
MATH253X-UX1

Spring 2019
Midterm Exam 2 Name: Answer Key

Instructions. You have 120 minutes. Closed book, closed notes, no calculator. Show all your work in order
to receive full credit.

1. Show that lim
(x,y)→(−2,1)

x+ y + 1

xy + 2
does not exist.

Solution: Setting x = −2 and letting y → 1 to approach (−2, 1) along the line (−2, y), we see

lim
y→1

y − 1

−2y + 2
= −1

2
. Setting y = 1 and letting x → −2 to approach (−2, 1) along the line (x, 1), we see

lim
x→−2

x+ 2

x+ 2
= 1. Since these limits are different, the original multivariable limit does not exist.

2. Let w =
xy

x− z
.

(a) Verify that w satisfies the partial differential equation xwx + xwz = ywy.

Solution: The first partial derivatives are:

wx =
y(x− z)− xy(1)

(x− z)2
=

−yz

(x− z)2
, wy =

x

x− z
, wz =

xy

(x− z)2

And we have:

xwx + xwz =
−xyz

(x− z)2
+

x2y

(x− z)2
=

xy(−z + x)

(x− z2)
=

xy

x− z
= y

x

x− z
= ywy X

(b) Use the appropriate chain rule to find ws for (s, t) = (2, 1) if x = s2t, y = t2 − s, z = 3t.

Solution: For (s, t) = (2, 1) we have (x, y, z) = (22(1), 12 − 2, 3(1)) = (4,−1, 3) and:

ws = wxxs + wyys + wzzs =
−yz

(x− z)2
(2st) +

x

x− z
(−1) +

xy

(x− z)2
(0)

⇒ ws

∣∣∣
(s,t)=(2,1)

=
−(−1)3

(4− 3)2
(2(2)(1)) +

4

4− 3
(−1) + 0 = 12− 4 = 8

3. Consider the surface z =
2

3
x

3
2 + 2y over the rectangular region R = [1, 4]× [0, 1].

(a) Compute the volume under the surface and over R.

Solution:

V =

∫ 4

1

∫ 1

0

2

3
x

3
2 + 2y dy dx =

∫ 4

1

[
2

3
x

3
2 y + y2

]1
0

dx

=

∫ 4

1

2

3
x

3
2 + 1 dx =

[
2

3

(
2

5

)
x

5
2 + x

]4
1

=
4
(
25
)

15
+ 4− 4

15
− 1 =

4(32− 1)

15
+ 3 =

124 + 45

15
=

169

15



MATH253X-UX1/MT2 – Page 2 of 5 –

(b) Compute the surface area of z =
2

3
x

3
2 + 2y over the region R.

Solution: We have zx = 2
3

(
3
2

)
x

1
2 =

√
x and zy = 2 so:

SA =

∫ 4

1

∫ 1

0

√
1 + z2x + z2y dy dx =

∫ 4

1

∫ 1

0

√
1 + x+ 4 dy dx

=

∫ 4

1

[
y
√
x+ 5

]1
0
dx =

∫ 4

1

√
x+ 5 dx

=

[
2

3
(x+ 5)

3
2

]4
1

=
2

3
(27− 6

√
6) = 2(9− 2

√
3)

4. Find an equation of the tangent plane at (2, 0, 1) to the surface

x2z − yz2 + y2 = 4.

Solution: Let F (x, y, z) = x2z − yz2 + y2. Then we find

∇F (x, y, z) = 〈2xz,−z2 + 2y, x2 − 2yz〉,

so ∇F (2, 0, 1) = 〈4,−1, 4〉. The tangent plane is thus given by

4(x− 2)− 1(y − 0) + 4(z − 1) = 0,

or
4x− y + 4z = 12 .

5. Let z = ln(xy). Use the total differential to approximate ∆z when moving from the point (1, 2) to the
point (0.98, 2.1).

Solution: Since we’re looking at values of x, y > 0 we can rewrite z = lnx+ ln y so:

∆z ≈ dz = zxdx+ zydy =
dx

x
+

dy

y
=

(0.98− 1)

1
+

2.1− 2

2
= −0.02 + 0.05 = 0.03

6. Assume a planar lamina has density ρ = x and occupies the following region:

(1, 2)

(3, 0)
x

y

1

1

(a) Give two equivalent expressions for the mass of the lamina first setting up bounds and integrand in
dx dy then in dy dx. DO NOT evaluate.

Solution: The first line is y = 2x (or x = y
2 ) and the other is y − 0 = 0−2

3−1 (x − 3) that is y = 3 − x
(or x = 3− y):

m =

∫ 2

0

∫ 3−y

y
2

x dx dy =

∫ 1

0

∫ 2x

0

x dy dx+

∫ 3

1

∫ 3−x

0

x dy dx
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(b) Compute Mx the moment of mass with respect to the x-axis for the lamina.

Solution:

Mx =

∫ 2

0

∫ 3−y

y
2

xy dx dy =

∫ 2

0

[
x2y

2

]x=3−y

x= y
2

dy

=

∫ 2

0

y(3− y)2

2
− y3

8
dy =

∣∣∣∣∣ u = y du = dy

dv = (3− y)2dy v = − (3−y)3

3

∣∣∣∣∣
=

1

2

([
−y(3− y)3

3

]2
0

−
∫ 2

0

− (3− y)3

3
dy

)
−
[
y4

32

]2
0

=
1

2

(
−2

3
+ 0−

[
(3− y)4

12

]2
0

)
− 1

2
+ 0 = −1

3
− 1

2

(
1

12
− 81

12

)
− 1

2

=
80

24
− 5

6
=

20

6
− 5

6
=

15

6
=

5

2

7. Find and classify all critical points of

f(x, y) = x3 + xy2 − 4xy + x+ 1.

Solution: The gradient is

∇f = 〈fx, fy〉 =
〈
3x2 + y2 − 4y + 1, 2xy − 4x

〉
is defined everywhere and when setting it to the zero vector, we get fy = 0 = 2x(y − 2) for:

• either x = 0 then plugging into fx = 0 that means y2 − 4y + 1 = 0 so we get y = 2±
√
3

• or y = 2 then plugging into fx = 0 that means 3x2 − 3 = 0 so x = ±1

Hence we found four critical points: (0, 2±
√
3) , (±1, 2) .

To classify them, we use the Second Partials Test:

fxx = 6x , fyy = 2x , fxy = 2y − 4 ⇒ d(x, y) = 12x2 − 4(y − 2)2

• d(0, 2±
√
3) = −4(3) < 0 so saddle points at (0, 2±

√
3, 1) ;

• d(1, 2) = 12− 0 > 0 and fxx = 6 > 0 so relative minimum at (1, 2) ;

• d(−1, 2) = 12− 0 > 0 and fxx = −6 < 0 so relative maximum at (−1, 2) .

8. Find the absolute minimum and maximum of

f(x, y) = x2 − y2 + 3x

in the region x2 + 2y2 ≤ 4.

Solution: The absolute min/max will happen either at the critical point(s) if in the region or on the
boundary. We have:

∇f = 〈2x+ 3,−2y〉 = −→
0 ⇐⇒ (x, y) =

(
−3

2
, 0

)
Plug in the point into the inequality of the region to see if it satisfies it: 9

4 + 2(0) = 9
4 ≤ 4 indeed. So

the critical point is within the region. We can also sketch the region and the critical point:
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x

y

1

10

Now for the boundary, we use Lagrange multipliers by defining the constraint as g(x, y) = x2 +2y2 = 4:

∇f = λ∇g =⇒ 〈2x+ 3,−2y〉 = λ 〈2x, 4y〉 =⇒

{
2x+ 3 = 2λx

−2y = 4λy

The second equation has two solutions:

• either y = 0 then from the constraint x2 = 4 so x = ±2;

• or λ = − 1
2 then from the first equation 2x+3 = −x so x = −1 which in turns when putting it into

the constraint gives 1 + 2y2 = 4 so y = ±
√

3
2

We now put all these points into a table and evaluate the function value for each:

x y f(x, y)

− 3
2 0 − 9

4

2 0 10 absolute maximum

−2 0 −2

−1 ±
√

3
2

− 7
2 absolute minimum

9. Fully SET UP bounds and integrand in polar coordinates to represent the volume of the solid bounded
by the cone z = 2−

√
x2 + y2 and the inverted paraboloid z = 8− x2 − y2. DO NOT evaluate.

Solution: Let’s start with a picture:

x

y

z

The inverted cone z = 2− r (with r ≥ 0) is below and the inverted paraboloid z = 8− r2 is above. The
base or shadow R in the xy-plane is a disk with radius satisfying

2− r = 8− r2 ⇐⇒ r2 − r − 6 = 0 ⇐⇒ r = −2, 3
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So here r = 3 and so the volume is:

V =

∫∫
R

(8− x2 − y2)− (2−
√

x2 + y2) dA

=

∫ 2π

0

∫ 3

0

[
(8− r2)− (2− r)

]
r dr dθ

⇒ V =

∫ 2π

0

∫ 2

0

6r + r2 − r3 dr dθ

10. Let
f(x, y) = x2y + sin(πy).

(a) Find the directional derivative of f at (1,−1/2) in the direction of 〈−3, 4〉.
Solution: First compute the gradient:

∇f(x, y) =
〈
2xy, x2 + π cos(πy)

〉
.

Now the direction we consider is

u =
〈−3, 4〉

|| 〈−3, 4〉 ||
=

〈−3, 4〉√
9 + 16

=

〈
−3

5
,
4

5

〉
.

Therefore,

Duf(1,−1/2) = ∇f(1,−1/2) · u = 〈−1, 1〉 ·
〈
−3

5
,
4

5

〉
=

3

5
+

4

5
=

7

5
.

(b) What is the maximum rate of change of f at the point (1,−1/2)?

Solution:

‖∇f(1,−1/2)‖ = ‖〈−1, 1〉‖ =
√
1 + 1 =

√
2


