\{\begin{array}{l}
2 x=2 \lambda x \\
2(y-2)=-4 \lambda y
\end{array}\right.
$$

The first equation has two solutions:

- either $x=0$, then from the constraint, $0-2 y^{2}=1$ which has no real solution for y;
- or $\lambda=1$, then from the second equation:

$$
2 y-4=-4 y \quad \Rightarrow \quad y=\frac{2}{3}
$$

and so plugging into the constraint $x^{2}=1+2\left(\frac{4}{9}\right)=\frac{17}{9}$ so we have the points $\left(\pm \frac{\sqrt{17}}{3}, \frac{2}{3}\right)$.
Both have the same $f(x, y)$ value so they are both points we're looking for: $\left(\pm \frac{\sqrt{17}}{3}, \frac{2}{3}\right)$.
3. Find an equation of the tangent plane to the following surface at the point $\left(x_{0}, y_{0}, z_{0}\right)=(2,1,-1)$:

$$
x \ln y-3 y z^{2}+1=x z
$$

Solution: Let $F(x, y, z)=x \ln y-3 y z^{2}-x z=-1$. Then,

$$
\nabla F(2,1,-1)=\left.\left\langle\ln y-z, \frac{x}{y}-3 z^{2},-6 y z-x\right\rangle\right|_{(2,1,-1)}=\langle 0+1,2-3,6-2\rangle=\langle 1,-1,4\rangle
$$

and so the equation of the tangent plane is:

$$
(x-2)-(y-1)+4(z+1)=0 \quad \Rightarrow \quad x-y+4 z+3=0
$$

4. For each of the iterated integrals below, sketch the region of integration then convert as indicated. DO NOT evaluate.
(a) Rewrite $\int_{-2}^{0} \int_{0}^{x^{2}} 3 x y d y d x$ in the order $d x d y$.

Solution:

$$
\int_{0}^{4} \int_{-2}^{-\sqrt{y}} 3 x y d x d y
$$

(b) Rewrite $\int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \int_{0}^{1} r^{2} d r d \theta$ in rectangular coordinates.

Solution: From the picture below, we need to split the integral. The order $d x d y$ is a bit easier as the split is at $y=0$ but we still need to solve for y when $\theta=\frac{\pi}{4}$ and $r=1$, i.e. $y=1 \sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}$. Inner bounds are from the y-axis $x=0$, the circle $x^{2}+y^{2}=1$, and $y=x$:

$$
\int_{-1}^{0} \int_{0}^{\sqrt{1-y^{2}}} \sqrt{x^{2}+y^{2}} d x d y+\int_{0}^{\frac{\sqrt{2}}{2}} \int_{y}^{\sqrt{1-y^{2}}} \sqrt{x^{2}+y^{2}} d x d y
$$

5. Compute the mass m of the planar lamina with density $\rho(x, y)=y^{2}$ shown below.

Solution:

$$
\begin{aligned}
m=\iint_{R} y^{2} d A & =\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r^{2} \sin ^{2} \theta r d r d \theta=\int_{0}^{\frac{\pi}{2}}\left[\frac{r^{4}}{4} \sin ^{2} \theta\right]_{0}^{2} d \theta=\int_{0}^{\frac{\pi}{2}} 4 \sin ^{2} \theta d \theta \\
& =\int_{0}^{\frac{\pi}{2}} 2(1-\cos (2 \theta)) d \theta=[2 \theta-\sin (2 \theta)]_{0}^{\frac{\pi}{2}}=\pi
\end{aligned}
$$

6. Consider the function:

$$
f(x, y)=x^{3}-12 x y+8 y^{3} .
$$

(a) Find and classify all critical points of $f(x, y)$.

Solution:

- Find the critical points from solving $\nabla f=\overrightarrow{0}$:

$$
\nabla f=\overrightarrow{0} \Rightarrow\left\langle 3 x^{2}-12 y,-12 x+24 y^{2}\right\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left\{\begin{array} { l }
{ x ^ { 2 } = 4 y } \\
{ x = 2 y ^ { 2 } }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
4 y^{4}=4 y \\
x=2 y^{2}
\end{array}\right.\right.
$$

The first equation simplifies to $y\left(y^{3}-1\right)=0$ so either $y=0$ or $y=1$. Substituting back into the second equation gives us the two critical points $(0,0)$ and $(2,1)$.

- Apply the Second Partials Test to classify them:

$$
\begin{aligned}
f_{x x} & =6 x, f_{y y}=48 y, f_{x y}=-12 \Rightarrow d=f_{x x} f_{y y}-f_{x y}^{2}=288 x y-144=144(2 x y-1) \\
d(0,0) & =-144<0 \text { so we have a saddle point at }(0,0,0) ; \\
d(2,1) & =144(3)>0 \text { and } f_{x x}(2,1)=12>0 \text { so } f \text { has a local minimum at }(2,1) .
\end{aligned}
$$

(b) Find the absolute minimum and maximum values of $f(x, y)$ in the rectangular region R defined by $0 \leq x \leq \frac{1}{2}$ and $0 \leq y \leq 1$.
Solution: The absolute \min / \max can happen only at either the critical points within R or on the boundary of R :

- out of the critical points, only $(0,0)$ is part of R;
- we will need to check the vertices $(0,0),(0,1),(1 / 2,0)$, and $(1 / 2,1)$;
- along $x=0$ for $0 \leq y \leq 1$:

$$
g(y)=f(0, y)=8 y^{3} \quad \Rightarrow \quad g^{\prime}(y)=24 y^{2}
$$

and $g^{\prime}(y)=0$ for $y=0$ and we find again $(0,0)$;

- along $x=1 / 2$ for $0 \leq y \leq 1$:

$$
g(y)=f(1 / 2, y)=\frac{1}{8}-6 y+8 y^{3} \quad \Rightarrow \quad g^{\prime}(y)=-6+24 y^{2}
$$

and $g^{\prime}(y)=0$ for $y= \pm \frac{1}{2}$; only $(1 / 2,1 / 2)$ is in R;

- along $y=0$ for $0 \leq x \leq \frac{1}{2}$:

$$
g(x)=f(x, 0)=x^{3} \quad \Rightarrow \quad g^{\prime}(x)=3 x^{2}
$$

and $g^{\prime}(x)=0$ for $x=0$ and we find again $(0,0)$;

- along $y=1$ for $0 \leq x \leq \frac{1}{2}$:

$$
g(x)=f(x, 1)=x^{3}-12 x+8 \quad \Rightarrow \quad g^{\prime}(x)=3 x^{2}-12
$$

and $g^{\prime}(x)=0$ for $x= \pm 2$; neither points are in R.
We now plug in all values of those points into f to find the absolute min/max:

x	y	$f(x, y)$	
0	0	0	
0	1	8	absolute max
$\frac{1}{2}$	0	$\frac{1}{8}$	
$\frac{1}{2}$	1	$\frac{17}{8}$	
$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{15}{8}$	absolute min

7. Evaluate the following.
(a) the volume below the plane $6 x+3 y+2 z=6$ in the first octant:

Solution:

Rewrite $2 z=6-6 x-3 y$ so $z=3-3 x-\frac{3}{2} y$ and the base is bounded (from setting $z=0$) by the line: $6 x+3 y=6$, i.e. $2 x+y=2$ for $x, y \geq 0$. So we can write $0 \leq y \leq 2-2 x$ and in x solve for the upper bound by setting $y=0$ in the line. Then the volume is:

$$
\begin{aligned}
V & =\int_{0}^{1} \int_{0}^{2-2 x} 3-3 x-\frac{3}{2} y d y d x=\int_{0}^{1}\left[(3-3 x) y-\frac{3}{4} y^{2}\right]_{y=0}^{y=2-2 x} d x \\
& =\int_{0}^{1} 3(1-x)(2-2 x)-\frac{3}{4}(2-2 x)^{2}-0 d x=\int_{0}^{1} 6\left(1-x^{2}\right)-3(1-x)^{2} d x \\
& =\int_{0}^{1} 3(1-x)^{2} d x=\left[-(1-x)^{3}\right]_{0}^{1}=0+1=1
\end{aligned}
$$

(b) the surface area of the cone $z=\sqrt{x^{2}+y^{2}}$ above the region R bounded by the graphs of $y=-x$, $x=2 y-y^{2}, y=0$ and $y=1$ as sketched below:

Solution: The gradient is $\nabla z=\left\langle z_{x}, z_{y}\right\rangle=$ $\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle$ so noting that R is horizontally simple, we have that the surface area of the cone above R is:

$$
\begin{aligned}
S A & =\iint_{R} \sqrt{1+z_{x}^{2}+z_{y}^{2}} d A=\int_{0}^{1} \int_{x=-y}^{x=2 y-y^{2}} \sqrt{1+\frac{x^{2}}{x^{2}+y^{2}}+\frac{y^{2}}{x^{2}+y^{2}}} d x d y=\sqrt{2} \int_{0}^{1} \int_{-y}^{2 y-y^{2}} d x d y \\
& =\sqrt{2} \int_{0}^{1}[x]_{-y}^{2 y-y^{2}} d y=\sqrt{2} \int_{0}^{1} 2 y-y^{2}+y d y=\sqrt{2} \int_{0}^{1} 3 y-y^{2} d y \\
& =\sqrt{2}\left[\frac{3 y^{2}}{2}-\frac{y^{3}}{3}\right]_{0}^{1}=\sqrt{2}\left(\frac{3}{2}-\frac{1}{3}-0\right)=\frac{7 \sqrt{2}}{6}
\end{aligned}
$$

(c) the volume of the solid bounded by the paraboloid $z=x^{2}+y^{2}$ and the inverted cone $z=6-\sqrt{x^{2}+y^{2}}$ using polar coordinates.

Solution: The cone is above the paraboloid and for the base, we have a disk where the radius can be found using the intersection of the surfaces, i.e. set $x^{2}+y^{2}=6-\sqrt{x^{2}+y^{2}}$ or in polar $r^{2}=6-r$ for $r=\sqrt{x^{2}+y^{2}} \geq 0$. So $r^{2}+r-6=0$ which has for solutions $r=-3,2$ and we keep $r=2$. And so the volume is:

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{2}\left(6-r-r^{2}\right) r d r d \theta=\int_{0}^{2 \pi} \int_{0}^{2} 6 r-r^{2}-r^{3} d r d \theta \\
& =\int_{0}^{2 \pi}\left[3 r^{2}-\frac{r^{3}}{3}-\frac{r^{4}}{4}\right]_{0}^{2} d \theta=\int_{0}^{2 \pi} 12-\frac{8}{3}-4-0 d \theta=\frac{16}{3}[\theta]_{0}^{2 \pi}=\frac{32 \pi}{3}
\end{aligned}
$$

8. The bee population in a boxed beehive is given at each point (x, y, z) by

$$
f(x, y, z)=x^{2}+y^{2}+x y z
$$

(a) At the point $(3,1,2)$, what is the unit direction of greatest decrease in population?

Solution:
$\nabla f(3,1,2)=\left.\langle 2 x+y z, 2 y+x z, x y\rangle\right|_{(3,1,2)}=\langle 8,8,3\rangle$, so the unit direction of greatest decrease is

$$
-\frac{\nabla f(3,1,2)}{\|\nabla f(3,1,2)\|}=\left\langle-\frac{8}{\sqrt{137}},-\frac{8}{\sqrt{137}}, \frac{3}{\sqrt{137}}\right\rangle
$$

(b) Find the directional derivative of f at $(3,1,2)$ in the direction of $\mathbf{v}=\langle 1,2,2\rangle$?

Solution:

The direction we consider is $\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}$, so $\mathbf{u}=\langle 1 / 3,2 / 3,2 / 3\rangle$. Then

$$
D_{\mathbf{u}} f(3,1,2)=\nabla f(3,1,2) \cdot \mathbf{u}=\langle 8,8,3\rangle \cdot\langle 1 / 3,2 / 3,2 / 3\rangle=\frac{8}{3}+\frac{16}{3}+\frac{6}{3}=10 .
$$

(c) Use the chain rule (no direct substitution) to find $\frac{d f}{d t}$ in terms of t if $x(t)=4-t^{2}, y(t)=3 t-2$ and $z(t)=3 t^{3}-1$.

Solution:

$$
\begin{aligned}
\frac{d f}{d t} & =\nabla f \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle=\langle 2 x+y z, 2 y+x z, x y\rangle \cdot\left\langle-2 t, 3,9 t^{2}\right\rangle \\
& =(2 x+y z)(-2 t)+(2 y+x z)(3)+(x y)\left(9 t^{2}\right) \\
& =-2 t\left(2\left(4-t^{2}\right)+(3 t-2)\left(3 t^{3}-1\right)\right)+3\left(2(3 t-2)+\left(4-t^{2}\right)\left(3 t^{3}-1\right)\right)+9 t^{2}\left(4-t^{2}\right)(3 t-2) \\
& =-2 t\left(9 t^{4}-6 t^{3}-2 t^{2}-3 t+10\right)+3\left(-3 t^{5}+12 t^{3}+t^{2}+6 t-8\right)+9 t^{2}\left(-3 t^{3}+2 t^{2}+12 t-8\right) \\
& =-18 t^{5}+12 t^{4}+4 t^{3}+6 t^{2}-20 t-9 t^{5}+36 t^{3}+3 t^{2}+18 t-24-27 t^{5}+18 t^{4}+108 t^{3}-72 t^{2} \\
& =-54 t^{5}+30 t^{4}+148 t^{3}-63 t^{2}-2 t-24
\end{aligned}
$$

