MATH253X-UX1 Midterm Exam 2 Spring 2019

Name:

Instructions. (100 points) You have 120 minutes. Closed book, closed notes, no calculator. *Show all your work* in order to receive full credit.

(6^{pts}) **1.** Show that $\lim_{(x,y)\to(-2,1)} \frac{x+y+1}{xy+2}$ does not exist.

(10^{pts}) **2.** Let $w = \frac{xy}{x-z}$. (a) (4 pts) Verify that w satisfies the partial differential equation $xw_x + xw_z = yw_y$.

(b) (6 pts) Use the appropriate chain rule to find w_s for (s,t) = (2,1) if $x = s^2 t$, $y = t^2 - s$, z = 3t.

(16^{pts}) 3. Consider the surface z = ²/₃x^{³/₂} + 2y over the rectangular region R = [1,4] × [0,1].
(a) (8 pts) Compute the volume under the surface and over R.

(b) (8 pts) Compute the surface area of $z = \frac{2}{3}x^{\frac{3}{2}} + 2y$ over the region R.

 (8^{pts}) 4. Find an equation of the tangent plane at (2,0,1) to the surface

$$x^2z - yz^2 + y^2 = 4$$

(6^{pts}) **5.** Let $z = \ln(xy)$. Use the total differential to approximate Δz when moving from the point (1,2) to the point (0.98, 2.1).

(16^{pts}) **6.** Assume a planar lamina has density $\rho = x$ and occupies the following region:

(a) (8 pts) Give two equivalent expressions for the mass of the lamina first setting up bounds and integrand in dx dy then in dy dx. DO NOT evaluate.

(b) (8 pts) Compute M_x the moment of mass with respect to the x-axis for the lamina.

(12^{pts}) **7.** Find and classify all critical points of

$$f(x,y) = x^3 + xy^2 - 4xy + x + 1.$$

 (10^{pts}) 8. Find the absolute minimum and maximum of

$$f(x,y) = x^2 - y^2 + 3x$$

in the region $x^2 + 2y^2 \le 4$.

(8^{pts}) 9. Fully SET UP bounds and integrand in polar coordinates to represent the volume of the solid bounded by the cone $z = 2 - \sqrt{x^2 + y^2}$ and the inverted paraboloid $z = 8 - x^2 - y^2$. DO NOT evaluate.

(8^{pts}) **10.** Let

$f(x,y) = x^2y + \sin(\pi y).$

(a) (5 pts) Find the directional derivative of f at (1, -1/2) in the direction of $\langle -3, 4 \rangle$.

(b) (3 pts) What is the maximum rate of change of f at the point (1, -1/2)?