Instructions. You have 120 minutes. Closed book, closed notes, no calculator. Show all your work in order to receive full credit.

1. Show that $\lim _{(x, y) \rightarrow(-2,1)} \frac{x+y+1}{x y+2}$ does not exist.

Solution: Setting $x=-2$ and letting $y \rightarrow 1$ to approach $(-2,1)$ along the line $(-2, y)$, we see $\lim _{y \rightarrow 1} \frac{y-1}{-2 y+2}=-\frac{1}{2}$. Setting $y=1$ and letting $x \rightarrow-2$ to approach $(-2,1)$ along the line $(x, 1)$, we see $\lim _{x \rightarrow-2} \frac{x+2}{x+2}=1$. Since these limits are different, the original multivariable limit does not exist.
2. Let $w=\frac{x y}{x-z}$.
(a) Verify that w satisfies the partial differential equation $x w_{x}+x w_{z}=y w_{y}$.

Solution: The first partial derivatives are:

$$
w_{x}=\frac{y(x-z)-x y(1)}{(x-z)^{2}}=\frac{-y z}{(x-z)^{2}} \quad, \quad w_{y}=\frac{x}{x-z} \quad, \quad w_{z}=\frac{x y}{(x-z)^{2}}
$$

And we have:

$$
x w_{x}+x w_{z}=\frac{-x y z}{(x-z)^{2}}+\frac{x^{2} y}{(x-z)^{2}}=\frac{x y(-z+x)}{\left(x-z^{2}\right)}=\frac{x y}{x-z}=y \frac{x}{x-z}=y w_{y}
$$

(b) Use the appropriate chain rule to find w_{s} for $(s, t)=(2,1)$ if $x=s^{2} t, y=t^{2}-s, z=3 t$. Solution: For $(s, t)=(2,1)$ we have $(x, y, z)=\left(2^{2}(1), 1^{2}-2,3(1)\right)=(4,-1,3)$ and:

$$
\begin{aligned}
w_{s} & =w_{x} x_{s}+w_{y} y_{s}+w_{z} z_{s}=\frac{-y z}{(x-z)^{2}}(2 s t)+\frac{x}{x-z}(-1)+\frac{x y}{(x-z)^{2}}(0) \\
\left.\Rightarrow \quad w_{s}\right|_{(s, t)=(2,1)} & =\frac{-(-1) 3}{(4-3)^{2}}(2(2)(1))+\frac{4}{4-3}(-1)+0=12-4=8
\end{aligned}
$$

3. Consider the surface $z=\frac{2}{3} x^{\frac{3}{2}}+2 y$ over the rectangular region $R=[1,4] \times[0,1]$.
(a) Compute the volume under the surface and over R.

Solution:

$$
\begin{aligned}
V & =\int_{1}^{4} \int_{0}^{1} \frac{2}{3} x^{\frac{3}{2}}+2 y d y d x=\int_{1}^{4}\left[\frac{2}{3} x^{\frac{3}{2}} y+y^{2}\right]_{0}^{1} d x \\
& =\int_{1}^{4} \frac{2}{3} x^{\frac{3}{2}}+1 d x=\left[\frac{2}{3}\left(\frac{2}{5}\right) x^{\frac{5}{2}}+x\right]_{1}^{4} \\
& =\frac{4\left(2^{5}\right)}{15}+4-\frac{4}{15}-1=\frac{4(32-1)}{15}+3=\frac{124+45}{15}=\frac{169}{15}
\end{aligned}
$$

(b) Compute the surface area of $z=\frac{2}{3} x^{\frac{3}{2}}+2 y$ over the region R.

Solution: We have $z_{x}=\frac{2}{3}\left(\frac{3}{2}\right) x^{\frac{1}{2}}=\sqrt{x}$ and $z_{y}=2$ so:

$$
\begin{aligned}
S A & =\int_{1}^{4} \int_{0}^{1} \sqrt{1+z_{x}^{2}+z_{y}^{2}} d y d x=\int_{1}^{4} \int_{0}^{1} \sqrt{1+x+4} d y d x \\
& =\int_{1}^{4}[y \sqrt{x+5}]_{0}^{1} d x=\int_{1}^{4} \sqrt{x+5} d x \\
& =\left[\frac{2}{3}(x+5)^{\frac{3}{2}}\right]_{1}^{4}=\frac{2}{3}(27-6 \sqrt{6})=2(9-2 \sqrt{3})
\end{aligned}
$$

4. Find an equation of the tangent plane at $(2,0,1)$ to the surface

$$
x^{2} z-y z^{2}+y^{2}=4
$$

Solution: Let $F(x, y, z)=x^{2} z-y z^{2}+y^{2}$. Then we find

$$
\nabla F(x, y, z)=\left\langle 2 x z,-z^{2}+2 y, x^{2}-2 y z\right\rangle
$$

so $\nabla F(2,0,1)=\langle 4,-1,4\rangle$. The tangent plane is thus given by

$$
4(x-2)-1(y-0)+4(z-1)=0
$$

or

$$
4 x-y+4 z=12 \text {. }
$$

5. Let $z=\ln (x y)$. Use the total differential to approximate Δz when moving from the point $(1,2)$ to the point ($0.98,2.1$).
Solution: Since we're looking at values of $x, y>0$ we can rewrite $z=\ln x+\ln y$ so:

$$
\Delta z \approx d z=z_{x} d x+z_{y} d y=\frac{d x}{x}+\frac{d y}{y}=\frac{(0.98-1)}{1}+\frac{2.1-2}{2}=-0.02+0.05=0.03
$$

6. Assume a planar lamina has density $\rho=x$ and occupies the following region:

(a) Give two equivalent expressions for the mass of the lamina first setting up bounds and integrand in $d x d y$ then in $d y d x$. DO NOT evaluate.
Solution: The first line is $y=2 x$ (or $x=\frac{y}{2}$) and the other is $y-0=\frac{0-2}{3-1}(x-3)$ that is $y=3-x$ (or $x=3-y$):

$$
m=\int_{0}^{2} \int_{\frac{y}{2}}^{3-y} x d x d y=\int_{0}^{1} \int_{0}^{2 x} x d y d x+\int_{1}^{3} \int_{0}^{3-x} x d y d x
$$

(b) Compute M_{x} the moment of mass with respect to the x-axis for the lamina.

Solution:

$$
\begin{aligned}
M_{x} & =\int_{0}^{2} \int_{\frac{y}{2}}^{3-y} x y d x d y=\int_{0}^{2}\left[\frac{x^{2} y}{2}\right]_{x=\frac{y}{2}}^{x=3-y} d y \\
& =\int_{0}^{2} \frac{y(3-y)^{2}}{2}-\frac{y^{3}}{8} d y=\left|\begin{array}{cc}
u=y & d u=d y \\
d v=(3-y)^{2} d y & v=-\frac{(3-y)^{3}}{3}
\end{array}\right| \\
& =\frac{1}{2}\left(\left[-\frac{y(3-y)^{3}}{3}\right]_{0}^{2}-\int_{0}^{2}-\frac{(3-y)^{3}}{3} d y\right)-\left[\frac{y^{4}}{32}\right]_{0}^{2} \\
& =\frac{1}{2}\left(-\frac{2}{3}+0-\left[\frac{(3-y)^{4}}{12}\right]_{0}^{2}\right)-\frac{1}{2}+0=-\frac{1}{3}-\frac{1}{2}\left(\frac{1}{12}-\frac{81}{12}\right)-\frac{1}{2} \\
& =\frac{80}{24}-\frac{5}{6}=\frac{20}{6}-\frac{5}{6}=\frac{15}{6}=\frac{5}{2}
\end{aligned}
$$

7. Find and classify all critical points of

$$
f(x, y)=x^{3}+x y^{2}-4 x y+x+1
$$

Solution: The gradient is

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 3 x^{2}+y^{2}-4 y+1,2 x y-4 x\right\rangle
$$

is defined everywhere and when setting it to the zero vector, we get $f_{y}=0=2 x(y-2)$ for:

- either $x=0$ then plugging into $f_{x}=0$ that means $y^{2}-4 y+1=0$ so we get $y=2 \pm \sqrt{3}$
- or $y=2$ then plugging into $f_{x}=0$ that means $3 x^{2}-3=0$ so $x= \pm 1$

Hence we found four critical points: $(0,2 \pm \sqrt{3}),(\pm 1,2)$.
To classify them, we use the Second Partials Test:

$$
f_{x x}=6 x \quad, \quad f_{y y}=2 x \quad, \quad f_{x y}=2 y-4 \quad \Rightarrow \quad d(x, y)=12 x^{2}-4(y-2)^{2}
$$

- $d(0,2 \pm \sqrt{3})=-4(3)<0$ so saddle points at $(0,2 \pm \sqrt{3}, 1)$;
- $d(1,2)=12-0>0$ and $f_{x x}=6>0$ so relative minimum at $(1,2)$;
- $d(-1,2)=12-0>0$ and $f_{x x}=-6<0$ so relative maximum at $(-1,2)$.

8. Find the absolute minimum and maximum of

$$
f(x, y)=x^{2}-y^{2}+3 x
$$

in the region $x^{2}+2 y^{2} \leq 4$.
Solution: The absolute min/max will happen either at the critical point(s) if in the region or on the boundary. We have:

$$
\nabla f=\langle 2 x+3,-2 y\rangle=\overrightarrow{0} \quad \Longleftrightarrow \quad(x, y)=\left(-\frac{3}{2}, 0\right)
$$

Plug in the point into the inequality of the region to see if it satisfies it: $\frac{9}{4}+2(0)=\frac{9}{4} \leq 4$ indeed. So the critical point is within the region. We can also sketch the region and the critical point:

Now for the boundary, we use Lagrange multipliers by defining the constraint as $g(x, y)=x^{2}+2 y^{2}=4$:

$$
\nabla f=\lambda \nabla g \quad \Longrightarrow \quad\langle 2 x+3,-2 y\rangle=\lambda\langle 2 x, 4 y\rangle \quad \Longrightarrow \quad\left\{\begin{array}{l}
2 x+3=2 \lambda x \\
-2 y=4 \lambda y
\end{array}\right.
$$

The second equation has two solutions:

- either $y=0$ then from the constraint $x^{2}=4$ so $x= \pm 2$;
- or $\lambda=-\frac{1}{2}$ then from the first equation $2 x+3=-x$ so $x=-1$ which in turns when putting it into the constraint gives $1+2 y^{2}=4$ so $y= \pm \sqrt{\frac{3}{2}}$
We now put all these points into a table and evaluate the function value for each:

x	y	$f(x, y)$	
$-\frac{3}{2}$	0	$-\frac{9}{4}$	
2	0	10	absolute maximum
-2	0	-2	
-1	$\pm \sqrt{\frac{3}{2}}$	$-\frac{7}{2}$	absolute minimum

9. Fully SET UP bounds and integrand in polar coordinates to represent the volume of the solid bounded by the cone $z=2-\sqrt{x^{2}+y^{2}}$ and the inverted paraboloid $z=8-x^{2}-y^{2}$. DO NOT evaluate.
Solution: Let's start with a picture:

The inverted cone $z=2-r$ (with $r \geq 0$) is below and the inverted paraboloid $z=8-r^{2}$ is above. The base or shadow R in the $x y$-plane is a disk with radius satisfying

$$
2-r=8-r^{2} \quad \Longleftrightarrow r^{2}-r-6=0 \quad \Longleftrightarrow r=-2,3
$$

So here $r=3$ and so the volume is:

$$
\begin{aligned}
V & =\iint_{R}\left(8-x^{2}-y^{2}\right)-\left(2-\sqrt{x^{2}+y^{2}}\right) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{3}\left[\left(8-r^{2}\right)-(2-r)\right] r d r d \theta \\
\Rightarrow \quad V & =\int_{0}^{2 \pi} \int_{0}^{2} 6 r+r^{2}-r^{3} d r d \theta
\end{aligned}
$$

10. Let

$$
f(x, y)=x^{2} y+\sin (\pi y)
$$

(a) Find the directional derivative of f at $(1,-1 / 2)$ in the direction of $\langle-3,4\rangle$.

Solution: First compute the gradient:

$$
\nabla f(x, y)=\left\langle 2 x y, x^{2}+\pi \cos (\pi y)\right\rangle .
$$

Now the direction we consider is

$$
\mathbf{u}=\frac{\langle-3,4\rangle}{\|\langle-3,4\rangle\|}=\frac{\langle-3,4\rangle}{\sqrt{9+16}}=\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle
$$

Therefore,

$$
D_{\mathbf{u}} f(1,-1 / 2)=\nabla f(1,-1 / 2) \cdot \mathbf{u}=\langle-1,1\rangle \cdot\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{3}{5}+\frac{4}{5}=\frac{7}{5}
$$

(b) What is the maximum rate of change of f at the point $(1,-1 / 2)$?

Solution:

$$
\|\nabla f(1,-1 / 2)\|=\|\langle-1,1\rangle\|=\sqrt{1+1}=\sqrt{2}
$$

