Instructions. (100 points) You have 60 minutes. Closed book, closed notes, no calculator. Show all your work in order to receive full credit.
$\left(6^{\mathrm{pts}}\right)$ 1. Show that $\lim _{(x, y) \rightarrow(2,-1)} \frac{x y+2}{x^{2}+4 y}$ does not exist.
2. Consider the function $z=f(x, y)=x^{2}-4 y^{2}$.
(a) (4pts) Sketch the level curve $z=4$.

(b) (8 pts) Use Lagrange multipliers to find the absolute maximum $z_{\max }$ of f on the line $2 x+y=15$.
(c) (2 pts) What is the geometrical relationship between $2 x+y=15$ and the level curves $z=z_{\text {max }}$ at their intersection?
($\left.12^{\text {pts }}\right)$ 3. Consider the double integral:

$$
I=\iint_{R} e^{x^{2}} d A
$$

where R is the triangular region with vertices $(0,0),(1,1)$, and $(1,-1)$.
(a) (6 pts) Write I as an iterated integral in two ways.
(b) (6 pts) Compute the integral using the form of your choice.
($\left.8^{\text {pts }}\right)$ 4. Find an equation of the tangent plane to the surface

$$
x^{2} y-z^{2}+\ln (x+y)=1
$$

at the point $\left(x_{0}, y_{0}, z_{0}\right)=(-1,2,1)$.
$\left(12^{\text {pts }}\right) \quad$. Compute the mass m of the planar lamina with density $\rho(x, y)=x^{2} y$ shown below.

($\left.10^{\text {pts }}\right)$ 6. Find and classify all critical points of

$$
f(x, y)=x^{2} y-2 x+4 y^{2}
$$

7. Fully SET UP bounds and integrands but DO NOT EVALUATE the following double integrals.
(a) (6 pts) the volume below the plane $2 x+4 y+z=4$ in the first octant:

(b) (6 pts) the volume of the solid bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and the inverted paraboloid $z=6-x^{2}-y^{2}$ using polar coordinates.

(c) (8 pts) the surface area of $z=4-x^{2}-y$ above the region R bounded by the graphs of $y=-x$, $y=2 x-x^{2}, x=0$ and $x=1$ as sketched below:

$\left(18^{\text {pts }}\right)$
8. Let

$$
f(x, y)=\frac{x}{x-y}
$$

(a) (6 pts) Compute the maximum rate of change of f at the point $(1,2)$ and specify a unit vector in the direction where this maximum change occurs.
(b) (6 pts) Find the directional derivative of f at $(1,2)$ in the direction of $\mathbf{v}=2 \mathbf{i}+3 \mathbf{j}$.
(c) $(6 \mathrm{pts})$ Use the differential $d f$ to find an approximation of $f(1.1,1.95)$.

