Instructions. (100 points) You have 120 minutes. Closed book, closed notes, no calculator. Show all your work in order to receive full credit.
$\left(6^{\text {pts }}\right)$ 1. Show that $\lim _{(x, y) \rightarrow(-2,1)} \frac{x+y+1}{x y+2}$ does not exist.
2. Let $w=\frac{x y}{x-z}$.
(a) (4 pts) Verify that w satisfies the partial differential equation $x w_{x}+x w_{z}=y w_{y}$.
(b) (6 pts) Use the appropriate chain rule to find w_{s} for $(s, t)=(2,1)$ if $x=s^{2} t, y=t^{2}-s, z=3 t$.
$\left(16^{\mathrm{pts}}\right)$ 3. Consider the surface $z=\frac{2}{3} x^{\frac{3}{2}}+2 y$ over the rectangular region $R=[1,4] \times[0,1]$.
(a) $(8 \mathrm{pts})$ Compute the volume under the surface and over R.
(b) (8 pts) Compute the surface area of $z=\frac{2}{3} x^{\frac{3}{2}}+2 y$ over the region R.
4. Find an equation of the tangent plane at $(2,0,1)$ to the surface

$$
x^{2} z-y z^{2}+y^{2}=4
$$

($\left.6^{\text {pts }}\right)$ 5. Let $z=\ln (x y)$. Use the total differential to approximate Δz when moving from the point $(1,2)$ to the point $(0.98,2.1)$.
$\left(16^{\text {pts }}\right)$ 6. Assume a planar lamina has density $\rho=x$ and occupies the following region:

(a) (8 pts) Give two equivalent expressions for the mass of the lamina first setting up bounds and integrand in $d x d y$ then in $d y d x$. DO NOT evaluate.
(b) (8 pts) Compute M_{x} the moment of mass with respect to the x-axis for the lamina.
(12 $\left.2^{\text {pts }}\right)$ 7. Find and classify all critical points of

$$
f(x, y)=x^{3}+x y^{2}-4 x y+x+1
$$

$\left(10^{\text {pts }}\right)$ 8. Find the absolute minimum and maximum of

$$
f(x, y)=x^{2}-y^{2}+3 x
$$

in the region $x^{2}+2 y^{2} \leq 4$.
($\left.8^{\text {pts }}\right)$ 9. Fully SET UP bounds and integrand in polar coordinates to represent the volume of the solid bounded by the cone $z=2-\sqrt{x^{2}+y^{2}}$ and the inverted paraboloid $z=8-x^{2}-y^{2}$. DO NOT evaluate.
($\left.8^{\text {pts }}\right)$ 10. Let

$$
f(x, y)=x^{2} y+\sin (\pi y)
$$

(a) (5 pts) Find the directional derivative of f at $(1,-1 / 2)$ in the direction of $\langle-3,4\rangle$.
(b) (3 pts) What is the maximum rate of change of f at the point $(1,-1 / 2)$?

