Instructions. You have 60 minutes. Closed book, closed notes, no calculator. Show all your work in order to receive full credit.

1. Show that $\lim _{(x, y) \rightarrow(2,-1)} \frac{x y+2}{x^{2}+4 y}$ does not exist.

Solution: Setting $x=2$ and letting $y \rightarrow-1$ to approach $(2,-1)$ along the line $(2, y)$, we see $\lim _{y \rightarrow-1} \frac{2 y+2}{4+4 y}=$ $\frac{1}{2}$. Setting $y=-1$ and letting $x \rightarrow 2$ to approach $(2,-1)$ along the line $(x,-1)$, we see $\lim _{x \rightarrow 2} \frac{2-x}{x^{2}-4}=-\frac{1}{4}$. Since these limits are different, the original multivariable limit does not exist.
2. Consider the function $z=f(x, y)=x^{2}-4 y^{2}$.
(a) Sketch the level curve $z=4$.

Solution:

(b) Use Lagrange multipliers to find the absolute maximum $z_{\text {max }}$ of $f$ on the line $2 x+y=15$.

Solution: Define $g(x, y)=2 x+y$. Then we must solve (along with the constraint $g(x, y)=15$ ):

$$
\nabla f=\lambda \nabla g \quad \Longleftrightarrow \quad\langle 2 x,-8 y\rangle=\lambda\langle 2,1\rangle \quad \Longleftrightarrow\left\{\begin{array}{l}
2 x=2 \lambda \\
-8 y=\lambda
\end{array} \Longleftrightarrow \lambda=x=-8 y\right.
$$

Substituting into the constraint, we have:

$$
2(-8 y)+y=15 \quad \Longleftrightarrow \quad y=-1
$$

and so $x=-8(-1)=8$. Thus,

$$
z_{\max }=f(8,-1)=64-4=60 .
$$

(c) What is the geometrical relationship between $2 x+y=15$ and the level curves $z=z_{\max }$ at their intersection?
Solution: Note that the line $2 x+y=15$ can be parametrized by $\langle x, 15-2 x\rangle$ so its direction is $\langle 1,-2\rangle$ and $\nabla g \perp\langle 1,-2\rangle$. But then $\nabla f$ is orthogonal to (the tangent of) the level curve at any point so also at $(8,-1)$ along $z=z_{\max }$. Now since $\nabla f$ and $\nabla g$ are parallel, then so are the line and the tangent to the level curve. They also share the point $(8,-1)$ so
the line $2 x+y=15$ is the tangent to the level curve $z=z_{\max }$ at $(8,-1)$.
3. Consider the double integral:

$$
I=\iint_{R} e^{x^{2}} d A
$$

where $R$ is the triangular region with vertices $(0,0),(1,1)$, and $(1,-1)$.
(a) Write $I$ as an iterated integral in two ways.

Solution: Let's sketch the region $R$ :


We have the lines $y=x, y=-x$ and $x=1$ so the double integral can be written as either of these forms in rectangular coordinates:

$$
I=\int_{0}^{1} \int_{-x}^{x} e^{x^{2}} d y d x=\int_{-1}^{0} \int_{-y}^{1} e^{x^{2}} d x d y+\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y
$$

(b) Compute the integral using the form of your choice.

Solution: Note that we need to use the $d y d x$ order because $e^{x^{2}}$ can not be integrated directly wrt $x$ using elementary functions:

$$
\begin{aligned}
I & =\int_{0}^{1} \int_{-x}^{x} e^{x^{2}} d y d x=\int_{0}^{1}\left[y e^{x^{2}}\right]_{y=-x}^{y=x} d x \\
& =\int_{0}^{1} 2 x e^{x^{2}} d x=\left|\begin{array}{cc}
u=x^{2} & d u=2 x d x \\
x=0 & u=0 \\
x=1 & u=1
\end{array}\right| \\
& =\int_{0}^{1} e^{u} d u=\left[e^{u}\right]_{0}^{1}=e-1
\end{aligned}
$$

4. Find an equation of the tangent plane to the surface

$$
x^{2} y-z^{2}+\ln (x+y)=1
$$

at the point $\left(x_{0}, y_{0}, z_{0}\right)=(-1,2,1)$.
Solution: For $F(x, y, z)=x^{2} y-z^{2}+\ln (x+y)=1$, we find

$$
\nabla F(x, y, z)=\left\langle 2 x y+\frac{1}{x+y}, x^{2}+\frac{1}{x+y},-2 z\right\rangle
$$

so $\nabla F(-1,2,1)=\langle-3,2,-2\rangle$. The tangent plane is thus given by

$$
-3(x+1)+2(y-2)-2(z-1)=0
$$

or

$$
-3 x+2 y-2 z=5
$$

5. Compute the mass $m$ of the planar lamina with density $\rho(x, y)=x^{2} y$ shown below.


Solution: Let's use polar coordinates: $\rho(r \cos \theta, r \sin \theta)=r^{3} \cos ^{2} \theta \sin \theta$ and $R$ will have constant bounds in ( $r, \theta$ ), that is $0 \leq r \leq 1$ and $0 \leq \theta \leq \pi$. Hence

$$
m=\int_{0}^{1} \int_{0}^{\pi} r^{3} \cos ^{2} \theta \sin \theta r d \theta d r=\int_{0}^{1} r^{4}\left[-\frac{\cos ^{3} \theta}{3}\right]_{0}^{\pi} d r=\int_{0}^{1} r^{4}\left(\frac{1}{3}+\frac{1}{3}\right) d r=\frac{2}{3}\left[\frac{r^{5}}{5}\right]_{0}^{1}=\frac{2}{15} .
$$

6. Find and classify all critical points of

$$
f(x, y)=x^{2} y-2 x+4 y^{2} .
$$

Solution: The gradient is

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 2 x y-2, x^{2}+8 y\right\rangle
$$

is defined everywhere and when setting it to the zero vector, we get $f_{x}=0$ if $x y=1$; that means $x, y \neq 0$ and $y=\frac{1}{x}$ so $f_{y}=0$ becomes

$$
x^{2}+\frac{8}{x}=0 \quad \Rightarrow \quad x^{3}+8=0 \quad \Rightarrow \quad x=-2
$$

This in turns means $y=-\frac{1}{2}$. So we have one critical point $\left(-2,-\frac{1}{2}\right)$. To classify it, we use the Second Partials Test:

$$
f_{x x}=2 y \quad, \quad f_{y y}=8 \quad, \quad f_{x y}=2 x \quad \Rightarrow \quad d(x, y)=16 y-4 x^{2}
$$

Now,

$$
d\left(-2,-\frac{1}{2}\right)=-8-16<0 \text { so saddle point at }\left(-2,-\frac{1}{2}, 3\right) \text {. }
$$

7. Fully SET UP bounds and integrands but DO NOT EVALUATE the following double integrals.
(a) the volume below the plane $2 x+4 y+z=4$ in the first octant:

Solution:


Solve for $z=4-2 x-4 y$ for the integrand, then set $z=0$ to get a boundary line in the $x y$-plane, the others being $x=0, y=0$. Finally for the order $d y d x$ set $y=0$ in the line to get the upper constant bound in $x$. Thus we have:

$$
V=\int_{0}^{2} \int_{0}^{1-\frac{x}{2}} 4-2 x-4 y d y d x
$$

(b) the volume of the solid bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and the inverted paraboloid $z=6-x^{2}-y^{2}$ using polar coordinates.

Solution: The cone is below the paraboloid and for the base, we have a disk where the radius can be found using the intersection of the surfaces, i.e. set $\sqrt{x^{2}+y^{2}}=6-x^{2}+y^{2}$ or in polar $r=6-r^{2}$ for $r=\sqrt{x^{2}+y^{2}} \geq 0$. So $r^{2}+r-6=0$ which has for solutions $r=-3,2$ and we keep $r=2$. And so the volume is:

$$
V=\int_{0}^{2} \int_{0}^{2 \pi}\left(6-r^{2}-r\right) r d \theta d r
$$


(c) the surface area of $z=4-x^{2}-y$ above the region $R$ bounded by the graphs of $y=-x, y=2 x-x^{2}$, $x=0$ and $x=1$ as sketched below:

Solution:
The gradient is $\nabla z=\left\langle z_{x}, z_{y}\right\rangle=\langle-2 x,-1\rangle$ so noting that $R$ is vertically simple, we have that the surface area of our surface above $R$ is:

$$
S A=\int_{0}^{1} \int_{-x}^{2 x-x^{2}} \sqrt{4 x^{2}+2} d y d x
$$


8. Let

$$
f(x, y)=\frac{x}{x-y}
$$

(a) Compute the maximum rate of change of $f$ at the point $(1,2)$ and specify a unit vector in the direction where this maximum change occurs.
Solution: The gradient is

$$
\nabla f(x, y)=\left\langle\frac{1(x-y)-x(1)}{(x-y)^{2}}, \frac{x}{(x-y)^{2}}\right\rangle=\left\langle\frac{-y}{(x-y)^{2}}, \frac{x}{(x-y)^{2}}\right\rangle
$$

So the maximum rate of change of $f$ at $(1,2)$ is:

$$
\|\nabla f(1,2)\|=\|\langle-2,1\rangle\|=\sqrt{5}
$$

and a unit direction of greatest increase is

$$
\frac{\nabla f(1,2)}{\|\nabla f(1,2)\|}=\left\langle-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right\rangle
$$

(b) Find the directional derivative of $f$ at $(1,2)$ in the direction of $\mathbf{v}=2 \mathbf{i}+3 \mathbf{j}$.

Solution: The direction we consider is $\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\langle 2 / \sqrt{13}, 3 / \sqrt{13}\rangle$. Then

$$
D_{\mathbf{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\langle-2,1\rangle \cdot\langle 2 / \sqrt{13}, 3 / \sqrt{13}\rangle=-1 / \sqrt{13}
$$

(c) Use the differential $d f$ to find an approximation of $f(1.1,1.95)$.

Solution:

$$
\begin{aligned}
f(1.1,1.95) & \approx f(1,2)+d f \\
& =f(1,2)+f_{x}(1,2)(1.1-1)+f_{y}(1,2)(1.95-2) \\
& =-1-2(0.1)+1(-0.05)=-1.25
\end{aligned}
$$

