Instructions. (100 points) You have 120 minutes. Closed book, closed notes, and no calculators allowed. Show all your work in order to receive full credit.

1. Consider the point $A(1,-2,0)$ and the line

$$
x-2=\frac{y+1}{3}=\frac{z-1}{2}
$$

(a) (4 pts) Find the equation of the plane containing A and the line.
(b) (3pts) Find the distance from A to the line.
2. Consider the space curve parametrized by:

$$
\mathbf{r}(t)=\langle\cos t, \cos t+3 \sin t, 3 \sin t\rangle
$$

(a) (4 pts) Show that $\mathbf{r}(t)$ is a parametrization of the intersection of the surfaces $x-y+z=0$ and $9 x^{2}+z^{2}=9$.
(b) (4 pts) Show that the tangent line to $\mathbf{r}(t)$ at $t=\frac{3 \pi}{4}$ is parallel to $\langle 1,4,3\rangle$.
($\left.6^{\text {pts }}\right)$ 3. Rewrite the following equation in standard form then sketch the surface.

$$
9 x^{2}+36 y^{2}+4 z^{2}-18 x+8 z=23
$$

$\left(8^{\mathrm{pts}}\right)$
4. Consider the following planes.

$$
\begin{array}{ll}
\text { plane 1: } & x-y+4 z=5 \\
\text { plane 2: } & 3 x-y-z=2
\end{array}
$$

(a) (2 pts) Show that the planes are orthogonal.
(b) (6 pts) Find parametric equations for the line of intersection of the two planes.
$\left(15^{\mathrm{pts}}\right)$
5. Consider the following space curves:

$$
\mathbf{r}_{\mathbf{1}}(t)=\left\langle 2 t-3, t^{2}-5 t+3, t^{3}-2\right\rangle \quad, \quad \mathbf{r}_{\mathbf{2}}(t)=\left\langle-t+2, t-4,3 t^{2}+2 t+1\right\rangle
$$

(a) (6 pts) Find any intersection point(s) of the space curves.
(b) (4 pts) Find the unit tangent vector $\mathbf{T}_{\mathbf{1}}(t)$ for the space curve $\mathbf{r}_{\mathbf{1}}(t)$ at time t.
(c) (5 pts) Find the curvature of the space curve $\mathbf{r}_{\mathbf{2}}(t)$ at $t=-1$.
$\left(15^{\text {pts }}\right)$ 6. For each equation, name the type of surface, sketch the given trace in 2 D then the surface in 3D.
(a) (5 pts) $x^{2}-y^{2}+4 z^{2}=0$
Type of surface: \qquad

(b) $(5 \mathrm{pts}) x=y^{2}+z^{2}$

Type of surface: \qquad

(c) $(5 \mathrm{pts}) x^{2}+y^{2}=z^{2}-3$

Type of surface: \qquad

trace: $z=2$

($\left.9^{\text {pts }}\right)$
7. Let $\mathbf{a}=\langle-1,3, c\rangle$ and $\mathbf{b}=\langle 2,1,4\rangle$.
(a) (2 pts) For what value(s) of c will the angle between \mathbf{a} and \mathbf{b} be obtuse (i.e. greater than 90°)?
(b) (3 pts) Sketch a and \mathbf{b} in standard position for $c=-1$.

(c) (4 pts) Find the vector projection of \mathbf{b} along \mathbf{a} for $c=-1$ and sketch it on the above set of axes (make sure to label it).
$\left(15^{\text {pts }}\right)$
8. Consider a particle moving in space with velocity (measured in m / s):

$$
\vec{v}(t)=\left(t^{2}-4\right) \vec{\imath}+3 \vec{\jmath}+3 t \sqrt{2} \vec{k} .
$$

(a) (6 pts$)$ Find the position vector $\vec{r}(t)$ of the particle at time t if $\vec{r}(1)=2 \vec{\imath}-\vec{\jmath}$.

Recall the velocity (in m/s):

$$
\vec{v}(t)=\left(t^{2}-4\right) \vec{\imath}+3 \vec{\jmath}+3 t \sqrt{2} \vec{k}
$$

(b) (6 pts) Find the distance traveled by the particle (i.e. the arc length) between $t=0 \mathrm{~s}$ and $t=3 \mathrm{~s}$.
(c) (3pts) Find the tangential component of the acceleration at time t.
($\left.9^{\text {pts }}\right)$ 9. Throughout this problem assume no friction, use $10 \mathrm{~m} / \mathrm{s}^{2}$ as an approximation for the acceleration due to gravity, and don't forget units in your answers. We will consider an ice block of mass 30 kg .
(a) (4 pts) The ice block is brought down along a ramp between P and Q which is at a 45° angle with the horizontal. Find the work done by gravity to move the block down the incline if $\|\overrightarrow{P Q}\|=20 \mathrm{~m}$.

(b) $(5 \mathrm{pts})$ Find the direction $(\odot$ or $\otimes)$ and the magnitude of the torque when the weight of the ice block is used at S to rotate an axis placed at R if $\|\overrightarrow{R S}\|=6 \mathrm{~m}$ and $\overrightarrow{R S}$ is at a 60° angle with the horizontal.

($\left.8^{\text {pts }}\right)$ 10. A golf ball takes off from the ground in "Calculus III conditions" ${ }^{1}$ with an initial speed of $200 \mathrm{ft} / \mathrm{s}$ and at an angle of 50° with the horizontal on a flat terrain. Show that the total horizontal distance traveled by the golf ball is

$$
x_{\max }=1250 \sin 100^{\circ} \mathrm{ft}
$$

[^0]
[^0]: ${ }^{1}$ I.e. the acceleration is constant and only due to gravity at $32 \mathrm{ft} / \mathrm{s}^{2}$. That is we ignore ball spin, air resistance, etc.

