Instructions. (100 points) You have 90 minutes. Closed book, closed notes, no calculator. Show all your work in order to receive full credit.
$\left(6^{\text {pts }}\right)$

1. Show that $\lim _{(x, y) \rightarrow(-1,1)} \frac{x y+1}{2 x^{2}-y^{2}-1}$ does not exist.
$\left(8^{\mathrm{pts}}\right)$
$\left(6^{\text {pts }}\right)$
2. Use Lagrange multipliers to find the point(s) on the curve $x^{2}-2 y^{2}=1$ closest from the point $P(0,2)$.
3. Find an equation of the tangent plane to the following surface at the point $\left(x_{0}, y_{0}, z_{0}\right)=(2,1,-1)$:

$$
x \ln y-3 y z^{2}+1=x z
$$

$\left(12^{\text {pts }}\right)$ 4. For each of the iterated integrals below, sketch the region of integration then convert as indicated. DO NOT evaluate.
(a) (6 pts) Rewrite $\int_{-2}^{0} \int_{0}^{x^{2}} 3 x y d y d x$ in the order $d x d y$.
(b) (6 pts) Rewrite $\int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \int_{0}^{1} r^{2} d r d \theta$ in rectangular coordinates.
$\left(12^{\text {pts }}\right)$ 5. Compute the mass m of the planar lamina with density $\rho(x, y)=y^{2}$ shown below.

6. Consider the function:

$$
f(x, y)=x^{3}-12 x y+8 y^{3}
$$

(a) (8 pts) Find and classify all critical points of $f(x, y)$.
(b) (8 pts) Find the absolute minimum and maximum values of $f(x, y)$ in the rectangular region R defined by $0 \leq x \leq \frac{1}{2}$ and $0 \leq y \leq 1$.
7. Evaluate the following.
(a) (8 pts) the volume below the plane $6 x+3 y+2 z=6$ in the first octant:

(b) (6 pts) the surface area of the cone $z=\sqrt{x^{2}+y^{2}}$ above the region R bounded by the graphs of $y=-x, x=2 y-y^{2}, y=0$ and $y=1$ as sketched below:

(c) (8 pts) the volume of the solid bounded by the paraboloid $z=x^{2}+y^{2}$ and the inverted cone $z=6-\sqrt{x^{2}+y^{2}}$ using polar coordinates.

$\left(18^{\text {pts }}\right)$ 8. The bee population in a boxed beehive is given at each point (x, y, z) by

$$
f(x, y, z)=x^{2}+y^{2}+x y z
$$

(a) $(6 \mathrm{pts})$ At the point $(3,1,2)$, what is the unit direction of greatest decrease in population?
(b) (6 pts) Find the directional derivative of f at $(3,1,2)$ in the direction of $\mathbf{v}=\langle 1,2,2\rangle$?
(c) (6 pts) Use the chain rule (no direct substitution) to find $\frac{d f}{d t}$ in terms of t if $x(t)=4-t^{2}, y(t)=3 t-2$ and $z(t)=3 t^{3}-1$.

