MATH253X-UX1 Summer 2016

Midterm Exam 2

Name: Answer Key

Instructions. You have 90 minutes. Closed book, closed notes, no calculator. *Show all your work* in order to receive full credit.

1. Show that $\lim_{(x,y)\to(-1,1)} \frac{xy+1}{2x^2-y^2-1}$ does not exist.

Solution:

• Setting x = -1 and letting $y \to 1$ to approach (-1, 1) along the line (-1, y), we see

$$\lim_{y \to 1} \frac{1 - y}{1 - y^2} = \frac{1}{2}.$$

• Setting y = 1 and letting $x \to -1$ to approach (-1, 1) along the line (x, 1), we see

$$\lim_{x \to -1} \frac{x+1}{2x^2 - 2} = -\frac{1}{4}.$$

Since these limits are different, the original multivariable limit does not exist.

2. Use Lagrange multipliers to find the point(s) on the curve $x^2 - 2y^2 = 1$ closest from the point P(0, 2). Solution: We want to minimize the distance from a point on the hyperbolic curve to P(0, 2). For simplicity, let f(x, y) be the square of that distance:

$$f(x,y) = (x-0)^2 + (y-2)^2 = x^2 + (y-2)^2.$$

Then our constraint is $g(x, y) = x^2 - 2y^2 = 1$ and we need also to satisfy:

$$\nabla f = \lambda \nabla g \quad \Rightarrow \quad \langle 2x, 2(y-2) \rangle = \lambda \langle 2x, -4y \rangle \quad \Rightarrow \quad \begin{cases} 2x = 2\lambda x \\ 2(y-2) = -4\lambda y \end{cases}$$

The first equation has two solutions:

- either x = 0, then from the constraint, $0 2y^2 = 1$ which has no real solution for y;
- or $\lambda = 1$, then from the second equation:

$$2y - 4 = -4y \quad \Rightarrow \quad y = \frac{2}{3}$$

and so plugging into the constraint $x^2 = 1 + 2\left(\frac{4}{9}\right) = \frac{17}{9}$ so we have the points $\left(\pm \frac{\sqrt{17}}{3}, \frac{2}{3}\right)$.

Both have the same f(x, y) value so they are both points we're looking for: $\left(\pm \frac{\sqrt{17}}{3}, \frac{2}{3}\right)$.

3. Find an equation of the tangent plane to the following surface at the point $(x_0, y_0, z_0) = (2, 1, -1)$:

$$x\ln y - 3yz^2 + 1 = xz.$$

Solution: Let $F(x, y, z) = x \ln y - 3yz^2 - xz = -1$. Then,

$$\nabla F(2,1,-1) = \left\langle \ln y - z, \frac{x}{y} - 3z^2, -6yz - x \right\rangle \Big|_{(2,1,-1)} = \langle 0+1, 2-3, 6-2 \rangle = \langle 1, -1, 4 \rangle$$

and so the equation of the tangent plane is:

$$(x-2) - (y-1) + 4(z+1) = 0 \quad \Rightarrow \quad \boxed{x-y+4z+3=0}.$$

- 4. For each of the iterated integrals below, <u>sketch the region of integration then convert</u> as indicated. DO NOT evaluate.
 - (a) Rewrite $\int_{-2}^{0} \int_{0}^{x^{2}} 3xy \, dy \, dx$ in the order $dx \, dy$. Solution:

(b) Rewrite $\int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \int_{0}^{1} r^2 dr d\theta$ in rectangular coordinates.

Solution: From the picture below, we need to split the integral. The order $dx \, dy$ is a bit easier as the split is at y = 0 but we still need to solve for y when $\theta = \frac{\pi}{4}$ and r = 1, i.e. $y = 1 \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$. Inner bounds are from the y-axis x = 0, the circle $x^2 + y^2 = 1$, and y = x:

5. Compute the mass m of the planar lamina with density $\rho(x,y) = y^2$ shown below.

Solution:

$$m = \iint_R y^2 \, dA = \int_0^{\frac{\pi}{2}} \int_0^2 r^2 \sin^2 \theta \, r \, dr \, d\theta = \int_0^{\frac{\pi}{2}} \left[\frac{r^4}{4} \sin^2 \theta \right]_0^2 \, d\theta = \int_0^{\frac{\pi}{2}} 4 \sin^2 \theta \, d\theta$$
$$= \int_0^{\frac{\pi}{2}} 2(1 - \cos(2\theta)) \, d\theta = \left[2\theta - \sin(2\theta) \right]_0^{\frac{\pi}{2}} = [\pi].$$

6. Consider the function:

$$f(x,y) = x^3 - 12xy + 8y^3$$

- (a) Find and classify all critical points of f(x, y). Solution:
 - Find the critical points from solving $\nabla f = \overrightarrow{0}$:

$$\nabla f = \overrightarrow{0} \quad \Rightarrow \quad \left\langle 3x^2 - 12y, -12x + 24y^2 \right\rangle = \left\langle 0, 0 \right\rangle \quad \Rightarrow \quad \begin{cases} x^2 = 4y \\ x = 2y^2 \end{cases} \quad \Rightarrow \quad \begin{cases} 4y^4 = 4y \\ x = 2y^2 \end{cases}$$

The first equation simplifies to $y(y^3 - 1) = 0$ so either y = 0 or y = 1. Substituting back into the second equation gives us the two critical points (0,0) and (2,1).

• Apply the Second Partials Test to classify them:

$$f_{xx} = 6x , f_{yy} = 48y , f_{xy} = -12 \implies d = f_{xx}f_{yy} - f_{xy}^2 = 288xy - 144 = 144(2xy - 1)$$

$$d(0,0) = -144 < 0 \text{ so we have a saddle point at } (0,0,0) ;$$

$$d(2,1) = 144(3) > 0 \text{ and } f_{xx}(2,1) = 12 > 0 \text{ so } f \text{ has a local minimum at } (2,1) .$$

(b) Find the absolute minimum and maximum values of f(x, y) in the rectangular region R defined by $0 \le x \le \frac{1}{2}$ and $0 \le y \le 1$.

Solution: The absolute min/max can happen only at either the critical points within R or on the boundary of R:

- out of the critical points, only (0,0) is part of R;
- we will need to check the vertices (0,0), (0,1), (1/2,0), and (1/2,1);
- along x = 0 for $0 \le y \le 1$:

$$g(y)=f(0,y)=8y^3 \quad \Rightarrow \quad g'(y)=24y^2$$

and g'(y) = 0 for y = 0 and we find again (0, 0);

• along x = 1/2 for $0 \le y \le 1$:

$$g(y) = f(1/2, y) = \frac{1}{8} - 6y + 8y^3 \Rightarrow g'(y) = -6 + 24y^2$$

and g'(y) = 0 for $y = \pm \frac{1}{2}$; only (1/2, 1/2) is in R;

• along y = 0 for $0 \le x \le \frac{1}{2}$:

$$g(x) = f(x,0) = x^3 \quad \Rightarrow \quad g'(x) = 3x^2$$

and g'(x) = 0 for x = 0 and we find again (0, 0);

• along y = 1 for $0 \le x \le \frac{1}{2}$:

$$g(x) = f(x, 1) = x^3 - 12x + 8 \quad \Rightarrow \quad g'(x) = 3x^2 - 12$$

and g'(x) = 0 for $x = \pm 2$; neither points are in R.

We now plug in all values of those points into f to find the absolute min/max:

x	y	f(x,y)	
0	0	0	
0	1	8	absolute max
$\frac{1}{2}$	0	$\frac{1}{8}$	
$\frac{1}{2}$	1	$\frac{17}{8}$	
$\frac{1}{2}$	$\frac{1}{2}$	$\left(-\frac{15}{8}\right)$	absolute min

7. Evaluate the following.

(a) the volume below the plane 6x + 3y + 2z = 6 in the first octant:

Rewrite 2z = 6 - 6x - 3y so $z = 3 - 3x - \frac{3}{2}y$ and the base is bounded (from setting z = 0) by the line: 6x + 3y = 6, i.e. 2x + y = 2 for $x, y \ge 0$. So we can write $0 \le y \le 2 - 2x$ and in x solve for the upper bound by setting y = 0 in the line. Then the volume is:

$$V = \int_0^1 \int_0^{2-2x} 3 - 3x - \frac{3}{2}y \, dy \, dx = \int_0^1 \left[(3 - 3x)y - \frac{3}{4}y^2 \right]_{y=0}^{y=2-2x} dx$$

= $\int_0^1 3(1-x)(2-2x) - \frac{3}{4}(2-2x)^2 - 0 \, dx = \int_0^1 6(1-x^2) - 3(1-x)^2 \, dx$
= $\int_0^1 3(1-x)^2 \, dx = \left[-(1-x)^3 \right]_0^1 = 0 + 1 = \boxed{1}.$

(b) the surface area of the cone $z = \sqrt{x^2 + y^2}$ above the region R bounded by the graphs of y = -x, $x = 2y - y^2$, y = 0 and y = 1 as sketched below:

- (c) the volume of the solid bounded by the paraboloid $z = x^2 + y^2$ and the inverted cone $z = 6 \sqrt{x^2 + y^2}$ using polar coordinates.
 - Solution: The cone is above the paraboloid and for the base, we have a disk where the radius can be found using the intersection of the surfaces, i.e. set $x^2 + y^2 = 6 - \sqrt{x^2 + y^2}$ or in polar $r^2 = 6 - r$ for $r = \sqrt{x^2 + y^2} \ge 0$. So $r^2 + r - 6 = 0$ which has for solutions r = -3, 2 and we keep r = 2. And so the volume is:

8)

$$V = \int_0^{2\pi} \int_0^2 (6 - r - r^2) r \, dr \, d\theta = \int_0^{2\pi} \int_0^2 6r - r^2 - r^3 \, dr \, d\theta$$
$$= \int_0^{2\pi} \left[3r^2 - \frac{r^3}{3} - \frac{r^4}{4} \right]_0^2 \, d\theta = \int_0^{2\pi} 12 - \frac{8}{3} - 4 - 0 \, d\theta = \frac{16}{3} \left[\theta \right]_0^{2\pi} = \boxed{\frac{32\pi}{3}}.$$

8. The bee population in a boxed behive is given at each point (x, y, z) by

$$f(x, y, z) = x^2 + y^2 + xyz.$$

(a) At the point (3, 1, 2), what is the unit direction of greatest decrease in population? Solution:

 $\nabla f(3,1,2) = \langle 2x + yz, 2y + xz, xy \rangle|_{(3,1,2)} = \langle 8, 8, 3 \rangle$, so the unit direction of greatest decrease is

$$-\frac{\nabla f(3,1,2)}{\|\nabla f(3,1,2)\|} = \langle -\frac{8}{\sqrt{137}}, -\frac{8}{\sqrt{137}}, \frac{3}{\sqrt{137}} \rangle.$$

(b) Find the directional derivative of f at (3, 1, 2) in the direction of $\mathbf{v} = \langle 1, 2, 2 \rangle$? Solution:

The direction we consider is $\mathbf{u} = \frac{\mathbf{v}}{||\mathbf{v}||}$, so $\mathbf{u} = \langle 1/3, 2/3, 2/3 \rangle$. Then

$$D_{\mathbf{u}}f(3,1,2) = \nabla f(3,1,2) \cdot \mathbf{u} = \langle 8,8,3 \rangle \cdot \langle 1/3,2/3,2/3 \rangle = \frac{8}{3} + \frac{16}{3} + \frac{6}{3} = \boxed{10}$$

(c) Use the chain rule (no direct substitution) to find $\frac{df}{dt}$ in terms of t if $x(t) = 4 - t^2$, y(t) = 3t - 2and $z(t) = 3t^3 - 1$. Solution:

$$\begin{aligned} \frac{df}{dt} &= \nabla f \cdot \left\langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right\rangle = \langle 2x + yz, 2y + xz, xy \rangle \cdot \langle -2t, 3, 9t^2 \rangle \\ &= (2x + yz)(-2t) + (2y + xz)(3) + (xy)(9t^2) \\ &= -2t(2(4 - t^2) + (3t - 2)(3t^3 - 1)) + 3(2(3t - 2) + (4 - t^2)(3t^3 - 1)) + 9t^2(4 - t^2)(3t - 2) \\ &= -2t(9t^4 - 6t^3 - 2t^2 - 3t + 10) + 3(-3t^5 + 12t^3 + t^2 + 6t - 8) + 9t^2(-3t^3 + 2t^2 + 12t - 8) \\ &= -18t^5 + 12t^4 + 4t^3 + 6t^2 - 20t - 9t^5 + 36t^3 + 3t^2 + 18t - 24 - 27t^5 + 18t^4 + 108t^3 - 72t^2 \\ &= \boxed{-54t^5 + 30t^4 + 148t^3 - 63t^2 - 2t - 24} \end{aligned}$$