Instructions. You have 120 minutes. Closed book, closed notes, and no calculators allowed. Show all your work in order to receive full credit.

1. Consider the point $A(1,-2,0)$ and the line

$$
x-2=\frac{y+1}{3}=\frac{z-1}{2}
$$

(a) Find the equation of the plane containing A and the line.

Solution: The line direction $\vec{u}=\langle 1,3,2\rangle$ is in the plane as is $\overrightarrow{A B}$ for any B one the line; take $B(2,-1,1)$. Then $\overrightarrow{A B}=\langle 2-1,-1+2,1-0\rangle=\langle 1,1,1\rangle$. So a normal vector to the plane is:

$$
\vec{u} \times \overrightarrow{A B}=\langle 1,3,2\rangle \times\langle 1,1,1\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 3 & 2 \\
1 & 1 & 1
\end{array}\right|=\langle 3(1)-1(2),-(1(1)-1(2)), 1(1)-1(3)\rangle=\langle 1,1,-2\rangle
$$

and so the equation of the plane is:

$$
(x-1)+(y+2)-2(z-0)=0 \quad \text { or equivalently } \quad x+y-2 z+1=0 \text {. }
$$

(b) Find the distance from A to the line.

Solution:

$$
d=\frac{\|\vec{u} \times \overrightarrow{A B}\|}{\|\vec{u}\|}=\frac{\|\langle 1,1,-2\rangle\|}{\|\langle 1,3,2\rangle\|}=\frac{\sqrt{1+1+4}}{\sqrt{1+9+4}}=\sqrt{\frac{6}{14}}=\sqrt{\frac{3}{7}}=\frac{\sqrt{21}}{7}
$$

2. Consider the space curve parametrized by:

$$
\mathbf{r}(t)=\langle\cos t, \cos t+3 \sin t, 3 \sin t\rangle
$$

(a) Show that $\mathbf{r}(t)$ is a parametrization of the intersection of the surfaces $x-y+z=0$ and $9 x^{2}+z^{2}=9$. Solution: We need to verify that the components of $\mathbf{r}(t)$ satisfy the equations of the surfaces at all times t :

$$
x-y+z=(\cos t)-(\cos t+3 \sin t)+(3 \sin t)=0
$$

and

$$
9 x^{2}+z^{2}=9(\cos t)^{2}+(3 \sin t)^{2}=9 \cos ^{2} t+9 \sin ^{2} t=9 \quad \checkmark
$$

(b) Show that the tangent line to $\mathbf{r}(t)$ at $t=\frac{3 \pi}{4}$ is parallel to $\langle 1,4,3\rangle$.

Solution:

$$
\mathbf{r}^{\prime}(t)=\langle-\sin t,-\sin t+3 \cos t, 3 \cos t\rangle
$$

and so the tangent line at $t=\frac{3 \pi}{4}$ has direction:

$$
\begin{aligned}
\mathbf{r}^{\prime}\left(\frac{3 \pi}{4}\right) & =\left\langle-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}+3\left(-\frac{\sqrt{2}}{2}\right),-3 \frac{\sqrt{2}}{2}\right\rangle \\
& =\left\langle-\frac{\sqrt{2}}{2},-\frac{4 \sqrt{2}}{2},-3 \frac{\sqrt{2}}{2}\right\rangle=-\frac{\sqrt{2}}{2}\langle 1,4,3\rangle
\end{aligned}
$$

Since the vectors are scalar multiples of each other, then by definition, the tangent line and $\langle 1,4,3\rangle$ are parallel .
3. Rewrite the following equation in standard form then sketch the surface.

$$
9 x^{2}+36 y^{2}+4 z^{2}-18 x+8 z=23
$$

Solution:

$$
\begin{aligned}
9\left(x^{2}-2 x\right)+36 y^{2}+4\left(z^{2}+2 z\right) & =23 \\
\Longleftrightarrow 9\left[(x-1)^{2}-1\right]+36 y^{2}+4\left[(z+1)^{2}-1\right] & =23 \\
\Longleftrightarrow 9(x-1)^{2}-9+36 y^{2}+4(z+1)^{2}-4 & =23 \\
\Longleftrightarrow 9(x-1)^{2}+36 y^{2}+4(z+1)^{2} & =36 \\
\Longleftrightarrow \frac{(x-1)^{2}}{4}+y^{2}+\frac{(z+1)^{2}}{9}=1 &
\end{aligned}
$$

The surface is an ellipsoid.

4. Consider the following planes.
plane 1: $\quad x-y+4 z=5$
plane 2: $\quad 3 x-y-z=2$
(a) Show that the planes are orthogonal.

Solution: We verify that the dot product of the normal vectors is zero:

$$
\langle 1,-1,4\rangle \cdot\langle 3,-1,-1\rangle=1(3)-(-1)+4(-1)=0
$$

(b) Find parametric equations for the line of intersection of the two planes.

Solution: The cross product of the norm vectors is (parallel to) the direction of the line of intersection:

$$
\langle 1,-1,4\rangle \times\langle 3,-1,-1\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -1 & 4 \\
3 & -1 & -1
\end{array}\right|=\langle-(-1)+4,-(1(-1)-3(4)), 1(-1)-3(-1)\rangle=\langle 5,13,2\rangle
$$

Now to find a point on that line, set $x=0$ for example and we are left with solving the system:

$$
\left\{\begin{array} { l }
{ - y + 4 z = 5 } \\
{ - y - z = 2 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ - y + 4 z = 5 } \\
{ 5 z = 3 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
y=4\left(\frac{3}{5}\right)-5 \\
z=\frac{3}{5}
\end{array}\right.\right.\right.
$$

so we have the point $\left(0,-\frac{13}{5}, \frac{3}{5}\right)$ and hence parametric equations are:

$$
\left\{\begin{array}{l}
x=5 t \\
y=-\frac{13}{5}+13 t \\
z=\frac{3}{5}+2 t
\end{array}\right.
$$

5. Consider the following space curves:

$$
\mathbf{r}_{\mathbf{1}}(t)=\left\langle 2 t-3, t^{2}-5 t+3, t^{3}-2\right\rangle \quad, \quad \mathbf{r}_{\mathbf{2}}(t)=\left\langle-t+2, t-4,3 t^{2}+2 t+1\right\rangle
$$

(a) Find any intersection point(s) of the space curves.

Solution: Switch the parameter to s in the second curve and equate the components:

$$
\left\{\begin{array} { l }
{ 2 t - 3 = - s + 2 } \\
{ t ^ { 2 } - 5 t + 3 = s - 4 } \\
{ t ^ { 3 } - 2 = 3 s ^ { 2 } + 2 s + 1 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ s = 5 - 2 t } \\
{ t ^ { 2 } - 5 t + 3 = (5 - 2 t) - 4 } \\
{ t ^ { 3 } - 2 = 3 s ^ { 2 } + 2 s + 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
s=5-2 t \\
t^{2}-3 t+2=0 \\
t^{3}-2=3 s^{2}+2 s+1
\end{array}\right.\right.\right.
$$

From the second equation, we get two possible values of t and thus from the first equation corresponding values of s :

- if $t=1$ then $s=3$ and the third equation becomes:

$$
1-2=3(9)+2(3)+1 \quad \Longleftrightarrow \quad-1=34
$$

This is not true so no intersection point from this pair of values.

- if $t=2$ then $s=1$ and the third equation becomes:

$$
8-2=3+2+1 \quad \Longleftrightarrow \quad 6=6
$$

This is true so we have one point of intersection:

$$
\mathbf{r}_{1}(2)=\mathbf{r}_{\mathbf{2}}(1)=\langle 1,-3,6\rangle
$$

that is the point $(1,-3,6)$.
(b) Find the unit tangent vector $\mathbf{T}_{\mathbf{1}}(t)$ for the space curve $\mathbf{r}_{\mathbf{1}}(t)$ at time t.

Solution:

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{1}}^{\prime}(t)=\left\langle 2,2 t-5,3 t^{2}\right\rangle \quad \Longrightarrow \quad\left\|\mathbf{r}_{\mathbf{1}}^{\prime}(t)\right\|=\sqrt{4+(2 t-5)^{2}+9 t^{4}}=\sqrt{9 t^{4}+4 t^{2}-20 t+29} \\
& \Longrightarrow \mathbf{T}_{\mathbf{1}}(t)=\frac{\left\langle 2,2 t-5,3 t^{2}\right\rangle}{\sqrt{9 t^{4}+4 t^{2}-20 t+29}}
\end{aligned}
$$

(c) Find the curvature of the space curve $\mathbf{r}_{\mathbf{2}}(t)$ at $t=-1$.

Solution:

$$
\begin{aligned}
\mathbf{r}_{\mathbf{2}}^{\prime}(t) & =\langle-1,1,6 t+2\rangle \quad \Rightarrow \quad \mathbf{r}_{\mathbf{2}}^{\prime}(-1)=\langle-1,1,-4\rangle \\
\mathbf{r}_{\mathbf{2}}^{\prime \prime}(t) & =\langle 0,0,6\rangle \quad \Rightarrow \quad \mathbf{r}_{\mathbf{2}}^{\prime \prime}(-1)=\langle 0,0,6\rangle \\
\mathbf{r}_{\mathbf{2}}^{\prime} \times\left.\mathbf{r}_{\mathbf{2}}^{\prime \prime}\right|_{t=-1} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 1 & -4 \\
0 & 0 & 6
\end{array}\right|=\langle 1(6)-0,-(-1(6)-0),-1(0)-0\rangle=\langle 6,6,0\rangle=6\langle 1,1,0\rangle \\
\kappa(-1) & =\left.\frac{\left\|\mathbf{r}_{\mathbf{2}}^{\prime} \times \mathbf{r}_{\mathbf{2}}^{\prime \prime}\right\|}{\left\|\mathbf{r}_{\mathbf{2}}^{\prime}\right\|^{3}}\right|_{t=-1}=\frac{\|6\langle 1,1,0\rangle\|}{\|\langle-1,1,-4\rangle\|^{3}}=\frac{6 \sqrt{1+1}}{[\sqrt{1+1+16}]^{3}}=\frac{6 \sqrt{2}}{18 \sqrt{18}}=\frac{1}{9}
\end{aligned}
$$

6. For each equation, name the type of surface, sketch the given trace in 2D then the surface in 3D.
(a) $x^{2}-y^{2}+4 z^{2}=0$
Type of surface: \qquad elliptic cone
Solution:

(b) $x=y^{2}+z^{2}$

Type of surface: \qquad
Solution:

(c) $x^{2}+y^{2}=z^{2}-3$

Type of surface: \qquad hyperboloid of two sheets

trace: $z=2$

7. Let $\mathbf{a}=\langle-1,3, c\rangle$ and $\mathbf{b}=\langle 2,1,4\rangle$.
(a) For what value(s) of c will the angle between \mathbf{a} and \mathbf{b} be obtuse (i.e. greater than 90°)? Solution: The angle is obtuse if the dot product is negative:

$$
\langle-1,3, c\rangle \cdot\langle 2,1,4\rangle<0 \quad \Longleftrightarrow \quad-1(2)+3(1)+4 c<0 \quad \Longleftrightarrow \quad c<-\frac{1}{4}
$$

(b) Sketch \mathbf{a} and \mathbf{b} in standard position for $c=-1$.

Solution:

(c) Find the vector projection of \mathbf{b} along \mathbf{a} for $c=-1$ and sketch it on the above set of axes (make sure to label it).
Solution:

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a}=\frac{\langle-1,3,-1\rangle \cdot\langle 2,1,4\rangle}{\|\langle-1,3,-1\rangle\|^{2}} \mathbf{a}=\frac{-1(2)+3(1)-1(4)}{1+9+1} \mathbf{a}=-\frac{3}{11} \mathbf{a}=\left\langle\frac{3}{11},-\frac{9}{11}, \frac{3}{11}\right\rangle
$$

8. Consider a particle moving in space with velocity (measured in m / s):

$$
\vec{v}(t)=\left(t^{2}-4\right) \vec{\imath}+3 \vec{\jmath}+3 t \sqrt{2} \vec{k} .
$$

(a) Find the position vector $\vec{r}(t)$ of the particle at time t if $\vec{r}(1)=2 \vec{\imath}-\vec{\jmath}$.

Solution:

$$
\begin{aligned}
& \vec{r}(t)=\int \vec{v}(t) d t=\left(\frac{t^{3}}{3}-4 t\right) \vec{\imath}+3 t \vec{\jmath}+\frac{3 t^{2} \sqrt{2}}{2} \vec{k}+\vec{c} \\
& 2 \vec{\imath}-\vec{\jmath}= \vec{r}(1)=-\frac{11}{3} \vec{\imath}+3 \vec{\jmath}+\frac{3 \sqrt{2}}{2} \vec{k}+\vec{c} \\
& \Longrightarrow \quad \vec{c}=\left(2+\frac{11}{3}\right) \vec{\imath}+(-1-3) \vec{\jmath}-\frac{3 \sqrt{2}}{2} \vec{k}=\frac{17}{3} \vec{\imath}-4 \vec{\jmath}-\frac{3 \sqrt{2}}{2} \vec{k} \\
& \Longrightarrow \vec{r}(t)=\left(\frac{t^{3}}{3}-4 t+\frac{17}{3}\right) \vec{\imath}+(3 t-4) \vec{\jmath}+\frac{3\left(t^{2}-1\right) \sqrt{2}}{2} \vec{k}
\end{aligned}
$$

Recall the velocity (in m / s):

$$
\vec{v}(t)=\left(t^{2}-4\right) \vec{\imath}+3 \vec{\jmath}+3 t \sqrt{2} \vec{k} .
$$

(b) Find the distance traveled by the particle (i.e. the arc length) between $t=0 \mathrm{~s}$ and $t=3 \mathrm{~s}$. Solution:

$$
\begin{aligned}
s(3) & =\int_{0}^{3}\|\vec{v}(t)\| d t=\int_{0}^{3} \sqrt{\left(t^{2}-4\right)^{2}+9+18 t^{2}} d t \\
& =\int_{0}^{3} \sqrt{t^{4}-8 t^{2}+16+9+18 t^{2}} d t \\
& =\int_{0}^{3} \sqrt{t^{4}+10 t^{2}+25} d t \\
& =\int_{0}^{3} \sqrt{\left(t^{2}+5\right)^{2}} d t=\int_{0}^{3} t^{2}+5 d t \\
& =\left[\frac{t^{3}}{3}+5 t\right]_{0}^{3}=9+15-0=24 \mathrm{~m}
\end{aligned}
$$

(c) Find the tangential component of the acceleration at time t.

Solution: The acceleration is:

$$
\vec{a}(t)=2 t \vec{\imath}+3 \sqrt{2} \vec{k}
$$

and so the tangential component of acceleration is:

$$
\begin{aligned}
a_{\vec{T}} & =\frac{\vec{a} \cdot \vec{v}}{\|\vec{v}\|}=\frac{\langle 2 t, 0,3 \sqrt{2}\rangle \cdot\left\langle t^{2}-4,3,3 t \sqrt{2}\right\rangle}{t^{2}+5} \\
& =\frac{2 t\left(t^{2}-4\right)+0(3)+3 \sqrt{2}(3 t \sqrt{2})}{t^{2}+5}=\frac{2 t^{3}-8 t+18 t}{t^{2}+5} \\
& =\frac{2 t^{3}+10 t}{t^{2}+5}=2 t
\end{aligned}
$$

9. Throughout this problem assume no friction, use $10 \mathrm{~m} / \mathrm{s}^{2}$ as an approximation for the acceleration due to gravity, and don't forget units in your answers. We will consider an ice block of mass 30 kg .
(a) The ice block is brought down along a ramp between P and Q which is at a 45° angle with the horizontal. Find the work done by gravity to move the block down the incline if $\|\overrightarrow{P Q}\|=20 \mathrm{~m}$.

Solution:

Set $u p \mathbf{G}=\langle 0,-30(10)\rangle=\langle 0,-300\rangle$
and $\overrightarrow{P Q}=\left\langle 20 \cos 45^{\circ},-20 \sin 45^{\circ}\right\rangle=\langle 10 \sqrt{2},-10 \sqrt{2}\rangle$.
Then the work is:

$$
W=\mathbf{G} \cdot \overrightarrow{P Q}=\langle 0,-300\rangle \cdot\langle 10 \sqrt{2},-10 \sqrt{2}\rangle=3000 \sqrt{2} \mathrm{~J}
$$

(b) Find the direction $(\odot$ or $\otimes)$ and the magnitude of the torque when the weight of the ice block is used at S to rotate an axis placed at R if $\|\overrightarrow{R S}\|=6 \mathrm{~m}$ and $\overrightarrow{R S}$ is at a 60° angle with the horizontal.

Solution:

$$
\text { Since } \vec{\tau}=\overrightarrow{R S} \times \mathbf{G}, \text { by the right hand rule, } \text { the direction of the torque is } \otimes
$$

And we have $\mathbf{G}=-300 \mathbf{j}=-300\langle 0,1,0\rangle$ and $\overrightarrow{R S}=\left\langle 6 \cos 60^{\circ}, 6 \sin 60^{\circ}, 0\right\rangle=\langle 3,3 \sqrt{3}, 0\rangle=3\langle 1, \sqrt{3}, 0\rangle$. Therefore,

$$
\vec{\tau}=3(-300)\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & \sqrt{3} & 0 \\
0 & 1 & 0
\end{array}\right|=-900\langle 0,0,1\rangle=-900 \mathbf{k}
$$

and so its magnitude is 900 Nm .
10. A golf ball takes off from the ground in "Calculus III conditions" ${ }^{1}$ with an initial speed of $200 \mathrm{ft} / \mathrm{s}$ and at an angle of 50° with the horizontal on a flat terrain. Show that the total horizontal distance traveled by the golf ball is

$$
x_{\max }=1250 \sin 100^{\circ} \mathrm{ft}
$$

Solution: The initial velocity is

$$
\mathbf{v}(0)=\left\langle 200 \cos 50^{\circ}, 200 \sin 50^{\circ}\right\rangle
$$

and since the initial position is $\mathbf{r}(0)=\langle 0,0\rangle$, we have:

$$
\begin{aligned}
\mathbf{a}(t) & =\langle 0,-32\rangle \quad \Longrightarrow \quad \mathbf{v}(t)-\mathbf{v}(0)=\int_{0}^{t}\langle 0,-32\rangle d u=\left.\langle 0,-32 u\rangle\right|_{u=0} ^{u=t}=\langle 0,-32 t\rangle \\
\Longleftrightarrow \quad \mathbf{v}(t) & =\left\langle 200 \cos 50^{\circ}, 200 \sin 50^{\circ}\right\rangle+\langle 0,-32 t\rangle=\left\langle 200 \cos 50^{\circ}, 200 \sin 50^{\circ}-32 t\right\rangle \\
\Longrightarrow \quad \mathbf{r}(t)-\mathbf{r}(0) & =\int_{0}^{t}\left\langle 200 \cos 50^{\circ}, 200 \sin 50^{\circ}-32 u\right\rangle d u=\left.\left\langle 200 u \cos 50^{\circ}, 200 u \sin 50^{\circ}-16 u^{2}\right\rangle\right|_{u=0} ^{u=t} \\
\Longrightarrow \quad \mathbf{r}(t) & =\left\langle 200 t \cos 50^{\circ}, 200 t \sin 50^{\circ}-16 t^{2}\right\rangle
\end{aligned}
$$

Now we reach $x_{\max }$ when the y-component is back to zero (for some $t_{1}>0$): $\mathbf{r}\left(t_{1}\right)=\left\langle x_{\max }, 0\right\rangle$. We solve for t_{1} and $x_{\max }$. Starting with the y-component:

$$
200 t \sin 50^{\circ}=16 t^{2} \quad \Longleftrightarrow \quad t=0 \quad \text { or } \quad t=12.5 \sin 50^{\circ}
$$

and since $t=0$ just gives $\mathbf{r}(0)=\langle 0,0\rangle$, here we have $t_{1}=12.5 \sin 50^{\circ}$ and now we solve from the x-component:

$$
x_{\max }=200\left(12.5 \sin 50^{\circ}\right) \cos 50^{\circ}=100(12.5) \sin 100^{\circ}=1250 \sin 100^{\circ} \mathrm{ft}
$$

[^0]
[^0]: ${ }^{1}$ I.e. the acceleration is constant and only due to gravity at $32 \mathrm{ft} / \mathrm{s}^{2}$. That is we ignore ball spin, air resistance, etc.

