Instructions. You have 90 minutes. No calculators allowed. Show all your work in order to receive full credit.

1. Consider the points $A(2,1,0), B(-1,3,1), C(0,4,-1)$, and $D(1,-1,2)$ in space.

(a) Find the symmetric equations of the line going through D and parallel to the line going through A and B.
Solution: The direction for the line will be (any scalar multiple of):

$$
\overrightarrow{A B}=\langle-1-2,3-1,1-0\rangle=\langle-3,2,1\rangle
$$

And symmetric equations for the line through D parallel to $\overrightarrow{A B}$ are:

$$
\frac{x-1}{-3}=\frac{y+1}{2}=z-2
$$

(b) Find the equation of the plane containing the parallelogram shaded above.

Solution: A normal vector to the plane is:

$$
\begin{aligned}
\overrightarrow{A B} \times \overrightarrow{A C} & =\langle-3,2,1\rangle \times\langle 0-2,4-1,-1-0\rangle=\langle-3,2,1\rangle \times\langle-2,3,-1\rangle \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-3 & 2 & 1 \\
-2 & 3 & -1
\end{array}\right|=\langle 2(-1)-3(1),-(-3(-1)+2(1)),-3(3)+2(2)\rangle=\langle-5,-5,-5\rangle
\end{aligned}
$$

A more judicious choice is $\langle 1,1,1\rangle$ and then the equation to the plane is:
(c) Use vectors to find the length of the diagonal starting at A in the parallelogram.

Solution: A vector representing the diagonal is $\overrightarrow{A B}+\overrightarrow{A C}$ so the length of the diagonal is:

$$
\begin{aligned}
\|\overrightarrow{A B}+\overrightarrow{A C}\| & =\|\langle-3,2,1\rangle+\langle-2,3,-1\rangle\|=\|\langle-3-2,2+3,1-1\rangle\|=\|\langle-5,5,0\rangle\| \\
& =\sqrt{25+25+0}=\sqrt{50}=5 \sqrt{2}
\end{aligned}
$$

2. Consider the following planes in space:
$\begin{array}{ll}\text { Plane 1 } & x-2 y-z+1=0 \\ \text { Plane 2 } & x-3 y+2 z+6=0\end{array}$
(a) Are the two planes orthogonal?

Solution: We need to compute the dot product of the normal vectors:

$$
\langle 1,-2,-1\rangle \cdot\langle 1,-3,2\rangle=1(1)-2(-3)-1(2)=5 \neq 0
$$

so the planes are not orthogonal.
(b) Find the point of intersection of Plane 1 and the line parametrized by

$$
\vec{r}(t)=\langle-2+t, 1-t, 3+2 t\rangle
$$

Solution: Substitute x, y, and z with the parametrization of the line in Plane 1 and solve for t :

$$
(-2+t)-2(1-t)-(3+2 t)+1=0 \quad \Longleftrightarrow \quad-2+t-2+2 t-3-2 t+1=0 \quad \Longleftrightarrow \quad t=6
$$

Thus, we have

$$
\vec{r}(6)=\langle-2+6,1-6,3+2(6)\rangle=\langle 4,-5,15\rangle \quad \Longrightarrow \quad P(4,-5,15)
$$

(c) Now find the distance from the point found above to Plane 2.

Solution:

$$
d=\frac{|4-3(-5)+2(15)+6|}{\|\langle 1,-3,2\rangle\|}=\frac{|4+15+30+6|}{\sqrt{1+9+4}}=\frac{55}{\sqrt{14}}=\frac{55 \sqrt{14}}{14}
$$

3. Let $\mathbf{r}(t)=\left\langle(t-1)^{2}, t^{3}-3 t^{2}+3 t, 2 t^{3}-3 t^{2}\right\rangle$ be describing the motion of a particle along a space curve over time. The position is in meters and time in seconds.
(a) Find all the open intervals on which the curve is smooth.

Solution: The domain of $\mathbf{r}(t)$ is the whole real line, and

$$
\mathbf{r}^{\prime}(t)=\left\langle 2(t-1), 3 t^{2}-6 t+3,6 t^{2}-6 t\right\rangle=\left\langle 2(t-1), 3(t-1)^{2}, 6 t(t-1)\right\rangle
$$

is defined, and continuous also on the whole real line. But

$$
\mathbf{r}^{\prime}(t)=\overrightarrow{0} \quad \text { for } \quad t=1
$$

So by definition,

$$
\text { the curve described by } \vec{r}(t) \text { is smooth on }(-\infty, 1) \cup(1, \infty)
$$

(b) Find the speed of the particle at $t=2 \mathrm{~s}$.

Solution:

$$
\left\|\mathbf{r}^{\prime}(2)\right\|=\left\|\left\langle 2(1), 3(1)^{2}, 6(2)(1)\right\rangle\right\|=\|\langle 2,3,12\rangle\|=\sqrt{4+9+144}=\sqrt{157} \mathrm{~m} / \mathrm{s} .
$$

(c) Given $\mathbf{s}(2)=\langle 2,3,-1\rangle$ and $\mathbf{s}^{\prime}(2)=\langle 1,-1,2\rangle$, find:

1. $\left.\frac{d}{d t}(\mathbf{r} \cdot \mathbf{s})\right|_{t=2}=8$

Solution:

$$
\begin{aligned}
\left.\frac{d}{d t}(\mathbf{r} \cdot \mathbf{s})\right|_{t=2} & =\left.\left(\mathbf{r}^{\prime} \cdot \mathbf{s}+\mathbf{r} \cdot \mathbf{s}^{\prime}\right)\right|_{t=2}=\langle 2,3,12\rangle \cdot\langle 2,3,-1\rangle+\left\langle 1^{2}, 8-12+6,16-12\right\rangle \cdot\langle 1,-1,2\rangle \\
& =2(2)+3(3)+12(-1)+\langle 1,2,4\rangle \cdot\langle 1,-1,2\rangle=4+9-12+1(1)+2(-1)+4(2) \\
& =1+1-2+8=8
\end{aligned}
$$

2. $\left.\frac{d}{d t}(\mathbf{r} \times \mathbf{s})\right|_{t=2}=\langle-31,28,-3\rangle$

Solution:

$$
\begin{aligned}
\left.\frac{d}{d t}(\mathbf{r} \times \mathbf{s})\right|_{t=2} & =\left.\left(\mathbf{r}^{\prime} \times \mathbf{s}+\mathbf{r} \times \mathbf{s}^{\prime}\right)\right|_{t=2}=\langle 2,3,12\rangle \times\langle 2,3,-1\rangle+\langle 1,2,4\rangle \times\langle 1,-1,2\rangle \\
= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 3 & 12 \\
2 & 3 & -1
\end{array}\right|+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 4 \\
1 & -1 & 2
\end{array}\right| \\
= & \langle 3(-1)-3(12),-(2(-1)-2(12)), 2(3)-2(3)\rangle \\
& \quad+\langle 2(2)+1(4),-(1(2)-1(4)), 1(-1)-1(2)\rangle \\
& \langle-39,26,0\rangle+\langle 8,2,-3\rangle=\langle-31,28,-3\rangle
\end{aligned}
$$

4. Time to sketch some surfaces!
(a) Describe and sketch the surface in space whose equation is $x^{2}-\frac{y^{2}}{4}+\frac{z^{2}}{9}=-1$.

Solution: hyperboloid of two sheets

(b) Describe and sketch the surface in space whose equation is: $x^{2}+4 y^{2}=z$.

Solution: elliptic paraboloid

5. You hit a golf ball in "Calculus III conditions" ${ }^{1}$ such that it takes off at an angle of 30° with the horizontal. What should the initial golf ball speed be in order for you to hit a hole-in-one located 800 feet away at the same elevation?
Solution: Let v_{0} be the original speed. Then the initial velocity is

$$
\mathbf{v}(0)=\left\langle v_{0} \cos 30^{\circ}, v_{0} \sin 30^{\circ}\right\rangle=\left\langle\frac{v_{0} \sqrt{3}}{2}, \frac{v_{0}}{2}\right\rangle
$$

and since the initial position is $\mathbf{r}(0)=\langle 0,0\rangle$, we have:

$$
\begin{aligned}
\mathbf{a}(t) & =\langle 0,-32\rangle \quad \Longrightarrow \quad \mathbf{v}(t)-\mathbf{v}(0)=\int_{0}^{t}\langle 0,-32\rangle d u=\left.\langle 0,-32 u\rangle\right|_{u=0} ^{u=t}=\langle 0,-32 t\rangle \\
\Longleftrightarrow \mathbf{v}(t) & =\left\langle\frac{v_{0} \sqrt{3}}{2}, \frac{v_{0}}{2}\right\rangle+\langle 0,-32 t\rangle=\left\langle\frac{v_{0} \sqrt{3}}{2}, \frac{v_{0}}{2}-32 t\right\rangle \\
\Longrightarrow \mathbf{r}(t)-\mathbf{r}(0) & =\int_{0}^{t}\left\langle\frac{v_{0} \sqrt{3}}{2}, \frac{v_{0}}{2}-32 u\right\rangle d u=\left.\left\langle\frac{v_{0} u \sqrt{3}}{2}, \frac{v_{0} u}{2}-16 u^{2}\right\rangle\right|_{u=0} ^{u=t} \\
\Longrightarrow \mathbf{r}(t) & =\left\langle\frac{v_{0} t \sqrt{3}}{2}, \frac{v_{0} t}{2}-16 t^{2}\right\rangle
\end{aligned}
$$

Now we solve for t and v_{0} in $\mathbf{r}(t)=\langle 800,0\rangle$. From the y-component,

$$
\frac{v_{0} t}{2}=16 t^{2} \quad \Longleftrightarrow \quad t=0 \quad \text { or } \quad t=\frac{v_{0}}{32}
$$

and since $t=0$ just gives $\mathbf{r}(0)=\langle 0,0\rangle$, here we need the second value of t and thus we solve from the x-component:

$$
800=\frac{v_{0}^{2} \sqrt{3}}{64} \Longleftrightarrow v_{0}=\sqrt{\frac{800(64)}{\sqrt{3}}}=\frac{\frac{160 \sqrt{2}}{\sqrt[4]{3}} \mathrm{ft} / \mathrm{s}}{}
$$

[^0]6. An object moves along a trajectory so that its position $\vec{r}(t)$ as a function of time is given by:
$$
\vec{r}(t)=\langle 2 \sin (\sqrt{6} t), 2 \cos (\sqrt{6} t), t\rangle
$$
(a) The particle's trajectory sits on the intersection of the cylinder $y=2 \cos (\sqrt{6} z)$ (drawn below) and which other surface? Sketch that surface. (Hint: Even though there is more than one possible answer, one is definitely easier to sketch.)
Solution:

$$
x^{2}(t)+y^{2}(t)=4 \sin ^{2}(\sqrt{6} t)+4 \cos ^{2}(\sqrt{6} t)=4
$$

This is true for all t so the surface is the cylinder:

$$
x^{2}+y^{2}=4
$$

(b) Find the unit tangent vector of the trajectory.

Solution:

$$
\begin{aligned}
& \overrightarrow{r^{\prime}}(t) \\
\Longrightarrow & =\langle 2 \sqrt{6} \cos (\sqrt{6} t),-2 \sqrt{6} \sin (\sqrt{6} t), 1\rangle \\
& \vec{T}(t)=\frac{\overrightarrow{r^{\prime}}(t)}{\left\|\overrightarrow{r^{\prime}}(t)\right\|}=\frac{\langle 2 \sqrt{6} \cos (\sqrt{6} t),-2 \sqrt{6} \sin (\sqrt{6} t), 1\rangle}{\sqrt{24 \cos ^{2}(\sqrt{6} t)+24 \sin ^{2}(\sqrt{6} t)+1}}=\frac{\langle 2 \sqrt{6} \cos (\sqrt{6} t),-2 \sqrt{6} \sin (\sqrt{6} t), 1\rangle}{\sqrt{25}} \\
\Longrightarrow & \vec{T}(t)=\left\langle\frac{2 \sqrt{6}}{5} \cos (\sqrt{6} t), \frac{-2 \sqrt{6}}{5} \sin (\sqrt{6} t), \frac{1}{5}\right\rangle
\end{aligned}
$$

(c) Find the principal unit normal vector of the trajectory.

Solution:

$$
\begin{aligned}
& \overrightarrow{T^{\prime}}(t)=\left\langle\frac{-12}{5} \sin (\sqrt{6} t), \frac{-12}{5} \cos (\sqrt{6} t), 0\right\rangle=-\frac{12}{5}\langle\sin (\sqrt{6} t), \cos (\sqrt{6} t), 0\rangle \\
\Longrightarrow & \vec{N}(t)=\frac{\overrightarrow{T^{\prime}}(t)}{\left\|\overrightarrow{T^{\prime}}(t)\right\|}=\frac{-\frac{12}{5}\langle\sin (\sqrt{6} t), \cos (\sqrt{6} t), 0\rangle}{\left|-\frac{12}{5}\right| \sqrt{\sin ^{2}(\sqrt{6} t)+\cos ^{2}(\sqrt{6} t)+0}}=\frac{-\frac{12}{5}\langle\sin (\sqrt{6} t), \cos (\sqrt{6} t), 0\rangle}{\frac{12}{5}} \\
\Longrightarrow & \vec{N}(t)=\langle-\sin (\sqrt{6} t),-\cos (\sqrt{6} t), 0\rangle
\end{aligned}
$$

7. A particle is moving in the plane from a starting position at $(-1,2)$ (i.e. $\vec{r}(0)=-\vec{\imath}+2 \vec{\jmath}$) according to the following velocity (measured in ft / s) at time t :

$$
\vec{v}(t)=\left(3-3 t^{2}\right) \vec{\imath}+6 t \vec{\jmath} .
$$

(a) What is the particle's position at $t=1 \mathrm{~s}$?

Solution:

$$
\begin{gathered}
\vec{r}(t)=\int \vec{v}(t) d t=\left(3 t-t^{3}\right) \vec{\imath}+3 t^{2} \vec{\jmath}+\vec{c} \\
-\vec{\imath}+2 \vec{\jmath}=\vec{r}(0)=\vec{c} \quad \Longrightarrow \quad \vec{r}(t)=\left(3 t-t^{3}-1\right) \vec{\imath}+\left(3 t^{2}+2\right) \vec{\jmath} \quad \Longrightarrow \quad \vec{r}(1)=\vec{\imath}+5 \vec{\jmath}
\end{gathered}
$$

so the position of the particle at $t=1 \mathrm{~s}$ is $(1,5)$.
(b) Find the arc length described by the particle between $t=0 \mathrm{~s}$ and $t=2 \mathrm{~s}$.

Solution: The distance traveled (or arc length) from $t=0 \mathrm{~s}$ to $t=2 \mathrm{~s}$ is:

$$
\begin{aligned}
s(2) & =\int_{0}^{2}\|\vec{v}(t)\| d t=\int_{0}^{2} 3 \sqrt{\left(1-t^{2}\right)^{2}+(2 t)^{2}} d t=3 \int_{0}^{2} \sqrt{1-2 t^{2}+t^{4}+4 t^{2}} d t \\
& =3 \int_{0}^{2} \sqrt{1+2 t^{2}+t^{4}} d t=3 \int_{0}^{2} \sqrt{\left(1+t^{2}\right)^{2}} d t=3 \int_{0}^{2} 1+t^{2} d t \\
& =3\left[t+\frac{t^{3}}{3}\right]_{0}^{2}=3\left(2+\frac{8}{3}-0\right)=14 \mathrm{ft}
\end{aligned}
$$

8. Nanook, your favorite sled dog is in training for pulling a loaded sled along a frictionless snow path.
(a) He is applying a constant force \vec{F} of magnitude 30 lbs along the rope which forms an angle of 10° with the horizontal path where the sled rests. What is the work done by this force when the sled is dragged over 20 ft ? Your answer may still contain a trigonometric function but don't forget the overall unit.

Solution:

$$
W=\vec{F} \cdot \overrightarrow{P Q}=\|\vec{F}\|\|\overrightarrow{P Q}\| \cos 10^{\circ}=30(20) \cos 10^{\circ}=600 \cos 10^{\circ} \mathrm{ft}-\mathrm{lbs}
$$

(b) When Nanook reaches the dog yard, he runs to the cabin and pushes with his nose against the door with the same force, but at an angle of 60° to get it to open. What is the torque (direction and magnitude) about the hinge if Nanook pushes 8 in from the hinge? Simplify your answer.

Viewpoint is from the swallow nesting above the door:

Solution: For P at the hinge and Q along the door 8 inches from P, since the torque is

$$
\vec{\tau}=\overrightarrow{P Q} \times \vec{F}
$$

then by the right hand rule, the direction of the torque is out of the page towards you. And the magnitude is:

$$
\|\vec{\tau}\|=\|\overrightarrow{P Q}\|\|\vec{F}\| \sin 60^{\circ}=\frac{8}{12}(30) \frac{\sqrt{3}}{2}=10 \sqrt{3} \mathrm{ft}-\mathrm{lbs}
$$

[^0]: ${ }^{1}$ I.e. the acceleration is constant and only due to gravity. That is we ignore ball spin, air resistance, etc.

