
Lecture Notes:

The Mathematics of Phylogenetics

Elizabeth S. Allman,
John A. Rhodes

IAS/Park City Mathematics Institute
June-July, 2005

University of Alaska Fairbanks
Spring 2009, 2012, 2016

c©2005, Elizabeth S. Allman and John A. Rhodes



ii



Contents

1 Sequences and Molecular Evolution 3

1.1 DNA structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Aligned Orthologous Sequences . . . . . . . . . . . . . . . . . . . 7

2 Combinatorics of Trees I 9

2.1 Graphs and Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Counting Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Metric Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Ultrametric Trees and Molecular Clocks . . . . . . . . . . . . . . 17

2.5 Rooting Trees with Outgroups . . . . . . . . . . . . . . . . . . . 18

2.6 Newick Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Parsimony 25

3.1 The Parsimony Criterion . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 The Fitch-Hartigan Algorithm . . . . . . . . . . . . . . . . . . . 28

3.3 Informative Characters . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Weighted Parsimony . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Recovering Minimal Extensions . . . . . . . . . . . . . . . . . . . 38

3.7 Further Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Combinatorics of Trees II 45

4.1 Splits and Clades . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Refinements and Consensus Trees . . . . . . . . . . . . . . . . . . 49

4.3 Quartets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Supertrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

iii



iv CONTENTS

5 Distance Methods 57

5.1 Dissimilarity Measures . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 An Algorithmic Construction: UPGMA . . . . . . . . . . . . . . 60

5.3 Unequal Branch Lengths . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 The Four-point Condition . . . . . . . . . . . . . . . . . . . . . . 66

5.5 The Neighbor Joining Algorithm . . . . . . . . . . . . . . . . . . 70

5.6 Additional Comments . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Probabilistic Models of DNA Mutation 81

6.1 A first example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Markov Models on Trees . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Jukes-Cantor and Kimura Models . . . . . . . . . . . . . . . . . . 93

6.4 Time-reversible Models . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Model-based Distances 105

7.1 Jukes-Cantor Distance . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Kimura and GTR Distances . . . . . . . . . . . . . . . . . . . . . 110

7.3 Log-det Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Maximum Likelihood 117

8.1 Probabilities and Likelihoods . . . . . . . . . . . . . . . . . . . . 117

8.2 ML Estimators for One-edge Trees . . . . . . . . . . . . . . . . . 123

8.3 Inferring Trees by ML . . . . . . . . . . . . . . . . . . . . . . . . 124

8.4 Efficient ML Computation . . . . . . . . . . . . . . . . . . . . . . 126

8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9 Tree Space 133

9.1 What is Tree Space? . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.2 Moves in Tree Space . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.3 Searching Tree space . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.4 Metrics on Tree Space . . . . . . . . . . . . . . . . . . . . . . . . 142

9.5 Metrics on Metric Tree Space . . . . . . . . . . . . . . . . . . . . 144

9.6 Additional Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10 Rate-variation and Mixture Models 149

10.1 Invariable Sites Models . . . . . . . . . . . . . . . . . . . . . . . . 149

10.2 Rates-Across-Sites Models . . . . . . . . . . . . . . . . . . . . . . 152

10.3 The Covarion Model . . . . . . . . . . . . . . . . . . . . . . . . . 154

10.4 General Mixture Models . . . . . . . . . . . . . . . . . . . . . . . 157

10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



CONTENTS v

11 Consistency and Long Branch Attraction 161
11.1 Statistical Consistency . . . . . . . . . . . . . . . . . . . . . . . . 162
11.2 Parsimony and Consistency . . . . . . . . . . . . . . . . . . . . . 163
11.3 Consistency of Distance Methods . . . . . . . . . . . . . . . . . . 166
11.4 Consistency of Maximum Likelihood . . . . . . . . . . . . . . . . 167
11.5 Performance with Misspecified models . . . . . . . . . . . . . . . 169
11.6 Performance on Finite-length Sequences . . . . . . . . . . . . . . 169
11.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

12 Bayesian Inference 173
12.1 Bayes’ theorem and Bayesian inference . . . . . . . . . . . . . . . 173
12.2 Prior Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 178
12.3 MCMC Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
12.4 Summarizing Posterior Distributions . . . . . . . . . . . . . . . . 181
12.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

13 Gene trees and species trees 185
13.1 Gene Lineages in Populations . . . . . . . . . . . . . . . . . . . . 186
13.2 The Coalescent Model . . . . . . . . . . . . . . . . . . . . . . . . 189
13.3 Coalescent Gene Tree Probabilities . . . . . . . . . . . . . . . . . 194
13.4 The Multispecies Coalescent Model . . . . . . . . . . . . . . . . . 196
13.5 Inferring Species Trees . . . . . . . . . . . . . . . . . . . . . . . . 201
13.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

14 Notation 211

15 Selected Solutions 213

Bibliography 225



vi CONTENTS



Introduction

The basic problem addressed in these notes is the following: Suppose sequences
such as DNA are taken from a number of different organisms. How can we use
them to understand evolutionary relationships? Schematically, an instance of
the problem and a possible solution might be depicted as in Figure 1:

a: CATTAGTAGA...
b: CATTAGTGGA...
c: CATTAGTAGA...
d: CCTTAGTGAA...
e: CCTTAGTAAA...

 

r

a b c d e

Figure 1: The basic problem of phylogenetics is to use sequences drawn from
several different organisms to infer a tree depicting their evolutionary history.

Our goals are to develop some of the many things that the symbol “ ” in
this diagram might represent. Although the problem itself is a biological one,
our focus will be primarily on how ideas and approaches from the mathematical
sciences (mathematics, statistics, computer science) are used to attack it.

The audience we have in mind includes both biologists looking for a deeper
understanding of the ideas that underlie the evolutionary analyses they may
routinely perform with software, and mathematical scientists interested in an
introduction to a biological application in which mathematical ideas continue
to play a vital role. It is impossible to write a text that these two different
groups will both find exactly to their liking — typical biologists have at most
a few undergraduate math and statistics courses in their background, while
mathematical scientists may have a similar (or even weaker) background in
biology. Nonetheless, we believe that both groups can gain from interactions
over this material, reaching a middle ground where each side better understands
the other.

You will not find any direct help here on how to use software to perform
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evolutionary analyses — software changes and improves rapidly enough that
such a guide would become quickly outdated. You will also not find a thorough
development of all the interesting mathematics that has arisen in phylogenetics
(as much as the mathematician authors might enjoy writing that). Rather we
hope to focus on central ideas, and better prepare readers to understand the
primary literature on the theory of phylogenetics.

Before beginning, there are a few other works that should be mentioned,
either for further or parallel study.

• Felsenstein’s book [Fel04] is an encyclopedic overview of the field by one
of its primary developers, informally presented, and offers many insightful
perspectives and historical comments, as well as extensive references to
original research publications.

• Yang [Yan06] gives a more formal presentation of statistical phylogenetics,
also with extensive references. This book is probably too technical to serve
as a first introduction to the field.

• Semple and Steel’s text [SS03] provides a careful mathematical develop-
ment of the combinatorial underpinnings of the field. It has become a
standard reference for theoretical results of that sort.

While all of these books are excellent references, the first two lack exercises
(which we feel are essential to developing understanding) and they often give
an overview rather than attempting to present mathematical developments in
detail. The third is an excellent textbook and reference, but its focus is rather
different from these notes, and may be hard going for those approaching the
area from a biological background alone. In fact, [Yan06] and [SS03] are al-
most complementary in their emphasis, with one discussing primarily models
of sequence evolution and statistical inference, and the other giving a formal
mathematical study of trees.

Here we attempt to take a middle road, which we hope will make access to
both the primary literature and these more comprehensive books easier. As a
consequence, we do not attempt to go as deeply into any topic as a reference
for experts might.

Finally, we have borrowed some material (mostly exercises) from our own
undergraduate mathematical modeling textbook [AR04]. This is being gradually
removed or reworked, as editing continues on these notes.

As these notes continue to be refined with each use, your help in improv-
ing them is needed. Please let us know of any typographical errors, or more
substantive mistakes that you find, as well as passages that you find confusing.
The students who follow you will appreciate it.

Elizabeth Allman
e.allman@alaska.edu

John Rhodes
j.rhodes@alaska.edu



Chapter 1

Sequences and Molecular
Evolution

As the DNA of organisms is copied, potentially to be passed on to descendants,
mutations sometimes occur. Individuals in the next generation may thus carry
slightly different sequences than those of their parent (or either parent, in the
case of sexual reproduction). These changes, which can be viewed as essentially
random, continually introduce the new genetic variation that is essential to
evolution through natural selection.

Depending on the nature of the mutations in the DNA, offspring may be
more, less, or equally viable than the parents. Some mutations are likely to
be lethal, and will therefore not be passed on further. Others may offer great
advantages to their bearers, and spread rapidly in subsequent generations. But
many mutations will offer only a slight advantage or disadvantage, and the ma-
jority are believed to be selectively neutral, with no effect on fitness. These
neutral mutations may still persist over generations, with the particular vari-
ants that are passed on being chosen by luck. As small mutations continue
to accumulate over many generations, an ancestral sequence can be gradually
transformed into a different one, though with many recognizable similarities to
its predecessors.

If several species arise from a common ancestor, this process means we should
expect them to have similar, but often not identical, DNA forming a particular
gene. The similarities hint at the common ancestor, while the differences point
to the evolutionary divergence of the descendants. While it is impossible to
observe the true evolutionary history of a collection of organisms, their genomes
contain traces of the history.

But how can we reconstruct evolutionary relationships between several mod-
ern species from their DNA? It’s natural to expect that species that have more
similar genetic sequences are probably more closely related, and that evolution-
ary relationships might be represented by drawing a tree. However, this doesn’t
give much of a guide as to how we get a tree from the sequences. While occa-
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4 CHAPTER 1. SEQUENCES AND MOLECULAR EVOLUTION

sionally simply ‘staring’ at the patterns will make relationships clear, if there
are a large number of long sequences to compare it’s hard to draw any conclu-
sions. And ‘staring’ isn’t exactly an objective process, and you may not even
be aware of how you are reaching a conclusion. Even though reasonable people
may agree, it’s hard to view a finding produced in such a way as scientific.

Before we develop more elaborate mathematical ideas for how the problem
of phylogenetic inference can be attacked, we need to briefly recount some bi-
ological background. While most readers will already be familiar with this, it
is useful to fix terminology. It is also remarkable how little needs to be said:
Since the idea of a DNA sequence is practically an abstract mathematical one
already, very little biological background will be needed.

1.1 DNA structure

The DNA molecule has the form of a double helix, a twisted ladder-like struc-
ture. At each of the points where the ladder’s rungs meet its upright poles one
of four possible molecular subunits appears. These subunits, called nucleotides
or bases, are adenine, guanine, cytosine, and thymine, and are denoted by the
letters A, G, C, and T. Because of chemical similarity, adenine and guanine are
called purines, while cytosine and thymine are called pyrimidines.

Each base has a specific complementary base with which it can form the
rung of the ladder through a hydrogen bond. We always find either A paired
with T, or G paired with C. Thus the bases arranged on one side of the ladder
structure determine those on the other. For example if along one pole of the
ladder we have a sequence of bases

AGCGCGTATTAG,

then the other would have the complementary sequence

TCGCGCATAATC.

Thus all the information is retained if we only record one of these sequences.
Moreover, the DNA molecule has a directional sense (distinguished by what are
called its 5’ and 3’ ends) so that we can make a distinction between a sequence
like ATCGAT and the inverted sequence TAGCTA. The upshot of all this structure
is that we will be able to think of DNA sequences mathematically simply as
finite sequences composed from the 4-letter alphabet {A, G, C, T}.

Some sections of a DNA molecule form genes that encode instructions for
the manufacturing of proteins (though the production of the protein is accom-
plished through the intermediate production of messenger RNA). In these genes,
triplets of consecutive bases form codons, with each codon specifying a particu-
lar amino acid to be placed in the protein chain according to the genetic code.
For example the codon TGC always means that the amino acid cysteine will oc-
cur at that location in the protein. Certain codons also signal the end of the
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protein sequence. Since there are 43 = 64 different codons, and only 20 amino
acids and a ‘stop’ command, there is some redundancy in the genetic code. For
instance, in many codons the third base has no affect on the particular amino
acid the codon specifies.

Proteins themselves have a sequential structure, as the amino acids com-
posing them are linked in a chain in the order specified by the gene. Thus a
protein can be specified by a sequence of letters chosen from an alphabet with
20 letters, corresponding to the various amino acids. Although we tend to focus
on DNA in these notes, a point to observe is there are several types of biological
sequences, composed of bases, amino acids, or codons, that differ only in the
number of characters in the alphabet — 4, 20, or 64 (or 61 if the stop codons
are removed). One can also recode a DNA sequence to specify only purines (R)
or pyrimidines (Y), using an alphabet with 2 characters. Any of these biological
sequences should contain traces of evolutionary history, since they all reflect, in
differing ways, the underlying mutations in DNA.

A stretch of DNA giving a gene may actually be composed of several al-
ternating subsections of exons and introns. (Exons are the part of the gene
that will ultimately be expressed while introns are intruding segments that are
not.) After RNA is produced from both exons and introns, a splicing process
removes those sections arising from introns, so the final RNA reflects only what
comes from the exons. Protein sequences thus reflect only the exon parts of the
gene sequence. This detail may be important, as mutation processes on introns
and exons may be different, since only the exon is constrained by the need to
produce functional gene products.

Though it was originally thought that genes always encoded for proteins, we
now know that some genes encode the production of other types of RNA which
are the ‘final products’ of the gene, with no protein being produced. Finally, not
all DNA is organized into the coding sections referred to as genes. In humans
DNA, for example, about 97% is believed to be non-coding. In the much smaller
genome of a virus, however, which is packed into a small delivery package, only
a small proportion of the genome is likely to be non-coding. Some of this is non-
coding DNA is likely to be meaningless raw material which plays no current role,
and is sometimes called junk DNA (though it may become meaningful in future
generations through further mutation). Other parts of the DNA molecules serve
regulatory purposes.The overall picture is quite complicated and still not fully
understood.

1.2 Mutations

Before DNA, and the hereditary information it carries, is passed from parent
to offspring, a copy must be made. For this to happen, the hydrogen bonds
forming the rungs of the ladder in the molecule are broken, leaving two single
strands. Then new double strands are formed on these, by assembling the appro-
priate complementary strands. The biochemical processes are elaborate, with
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various safeguards to ensure that few mistakes are made in the final product.
Nonetheless, changes of an apparently random nature sometimes occur.

The most common mutation that is introduced in the copying of sequences
of DNA is a base substitution. This is simply the replacement of one base for
another at a certain site in the sequence. For instance, if the sequence AATCGC

in an ancestor becomes AATGGC in a descendant, then a base substitution C→G

has occurred at the fourth site. A base substitution that replaces a purine with
a purine, or a pyrimidine for a pyrimidine, is called a transition, while an inter-
change of these classes is called a transversion. Transitions are often observed to
occur more frequently than transversions, perhaps because the chemical struc-
ture of the molecule changes less under a transition than a transversion.

Other DNA mutations that can be observed include the deletion of a base or
consecutive bases, the insertion of a base or consecutive bases, and the inversion
(reversal) of a section of the sequence. While not uncommon, these types of
mutations tend to be seen less often than base substitutions. Since they usually
have a dramatic effect on the protein for which a gene encodes, this is not too
surprising. We’ll ignore such possibilities, in order to make our modeling task
both clearer and mathematically tractable. (There is much interest in dropping
this restriction in phylogenetics, though it has proved very difficult to do so.
Current methods that are based on modeling insertion and deletion processes
can handle data sets with only a handful of organisms.)

Our view of molecular evolution, then, can be depicted by an example such
as the following, in which we have an ancestral sequence S0, its descendant S1,
and a descendant S2 of S1.

S0 : ATGTCGCCTGATAATGCC

S1 : ATGCCGCTTGACAATGCC

S2 : ATGCCGCGTGATAATGCC

Notice site 4 underwent a net transition from S0 to S1, and then no further
net mutation as S2 evolved. If we were only able to observe S0 and S2, we
would still see evidence of one net transition in this site. However, while site 8
experienced at least two mutations, if we only saw the sequences S0 and S2 we
could only be sure that one occurred. Site 12 shows a similar situation, where
at least two mutations occurred, yet comparing S0 and S2 alone would show no
evidence of either.

This illustrates that there may be hidden mutations, such as C→ T→ G, in
which subsequent substitutions obscure earlier ones from our observation when
we do not have access to sequences from all generations. A back mutation such
as T → C → T is simply a more extreme case of this. The distinction between
observed mutations and the actual mutations including hidden ones will be an
important one when considering data.

In reality, we seldom have an ancestral DNA sequence, much less several
from different times along a line of descent. Instead, we have sequences from
several currently living descendants, but no direct information about any of
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their ancestors. When we compare two sequences, and imagine the mutation
process that produced them, the sequence of their most recent common ances-
tor, from which they both evolved, is unknown. This will produce additional
complications as our analysis becomes more sophisticated.

1.3 Aligned Orthologous Sequences

Given a stretch in a DNA sequence from some organism, there are good search
algorithms (such as BLAST) to find similar stretches in DNA sequences that
have been found from other organisms. Thus if a gene has been identified for
one organism, we can quickly locate likely candidate sequences for similar genes
in related organisms. Perhaps after experimentally verifying that these are in
fact genes and that they have a similar function, we can reasonably assume the
sequences are orthologous, meaning they descended from a common ancestral
sequence.

A complication can arise if an organism has undergone a gene duplication
in which a gene that was formerly present in the genome appears with multiple
copies in descendants. While the copies are still related, at least one of them is
likely to be more free to vary, since the other may continue to fulfill its original
role. These paralogous genes will retain similarities, though, and if they are
passed on to several different organisms, it may be easy to mistakenly base an
analysis on genes whose most recent common ancestor is the original duplicated
one, rather than on those descended from a common copy after the duplication
event. Even if one infers the correct evolutionary relationship between such
sequences, it may be misleading as to the relationship between the organisms.

Either by trial and error, or using algorithms we will not discuss in these
notes, we can align the sequences from the different organisms so that many of
the bases match across most of the sequences. For some data sets, alignment is
a trivial problem, since so much of the sequences match exactly. For other data
sets, finding good alignments may be quite difficult. The essential problem is
that deletions and insertions may have occurred, and we must decide where to
place gaps in the various sequences to reflect this. While many software tools
have been developed to do this, the computational burden of finding any sort of
a ‘best’ alignment is so great that heuristic methods are essential. Faced with
a large number of sequences, with much variation between them, even the best
of current software may not produce an alignment that on human inspection
appears very good. In the end, a mix of algorithms (most of which depend
on first inferring at least an approximate tree) and ad hoc human adjustment
is sometimes used to get better results. For those interested in learning more
about sequence alignment, [Wat95] is a beginning source.

As the starting point for the techniques we discuss here, we take a collection
of aligned orthologous DNA sequences. Our goal will be to produce a phyloge-
netic tree that describes their likely descent from a common ancestral sequence.
Indeed, Figure 1 of the Introduction shows an example. Note that we will not
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try to decide if the sequences did evolve along a tree from a common ancestor
— that is an assumption we make. Our question is simply to determine the
best candidate tree to describe the unknown history.



Chapter 2

Combinatorics of Trees I

2.1 Graphs and Trees

Before we discuss any of the methods of inference of phylogenetic trees, we
introduce some background and terminology from graph theory. This simply
formalizes the basic notions of the kinds of trees that biologists use to describe
evolution, and gives us useful language.

While at first it might seem sufficient to simply draw a few examples of
trees rather than define them formally, there are good reasons for being more
precise. For instance, when we draw trees depicting the specific evolutionary
relationships among a set of taxa, we may do this in many different ways. But
while the drawings are different, they are meant to depict the same thing. Thus
the idea of a tree is really an abstract one, and by giving it an abstract definition
we can legitimately see that two trees are ‘the same’ even though the diagram
we draw may have different forms. If we also look ahead to trying to write
software to perform phylogenetic analyses, a computer must contain an internal
representation of a tree, even though it has no visual abilities.

Definition. A graph G is pair G = (V,E) where V is a set of vertices or
nodes, and E is a set of edges. Each edge e ∈ E is a two-element set e = {v1, v2}
of vertices v1, v2 ∈ V .

When e = {v1, v2} ∈ E, we say v1 and v2 are the ends of e, that e joins v1

and v2, that v1 and v2 are incident to e, and that v1 and v2 are adjacent. The
degree or valence of a vertex is the number of edges to which it is incident.

Graphs are typically indicated by drawings such as that in Figure 2.1.

Recall that a set, by definition, cannot have a repeated element. This means
that by requiring an edge have two vertices v1 6= v2 we rule out the possibility
of an edge looping from a vertex to itself. We also have ruled out the possibility
of two or more edges having the same ends, since E also forms a set. Sometimes
a graph is defined in such a way as to allow both of these possibilities, and our
concept of graph is technically that of a simple graph. However, since we will

9



10 CHAPTER 2. COMBINATORICS OF TREES I

v1v2

v4

v3

v5 v6

Figure 2.1: A depiction of a graph G = (V,E) with V = {v1, v2, v3, v4, v5, v6}
and E = {{v1, v2}, {v1, v3}, {v1, v4}, {v3, v4}, {v5, v6}}. The vertices v1, v2, and
v3 have respective degrees 3, 1, and 2.

make no use of loops or multiple edges between the same vertices, we choose
this more restrictive definition. All of our graphs will also be finite, meaning V ,
and hence E, is a finite set.

Graphs are widely used in mathematical biology to denote relationships be-
tween organism. For instance in ecology, a graph may summarize the direct
interactions between species in an ecosystem, with nodes representing various
species and edges between them their interactions (e.g., predation, or symbio-
sis). Gene interactions in a single organism can similarly be depicted by a
graph, with nodes denoting genes and edges indicating when the product of one
gene influences another. Graphs are sometimes referred to as networks in these
contexts.

In phylogenetics, we often think of each vertex as representing a species,
with the edges indicating lines of direct evolutionary relationships (ancestor-
descendant pairs of species, along a lineage in which no other species under
consideration splits off). Rather than species, however, we may be working
with smaller groups of organisms such as subspecies or even individuals, or
larger groups such as genera, etc. Thus we adopt the more neutral word taxon
for whatever group is under consideration. (In scientific literature, these are
sometimes referred to as operational taxonomic units or OTUs.)

If we are to use graphs to model evolution, with edges indicating lines of
descent, then we of course need to rule out any taxon being an ancestor of
itself. To be precise about this, we need a series of definitions.

Definition. In a graph, a path of length n from vertex v0 to vertex vn is a
sequence of distinct vertices v0, v1, v2, . . . , vn such that each vi is adjacent to
vi+1.

A graph is connected if there is a path between any two distinct vertices.

In Figure 2.1, there are two paths from v2 to v3, namely v2, v1, v3 and
v2, v1, v4, v3. However, v2, v1, v2, v1, v3 is not a path since it repeats v2 and
v1. Since there is no path from v2 to v5, this graph is not connected.

Definition. A cycle is a sequence of vertices v0, v1, . . . , vn = v0 which are
distinct (other than vn = v0) with n ≥ 3 and vi adjacent to vi+1
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In Figure 2.1, v1, v3, v4, v1 is a cycle. If we removed the edge e = {v3, v4}
however, the graph would not have a cycle. Note that the path v1, v3, v1 is not
a cycle, since the sequence of vertices is too short; this length condition rules
out backtracking along a single edge being considered a cycle.

Finally, we can define

Definition. A tree T = (V,E) is a connected graph with no cycles.

The graph in Figure 2.1 is not a tree, for two reasons; it is not connected,
and it has a cycle. As an example of a tree, we have that depicted in Figure 2.2.

Figure 2.2: A tree.

If a vertex lies in two or more distinct edges of a tree, we say it is an interior
vertex. If it lies in only one edge, then we call it a terminal vertex or a leaf.
Similarly, an edge joining two interior vertices is an interior edge, while one
incident to a leaf is called a pendant edge.

Though trees will be our primary focus, they are not the only types of graphs
that are important for describing evolutionary relationships. For instance, if
hybridization of two related ancestral species occurs, a graph with a cycle is
needed to depict this, as the two will have both a common ancestor and a
common descendant. Other types of lateral gene transfer similarly result in
non-tree graphs. Much work has been done in recent years to use networks
rather than trees to capture such biological phenomena, as well as for visualizing
conflicting phylogenetic signals in data sets. Huson, et al. [HRS10] provide an
excellent entry into these developments.

A basic property of trees that should be intuitively clear is the following:

Theorem 1. If v0 and v1 are any two vertices in a tree T , then there is a unique
path from v0 to v1.

Sketch of proof. We leave a formalilization of the proof as an exercise, but sum-
marize the argument: Given two different paths with the same endpoints, con-
sider a route following first one and then the other backwards, so we return to
our starting vertex. Of all such pairs of paths, choose one where this combined
route is the shortest.

Now the combined route cannot be a cycle, since a tree has none. So the two
paths must have a vertex other than the endpoints in common. But then we
can use this to give a pair of paths producing a shorter combined route, which
would be a contradiction.
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The length of the unique path between two vertices in a tree is called the
graph-theoretic distance between the vertices. For example, in Figure 2.3, for
the tree on the left the graph-theoretic distance from a to d is 3, while for the
other two graphs it is 4.

The trees we have defined are sometimes called unrooted trees or undirected
trees. To those who are familiar with the notion of a directed graph, it may
seem odd that we emphasize trees with undirected edges for depictions of evo-
lutionary histories. Indeed, time provides a direction that is of course central
to evolutionary processes. However, we will see that many of the mathematical
models and inference methods are more naturally associated with undirected
trees, and so we make them our basic objects.

With that said, however, sometimes we pick a particular vertex ρ in a tree
and distinguish it as the root of the tree. More often, we introduce a new vertex
to be the root, by subdividing an edge, {u, v}, into two {u, ρ} and {ρ, v}. Figure
2.3 shows two different rooted versions of the same unrooted tree,obtained by
subdividing different edges. We use T to denote an unrooted tree, and T ρ to
denote a tree with a choice of a root ρ.

a

b

c

d

u v

a b c d

u

v

ρ

a b c d

u v

ρ

Figure 2.3: An unrooted tree and two rooted counterparts.

Biologically, a root represents the most recent common ancestor (MRCA) of
all the taxa in the tree. Sometimes, however, roots are chosen for mathematical
convenience rather than biological meaning, so one must be careful with such
an interpretation.

Viewing ρ as a common ancestor of all other taxa represented in a tree, it is
natural to give each edge of the tree an orientation away from the root. More
precisely, a directed edge is not a set of two vertices, but rather an ordered pair
e = (v1, v2), where the order is specified by requiring that the path from ρ to
v1 is shorter than that from ρ to v2. For instance, in passing from the leftmost
tree to the middle tree in Figure 2.3, the undirected edge {u, v} becomes the
directed edge (u, v), since u is closer to ρ than is v.

For a directed edge e = (v1, v2), we say v1 is the initial vertex or tail of e
and that v2 is the final vertex or head of e. We also refer to v1 as the parent
of v2, and v2 as the child of v1. More generally, for a rooted tree we may use
the words ancestor and descendant in the obvious way to refer to nodes. For
instance, in the middle tree of Figure 2.3, u is ancestral to d, but not to a.
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An unrooted tree is said to be binary if each interior vertex has degree three.
This terminology of course fits with the biological view of one lineage splitting
into two, but this leads to the rather odd situation that a synonym for binary
is trivalent. We call a rooted tree T ρ binary if all interior vertices other than ρ
are of degree three, while ρ is of degree two.

Although it’s conceivable biologically that a tree other than a binary one
might describe evolutionary history, it is common to ignore that possibility as
unlikely. When non-binary trees arise in phylogenetic applications, they usually
have vertices of degree greater than 3 (also called multifurcations) to indicate
ambiguity arising from ignorance of the true binary tree. This is sometimes
referred to as a soft polytomy. In contrast, a hard polytomy refers to a mul-
tifurcation representing positive knowledge of many lineages arising at once,
such as a radiation of species. Since even radiations are likely to be modeled
well by a succession of bifurcations with short times between them, in most
applications, biologists generally prefer to find ‘highly resolved’ trees, with few
multifurcations; a binary tree is the goal.

The trees used in phylogenetics have a final distinguishing feature — the
leaves represent known taxa, which are typically currently extant and are the
source of the data used to infer the tree. The internal vertices, in contrast,
usually represent taxa that are no longer present, and from which we have no
direct data. (Even if we have data from ancient organisms, we cannot assume
they are direct ancestors of any extant ones; they are more likely to be on
offshoots from the lineages leading to our modern samples.) This is formalized
by labeling the leaves of the tree with the names of the known taxa, while leaving
unlabeled the interior vertices. Thus for either rooted or unrooted trees we are
interested primarily in the following objects.

Definition. Let X denote a finite set of taxa, or labels. Then a phylogenetic X-
tree is a tree T = (V,E) together with a one-to-one correspondence φ : X → L,
where L ⊆ V denotes the set of leaves of the tree. We call φ the labeling map.
Such a tree is also called a leaf-labeled tree.

More informally, the labeling map simply assigns each of the taxa to a dif-
ferent leaf of the tree, so that every leaf receives a label.

Often we will blur the distinction between the leaves of a phylogenetic tree
and the labels that are assigned to them. For instance, we will use T or T ρ to
denote a phylogenetic X-tree, often without explicitly mentioning either the set
X or the labeling function. However, it is important to note that this labeling
is crucial. Two different maps from X to the leaves of T usually produce two
different phylogenetic trees. In other words, phylogenetic trees can be distin-
guished from one another either due to different ‘shapes’ of the underlying trees,
or merely by a different labeling of the leaves.
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2.2 Counting Binary Trees

Suppose we are interested in relating a collection X of n taxa by a phylogenetic
tree. How many different trees might describe the relationship? It’s helpful to
know this since if we want to relate a group of taxa, the more possible trees
there are, the harder the problem may be. Could we, for instance, simply list
all the trees that might relate 10 taxa, and consider each one in turn? Or would
this list be so long that such an approach is infeasible?

To refine the question, we first need to say what it means for two phylogenetic
trees to be the same. Informally, we don’t care about the names given to vertices,
as long as the shape of the tree and how the labels are placed on leaves agree.

Definition. Two phylogenetic X-trees are isomorphic if there is a one-to-one
correspondence between their vertices that respects adjacency, and their leaf
labelings.

Let b(n) denote the number of distinct (up to isomorphism) unrooted binary
phylogenetic X-trees, where X = {1, 2, . . . , n}. One quickly sees b(2) = 1,
b(3) = 1, and b(4) = 3, as the diagrams in Figure 2.4 indicate.

1 2
1

2

3 1

2

3

4

1

23

4 1

2

3

4

Figure 2.4: All unrooted binary phylogenetic trees for X = {1, 2, . . . , n}, n =
2, 3, 4.

The key observation for counting larger trees now appears clearly when we
consider b(5): We can begin with any one of the 3 trees relating the first four
taxa, and ‘graft’ another edge leading to a fifth taxon to any of the 5 edges in
that four-taxon tree, so that b(5) = 3 · 5 = 15. For b(6), we can begin with any
of these 15 trees and graft on another edge leading to a sixth taxon to any of
the edges in that tree. To obtain a general formula, then, we also need to obtain
a formula for the number of edges in these trees.

Theorem 2. An unrooted binary tree with n ≥ 2 leaves has 2n − 2 vertices
and 2n− 3 edges.

Proof. The statement is certainly true for n = 2, which is the base case for
induction.

Suppose T has n ≥ 3 leaves, and assume the statement is true for a tree with
n−1 leaves. If v1 is one of the leaves of T , then v1 lies on a unique edge {v1, v2},
while v2 lies additionally on two other edges {v2, v3} and {v2, v4}. Removing
these three edges and the vertices v1, v2 from T , and introducing a new edge
{v3, v4} gives a binary tree T ′ with n − 1 leaves. Since both the number of
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vertices and the number of edges have been decreased by 2, for T the number
of vertices must have been (2(n− 1)− 2) + 2 = 2n− 2, and the number of edges
(2(n− 1)− 3) + 2 = 2n− 3.

Theorem 3. If X has n ≥ 3 elements, there are

b(n) = (2n− 5)!! = 1 · 3 · 5 · · · (2n− 5)

distinct unrooted binary phylogenetic X-trees.

Proof. Again we use induction, with the base case of n = 3 clear.
Suppose then that T has n leaves, and let T ′ be the (n − 1)-leaf tree con-

structed from T as in Theorem 2 by ‘removing’ the leaf v1 and adjusting edges
appropriately. Then with v1 fixed, the map T 7→ (T ′, {v3, v4}) is a bijection
from n-leaf trees to pairs of (n− 1)-leaf trees and edges. In this pair, we think
of the edge {v3, v4} as the one onto which we ‘graft’ a new edge to v1 to recover
T . Counting these pairs shows

b(n) = b(n− 1) · (2(n− 1)− 3) = b(n− 1) · (2n− 5).

But since we inductively assume b(n − 1) = (2(n − 1) − 5)!! = (2n − 7)!!, we
obtain the desired formula.

This last theorem also yields a count for rooted binary trees, by simply
noting that adjoining to any rooted binary tree T ρ a new edge {ρ, vn+1}, where
vn+1 is a new leaf, gives a one-to-one correspondence between rooted binary
trees with n leaves and unrooted binary trees with n+ 1 leaves.

Corollary 4. The number of rooted binary phylogenetic X-trees relating n
taxa is

b(n+ 1) = (2n− 3)!! = 1 · 3 · 5 · · · (2n− 3).

The formula for b(n) shows it is a very large number even for relatively small
values of n. (See exercises.) The implication of this for phylogenetic inference
will quickly become clear: Any inference method that relies on considering
every possible binary tree will be impossibly slow if the number of taxa is even
moderately large.

2.3 Metric Trees

Sometimes it is useful to specify lengths of edges in a trees with non-negative
numbers, as in Figure 2.5 below. Note that the lengths may either be specified
by explicitly writing them next to the edges, or by simply drawing edges with
the appropriate lengths, and providing a length scale.

Biologically, these lengths are usually interpreted as some measure of how
much change occurred in sequences between the ends of the edge, with larger
numbers denoting more change. Occasionally they represent elapsed time. How-
ever, it is generally incorrect to assume edge lengths are elapsed times, no matter
how intuitively appealing that interpretation is.
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Figure 2.5: Two depictions of the same metric tree, drawn in different styles.
In the second, all vertical line segments are considered to have no length, and
the short horizontal segment merely indicates the root.

Definition. A metric tree (T,w) is a rooted or unrooted tree T = (V,E) to-
gether with a function w : E → R≥0 assigning non-negative numbers to edges.
We call w(e) the length or weight of the edge e.

When we wish to emphasize that edge lengths are not specified for a tree T ,
we will sometimes refer to T as a topological tree. We can obtain a topological
tree from a metric one by simply ignoring the edge lengths. This means several
metric trees may have the same underlying topological tree, but differ because
edge lengths are not the same.

Notice the terminology conflict between the graph-theoretic notion of length
of a path (the number of edges in the path) in a tree, and this new use of
the word length. To avoid confusion, graph theorists tend to prefer the term
‘weight,’ but ‘length’ is more common in phylogenetics.

A metric tree leads to a way of measuring distances between its vertices. For
any v1, v2 ∈ V (T ), define

d(v1, v2) =
∑

e on the path
from v1 to v2

w(e),

i.e., the sum of the edge lengths along the path between the two vertices.

Proposition 5. For a metric tree (T,w), the function d : V ×V → R≥0 satisfies

(i) d(v1, v2) ≥ 0 for any v1, v2 (non-negativity),

(ii) d(v1, v2) = d(v2, v1) for any v1, v2 (symmetry),

(iii) d(v1, v3) ≤ d(v1, v2) + d(v2, v3) for any v1, v2, v3 (triangle inequality).

If all edges of T have positive length, then, in addition,

d(v1, v2) = 0 if, and only if, v1 = v2.

Proof. See the exercises.
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If all edges of T have positive length, then the proposition above shows d is
a metric on V (T ) in the usual sense of the word in topology or analysis. In this
case, we call d a tree metric.

If T has some edges of length zero, we can of course remove those edges,
identifying the vertices at their two ends, to get a metric tree with all positive
edge lengths that carries essentially the same information as our original metric
tree. (However, if an edge leading to a leaf has length zero, then the resulting
tree may no longer be a phylogenetic X-tree, as a label may now be on an
internal vertex.) On this collapsed tree we then have that d is a tree metric. As
it is often convenient to work with metric trees that have positive edge lengths,
keeping this process in mind we will lose little by making such an assumption
at times.

2.4 Ultrametric Trees and Molecular Clocks

If we wish to interpret edge lengths on a rooted metric tree as times, then it
is essential that all leaves be equidistant from the root. This is simply because
this distance would represent the total elapsed time from the MRCA of the taxa
to the present, when the taxa were sampled.

Definition. A rooted metric tree is said to be ultrametric if all its leaves are
equidistant from its root using the tree metric: For any two leaves a, b and the
root ρ, d(ρ, a) = d(ρ, b).

Ultrametric trees are often called molecular clock trees in phylogenetics, since
if mutation occurs at a constant rate over all time and lineages, i.e. is clock-
like, then many methods of inference from sequences will produce such trees in
idealized circumstances. Edge lengths should be interpreted as measures of how
much mutation has occurred, so that with clock-like mutation we simply scale
elapsed time by a constant mutation rate to get lengths. But one should be
careful — even if a tree is ultrametric, it need not have been produced under a
molecular clock. For instance mutation rates could increase in time, uniformly
over all lineages, and each would show the same total mutation from root to
leaf.

A molecular clock assumption can be biologically reasonable in some circum-
stances, for instance, if all taxa are reasonably closely related and one suspects
little variation in evolutionary processes during the evolutionary period under
study. Other times it is less plausible, if more distantly related taxa are in
the tree, and the circumstances under which they evolved may have changed
considerably throughout the tree.

One attractive feature of a molecular clock hypothesis and ultrametric trees
is that even if the location of the root is not known, there is a simple way to
find it, as shown by the following.

Theorem 6. Suppose T ρ is a rooted ultrametric tree with positive edge lengths.
Let v1, v2 be any two leaves with d(v1, v2) maximal among distances between
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leaves. Then ρ is the unique vertex along the path from v1 to v2 with d(ρ, v1) =
d(ρ, v2) = d(v1, v2)/2. Thus the placement of ρ can be determined from an
unrooted metric version of T .

Proof. If T ρ has more than one leaf, ρ is an internal vertex. Thus deleting ρ
(and its incident edges) from T produces at least two connected components.

Suppose v1 and v2 are in different connected components of T r {ρ}. Then
the path from v1 to v2 must pass through ρ, and we see by Exercise 12 that
d(v1, v2) = d(v1, ρ) + d(ρ, v2). Since all leaves are equidistant from the root,
d(v1, v2) = 2d(v1, ρ). Thus ρ lies the specified distance from v1 and v2. Since
edge lengths are positive, there can be only one such vertex on the path with
this property.

If v1 and v2 are in the same connected component of T r {ρ}, then the
path between them does not pass through ρ and so by Exercise 12 and the
triangle inequality we have d(v1, v2) < d(v1, ρ)+d(ρ, v2). But since all leaves are
equidistant from the root, this shows d(v1, v2) < 2d(v1, ρ), and so the maximal
distance between leaves cannot occur between v1 and v2.

Sometimes when a root must be added to an unrooted metric tree, either
as a rough approximation of the MRCA of the taxa or simply for convenience
in drawing the tree, the root location is chosen as the midpoint of the path
between the most distant pair of leaves. The above theorem justifies this as a
valid way of locating the most recent common ancestor for a molecular clock
tree, or a tree that appears to be ‘close’ to being one. For other trees, it is
simply a heuristic method of locating a root, and cannot be reliably expected
to give the true location of the MRCA.

2.5 Rooting Trees with Outgroups

In the absence of a molecular clock hypothesis, locating the root of a tree is
generally not possible from mathematical considerations alone. Instead, a simple
biological idea can often be used: We include an extra taxon in our study, beyond
those we are primarily interested in relating. If this taxon is chosen so it is more
distantly related to each of the taxa of primary interest than any of those are to
each other, we call it an outgroup. For instance, if we are primarily interested
in relating a number of species of duck, we might include some non-duck bird
as an outgroup.

Provided we infer a good unrooted evolutionary tree for all our taxa in-
cluding the outgroup, the vertex at which the outgroup is joined to the taxa
of primary interest represents the MRCA of those, and hence serves as a root
for the subtree relating only the taxa of primary interest. Thus we use prior
biological knowledge of the relationship of the outgroup to the other taxa to
solve our rooting problem. This is illustrated in Figure 2.6, where the taxon o
designates the outgroup.

Though using an outgroup is the standard way of rooting phylogenetic trees
when a molecular clock hypothesis is not reasonable, and the method usually
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e

o

a b c d e

Figure 2.6: Using an outgroup o to infer a root

seems to work well, two features should be noted. First, this approach requires
prior knowledge that the outgroup is distantly related to the other taxa. This
may be obvious in some situations, such as that mentioned with ducks. But in
others, particularly when one is attempting to infer very ancient relationships
between very different taxa, it may not be clear what can serve as an outgroup.
Second, even if it is clear how to pick an outgroup, there may be difficulties
in inferring a tree that has it correctly placed. By definition, an outgroup is
distantly related, and so whatever method is used to infer the tree may have
more difficulties placing it correctly than the other taxa. If we lack knowledge
of an outgroup, or doubt that we can place it on a tree correctly, then we may
be forced to accept an unrooted tree as the best we can say about evolutionary
relationships between the taxa of interest.

2.6 Newick Notation

There is a convenient and intuitive way of specifying a phylogenetic tree, which
is simpler than the formal definition (as a collection of vertices and edges, with
labelled leaves). It also has the advantage over a drawn figure of using standard
typographic symbols. It is commonly used for input and/or output to computer
programs, as well as in theoretical research papers.

Newick notation uses parenthetical grouping of taxon labels to specify the
clustering pattern of a tree. This is best seen through examples. For instance
the rooted tree on the right of Figure 2.6 is denoted (((a, b), c), (d, e)). However,
it could also be designated ((d, e), (c, (b, a))), or in a number of other ways where
we change the order of the items inside a pair of matched parentheses. This non-
uniqueness of the Newick specification of a tree can make it hard to recognize
by eye when when two large trees are the same.

If we instead wanted to designate an unrooted tree, we introduce a root arbi-
trarily, and use the rooted notation, simply specifying in words that we mean the
tree should be unrooted. For instance the tree on the left of Figure 2.6 is the un-
rooted version of (((a, b), c), ((d, e), o)), or equivalently of (((((d, e), o), c), b), a),
or a host of other possibilities.

In the case of a metric tree, we append each edge length to the taxon or
group below it. For example the trees in Figure 2.5 with taxa a, b, c listed from
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top to bottom would be designated (a:0.32, (b:0.18, c:0.24):0.02). Since removing
the root effectively joins two edges, adding their length, the unrooted version
of this metric tree could also be designated as ((a:0.34, b:0.18):0, c:0.24), or in
other ways.

2.7 Exercises

1. Give sets of vertices and edges defining the first tree in Figure 2.3. Do the
same for the second tree, but since it is rooted, give a set of directed edges
(i.e. order the vertices of each edge from parent to child.) Which edge of
the first tree was subdivided to create the root in the second?

2. Draw two different figures representing the tree T = (V,E) with V =
{a, b, c, d, e, f, g, h} and E = {{a, g}, {b, c}, {c, f}, {c, g}, {d, g}, {e, f}, {f, h}}.
Do this so neither drawing can be obtained from the other by just stretching
or shrinking edges or angles, rotating the full figure, or by taking a mirror
image of the full figure.

3. An unrooted tree has vertices v1, v2, . . . , v9 with edges

{v1, v2}, {v1, v6}, {v1, v9}, {v2, v7}, {v2, v8}, {v3, v9}, {v4, v9}, {v5, v9}.

a. Without drawing the tree, determine the degree of each vertex.

b. Use your answer to part (a) to determine the leaves of the tree.

c. Use your answer to part (a) to determine whether the tree is binary.

c. Draw the tree to check your work.

4. Consider the trees in Figure 2.7.

a. Which of them are the same, as rooted metric trees?

b. Which of them are the same, as unrooted metric trees, provided the root
is deleted and its two incident edges joined into one?

c. Which of them are the same, as rooted topological trees?

d. Which of them are the same, as unrooted topological trees, provided the
root is deleted and its two incident edges joined into one?

e. Which trees are ultrametric?

5. Draw the three rooted binary topological trees that could describe the re-
lationship between 3 taxa a, b, c. How do they naturally relate to the three
unrooted 4-taxon trees in Figure 2.4?

6. Draw the 15 unrooted binary topological trees that could describe the rela-
tionship between 5 taxa a, b, c, d, e. Group them naturally according to the
relationship they display for the first 4 taxa a, b, c, d.
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Figure 2.7: Trees for Problem 4

7. Make a table of values of the function b(n), giving the number of unrooted
binary X-trees for sets X of size up to 10.

8. Show that b(n) =
(2n− 5)!

2n−3(n− 3)!
.

9. Mitochondrial DNA in humans is inherited solely from the mother. If it is
used to construct a tree relating a large number of humans from different
ethnic groups, then its root would represent the most recent ancestral female
from which we all inherited our mitochondria. The clustering pattern of
ethnic groups on such a tree might give insight into the physical location of
this woman, who is sometimes called Mitochondrial Eve.

In 1987 a work by Cann, Stoneking, and Wilson, claimed to locate Mito-
chondrial Eve in Africa, supporting the ‘out of Africa’ theory of human
origins. A rooted tree was constructed that showed relationships between
147 individuals. Estimate how many topologically different trees would need
to be looked at if every possibility was really examined. (You will need to

use the statement in problem 8 and Stirling’s formula: n! ∼
√

2πnn+ 1
2 e−n.

If you are not familiar with the asymptotic symbol ‘∼’ you can loosely
interpret it as meaning ‘is approximately.’)

10. Give a complete proof of Theorem 1, that if T is a tree and v1, v2 ∈ V (T )
then there is a unique path from v1 to v2. (Note: You need to be careful
with the fact that the term ‘cycle’ can only apply to sequences of at least 3
vertices.)
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11. Prove Proposition 5.

12. Suppose T is a metric tree with all positive edge lengths. Prove that v3 lies
on the path from v1 to v2 if, and only if, d(v1, v2) = d(v1, v3) + d(v3, v2).
Show by example that this may be false if zero-length edges exist.

13. The phylogeny of four terminal taxa A, B, C, and D are related according to
a certain metric tree with positive branch lengths. The tree metric distances
between taxa are given in Table 2.1

A B C D
A .5 .4 .8
B .3 .5
C .6

Table 2.1: Distances between taxa for Problem 13

a. Using any approach you wish, determine the correct unrooted metric
tree relating the taxa, as well as all edge lengths. Explain how you rule out
other topological trees.

b. Can you determine the root from these data? Explain why or why not.

c. Suppose you only had a table of numbers that were approximately those
coming from a tree metric. Would whatever method you used in (a) still
work? (This is the situation for real phylogenetic problems.)

14. The term ‘ultrametric’ originally was not applied to trees, but rather to a
function d : V × V → R≥0 that satisfied not only the properties of a metric
listed in Proposition 5, but also a strong form of the triangle inequality:

d(v1, v3) ≤ max(d(v1, v2), d(v2, v3)) for all v1, v2, v3.

a. Show this property implies the usual triangle inequality (iii) of Proposi-
tion 5.

b. Show that for a tree metric arising from an ultrametric tree, the strong
triangle inequality holds when v1, v2, v3 are leaves.

c. Show by a 3-leaf example that the strong triangle inequality on leaves
does not hold for all tree metrics.

d. Show that if the strong triangle inequality holds, then for all choices of
v1, v2, v3 the two largest of the numbers d(v1, v2), d(v1, v3), and d(v2, v3) are
the same. (This is sometimes stated as: An ultrametric implies all triangles
are isoceles.)

e. Show that if a tree metric from an unrooted 3-leaf tree satisfies the
strong triangle inequality on the leaves, then there is a placement of a root
for which the underlying tree is ultrametric. (This holds more generally for
n-leaf tree metrics satisfying the strong triangle inequality on leaves; with
proper placement of a root, they all arise from ultrametric trees.)
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15. Suppose in a graph G = (V,E) an edge e = (α, β) is subdivided by the
introduction of a new node γ, to obtain a graph G′ = (V ′, E′). What are
V ′ and E′?

16. A rooted tree T is specified in Newick notation by ((a, b), c), d)). List the 7
other Newick specifications for it.

17. How many different Newick specifications can be given for a rooted binary
tree relating n taxa? Explain your formula.

18. How many different (rooted) Newick specifications can be given for an un-
rooted binary tree relating n taxa? Explain your formula.



24 CHAPTER 2. COMBINATORICS OF TREES I



Chapter 3

Parsimony

The first approach we’ll develop for inferring phylogenetic trees is called the
method of Maximum Parsimony (MP), or, more informally, parsimony. The
essential idea is probably the oldest of those underlying any method, and is
applied both to inferring phylogenies from sequence data and from data of other
types, such as morphological data.

3.1 The Parsimony Criterion

Suppose we obtained the following aligned DNA sequences for four taxa:

1

123456789012345

S1 : AACTTGCGCATTATC

S2 : ATCTTGCGCATCATC

S3 : ATCTTGGGCATCATC

S4 : AACTTGGGCATTATC

There are 15 different rooted topological trees that might relate these, and we
want to pick ‘the best’ in some sense.

Note the only variations in bases are at sites 2, 7, and 12. We might inter-
pret site 2 as evidence for a tree such as ((S1, S4), (S2, S3)) since a single base
substitution occurring on a edge leading from the root could explain the data at
that site. A tree such as ((S1, S2), (S3, S4)), in contrast, would require at least 2
substitutions at that site. Site 7 data, on the other hand, could be explained by
the smallest number of changes if ((S1, S2), (S3, S4)) were the tree. Finally, site
12 supports the same tree as site 2. These sites conflict, but it’s reasonable to
decide in favor of a tree reflecting the majority of them, so ((S1, S4), (S2, S3))
is a better choice of tree than ((S1, S2), (S3, S4)). Of course there are 13 other
rooted trees we should consider as well in order to pick the best overall for this

25



26 CHAPTER 3. PARSIMONY

example, but we have at least developed the germ of a principled way of picking
a tree: we look for a tree requiring the fewest mutations.

To generalize this viewpoint, imagine having n taxa which we wish to relate.
We collect a data sequence of characters which for each taxon might be in

any of a finite number of states. For instance, if our data are aligned orthol-
ogous DNA sequences, then the characters correspond to the different sites in
the sequences, and their possible states on each of the taxa are {A, G, C, T}. If
our data are morphological, then we might have characters referring to winged-
ness, with states {straight, curved}, or some other body part with states such
as {segmented, unsegmented, absent}. Other sources of characters might be
genetic or biochemical features that vary among the taxa. Thus while our ex-
amples below will use DNA data, the method applies more generally.

The simplest form of the principal underlying parsimony is:

The best tree to infer from data is the one requiring the fewest
changes in states of characters.

Informally, then, a ‘good’ tree is one that could describe an evolutionary his-
tory with as little change as possible. Though there have been protracted and
acrimonious debates about the philosophical justifications for this principal (for
details see, for instance, [Fel04]), in some circumstances it is certainly a reason-
able view. Under what circumstances it might be problematic will be considered
later.

To mathematically formalize the principal we make a number of definitions:

Definition. A character with state set S on a set of taxa X is a function
χ : X → S. If s = |S|, we say χ is an s-state character.

We will assume all sets are finite here. By passing to a numerical encoding
of states, we could even assume S = {1, 2, . . . , s}.

Our data for the parsimony problem for a set of taxa X are then a finite
sequence of characters C = {χ1, χ2, . . . , χk} where χi is an si-state character on
X for each i. For DNA data, the characters χi just refers to the ith site in the
aligned sequences, k is the length of the sequences, and si = 4 for all i, with
Si = S = {A, C, G, T}. For morphological data, the si and sets Si may vary, and
the ordering of the characters would be arbitrary.

Note that we refer to a sequence of characters since that terminology is math-
ematically valid and in accord with biological usage when, say, DNA sequences
are used. However, we could more generally have referred to a set or multiset
of characters since we will not in fact use the specific ordering. Recall that
multisets are unordered, but allow an element to be repeated, unlike sets. For
morphological data, there is generally no natural ordering to the characters, so
the multiset terminology would be more natural.

Consider a fixed phylogenetic X-tree T , either rooted or unrooted, with
leaves labeled by the taxa in X. For the remainder of this chapter we’ll make
no distinction between the leaves of T and their labels in X.
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While our data are composed of characters χ on X, to judge the number
of state changes T requires, we also need to consider characters χ̃ on the full
vertex set V (T ). In accordance with standard terminology for functions, we
say a character χ̃ on V (T ) is an extension of χ to T if χ̃(x) = χ(x) for all
x ∈ X. That is, an extension of a character assigns the same states to the
leaves as the original character, but also assigns states to internal vertices. We
use ExtT (χ) to denote the set of all extensions of χ to T , and think of its
elements as representing the possible evolutionary histories that are consistent
with the observation of χ.

For each edge e = {v, w} ∈ E(T ) and character χ̃ on V (T ), define

δ(e, χ̃) =

{
1 if χ̃(v) 6= χ̃(w)

0 otherwise
.

Viewed as a function of e, with χ̃ fixed, this is the indicator function of those
edges where a state change occurs in the evolutionary history χ̃.

Definition. The state-change count for χ̃ on a phylogenetic X-tree T is the
number of edges on which a state change occurs for χ̃:

c(χ̃, T ) =
∑

e∈E(T )

δ(e, χ̃).

The parsimony score of an X-tree T for a character χ on X is the minimal
state-change count achieved by an extension of χ:

psχ(T ) = min
χ̃∈ExtT (χ)

c(χ̃, T ).

We say χ̃ is a minimal extension of χ for T if

c(χ̃, T ) = psχ(T ).

These definitions are for a single character. For a sequence of characters we
need the following.

Definition. The parsimony score of a phylogenetic X-tree T for a sequence of
characters {χ1, . . . , χk} on a taxon set X is the sum of those for the individual
characters:

ps{χi}(T ) =

k∑
i=1

psχi(T ).

The set of most parsimonious trees for a sequence of characters {χ1, . . . , χk} is
the collection of trees achieving the minimal parsimony score:

{T | ps{χi}(T ) = min
T ′

ps{χi}(T
′)}.
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Our goal now is to find a method that will take a sequence of characters on X
and find the set of most parsimonious trees for it. There are several difficulties
we face. First, we need to consider all possible trees that might relate our taxa.
We’ve already discussed enumerating these in the last chapter, so, at least in
principal, we could methodically consider one tree after another. However, for
even midsize n, the number of n-taxon binary phylogenetic trees is enormous.
We’ll return to this issue later on.

Second, for each tree we consider, to compute the parsimony score we ap-
parently must consider all possible extensions of the data characters. Even if a
character has only 2 states, since the number of internal nodes of an n-taxon
rooted binary phylogenetic tree is n− 1, the number of extensions of that char-
acter is 2n−1. For DNA data the numbers becomes 4n−1. This exponential
growth withn means that considering each of these extensions in turn would
also require an enormous amount of work, and become infeasible for a large
number of taxa. Fortunately, there is a way around this computational issue,
which we turn to in the next section.

3.2 The Fitch-Hartigan Algorithm

The problem of computing ps{χi}(T ) for a fixed tree T is sometimes called the
small parsimony problem, while doing so for all trees T is the large parsimony
problem. Although both problems at first appear to be computationally inten-
sive, the small problem can in fact be solved efficiently. A simple algorithm was
developed independently by Fitch and Hartigan, and proved to work as claimed
by Hartigan in 1973. Although it can be easily generalized, we present it here
only for binary trees. We illustrate it and motivate it by an example:

Suppose we look at a single character (in this example, a site in the aligned
DNA sequences) for each of five taxa and observe states (bases) as shown:

S1 : A, S2 : T, S3 : T, S4 : G, S5 : A.

For the leaf-labeled tree T of Figure 3.1 we wish to compute psχ(T ).
After writing the appropriate character state at each leaf, we simply trace

backwards up the tree, from the leaves to the root, drawing reasonable con-
clusions as to what the state of the character might be at each interior vertex,
assuming the fewest possible state changes occurred. For instance, at the parent
of S1 and S2 we could have had either an A or a T, but obviously not a C or a
G, if we are to minimize state changes, and at least 1 state change must have
occurred on the edges below it. We thus write the set of possibilities {A, T} at
that vertex, and have a count of 1 so far. Now, given what appears at S3, at the
most recent common ancestor of S1, S2, and S3 we should have a T (and in fact
a T at the parent of S1 and S2); no additional change is necessary, beyond the
1 we already counted. We’ve now labeled two interior vertices, and still have a
count of 1.

We continue to trace backward through the tree, writing a state or set of
possible states at each vertex. If the children of the current vertex are marked
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Figure 3.1: Computing the parsimony score of a tree using the Fitch-Hartigan
algorithm for one character constructs sets of states at internal nodes, and yields
a score of 3.

with two different states (or disjoint sets of states), we increase our state-change
count by 1 and combine the two states (or the sets) to create a larger set of
possible states at the parent vertex. If the two children’s states agree (or the
sets are not disjoint), then we label the parent vertex with that state (or the
intersection of the sets). In this case no additional changes need to be counted.
When all the vertices of the tree are labeled, the final value of the mutation
count gives the minimum number of mutations (or state changes) needed if that
tree described the evolution of the taxa. Thus the tree in Figure 3.1 would have
a parsimony score of 3.

While this illustrates the algorithm, there are several points to be addressed.
First, while it should seem reasonable, it is not clear that this method gives the
minimum possible mutations needed for the tree. It does correctly calculate the
parsimony score for the tree and character, but that must be proved. (You might
also suspect the algorithm produces all minimal extensions of the character on
the tree. However, it does not, as Exercise 9 shows. There can be assignments of
states to the internal vertices that are not consistent with what this algorithm
produces, yet which still achieve the same state-change count. This illustrates
the importance of proving an algorithm works as one wishes; naive intuition can
be misleading.)

Second, we performed the algorithm on a rooted tree. While we’ve been
intentionally unclear as to whether we are considering rooted or unrooted trees
with the parsimony criterion, in fact it doesn’t matter, as we now show.

Theorem 7. If T ρ is a rooted version of T , then for any character χ,

psχ(T ρ) = psχ(T ).
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Proof. If ρ is a vertex of the tree T , then by the definition of the parsimony
score this is clear.

So suppose ρ has been introduced along an edge of T , by replacing that edge
with two edges meeting at ρ. Observe that any minimal extension of χ to T ρ

must have the same state at ρ as at least one of the adjacent vertices.

But then we see psχ(T ρ) ≥ psχ(T ), since when any minimal extension of χ
to T ρ is restricted to the vertices of T , its state-change count remains the same.
But also psχ(T ρ) ≤ psχ(T ) since given any minimal extension of χ to T , we can
further extend it to T ρ without altering its state-change count.

Thus the parsimony score does not depend on the root location, and once
we show the Fitch-Hartigan algorithm gives the parsimony score for a rooted
tree, it must give the same score regardless of root location. While the details
of the algorithmic steps depend on the choice of root, the final score does not.

Before we give more proofs, though, let’s return to our example. Now that
we’ve evaluated the parsimony score of the tree in Figure 3.1, let’s consider
another tree, in Figure 3.2, that might relate the same 1-base sequences.

A
S1

T
S2

T
S3

A

S5

G
S4

AT

T

A

G
{  }

T

A{  }

Figure 3.2: Using the same character as in Figure 3.1, the Fitch-Hartigan algo-
rithm shows this tree is more parsimonious, with a score of 2.

Applying the method above to produce the labeling at the internal vertices, we
find this tree has a parsimony score of 2; only two mutations are needed. Thus
the tree in Figure 3.2 is more parsimonious than that of Figure 3.1.

To find the most parsimonious tree for these taxa we would need to consider
all 15 possible topologies of unrooted trees with 5 taxa and compute the mini-
mum number of mutations for each. Rather than methodically go through the
13 remaining trees, for this simple example we can just think about what trees
are likely to have low parsimony scores. If the score is low, S1 and S5 are likely
to be near one another, as are S2 and S3, but S4 might be anywhere. With this
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observation, its easy to come up with several more trees that have parsimony
score 2 but that are topologically distinct from that of Figure 3.2.

It’s also easy to see that no tree will have a parsimony score of 1, since we
need at least 2 mutations to have 3 different bases among the taxa. For this
example there are in fact five trees that have a parsimony score of 2, which form
the set of the most parsimonious.

Here’s a more succinct presentation of the Fitch-Hartigan algorithm for com-
puting the parsimony score psχ(T ) of a binary tree T , for a single character χ
on X with state space S.

Algorithm (Fitch-Hartigan).

1. If T is unrooted, arbitrarily introduce a root, to get a rooted binary tree
T ρ.

2. Assign to each vertex v ∈ V (T ρ) a pair (U,m) where U ⊆ S and m ∈ Z≥0

as follows:

(a) To each leaf x ∈ X, assign the pair ({χ(x)}, 0).

(b) If the two children of v have been assigned pairs (U1,m1) and (U2,m2),
then assign to v the pair

(U,m) =

{
(U1 ∪ U2, m1 +m2 + 1), if U1 ∩ U2 = ∅,
(U1 ∩ U2, m1 +m2), otherwise.

Repeat until all vertices have been assigned pairs.

3. If the pair (U,m) has been assigned to ρ, then psχ(T ) = m.

With real data, we of course need to count the number of state changes
required for a tree among all characters. Since the score for a sequence of
characters is the sum of scores for each character, this can be done in the same
manner as above, just treating each character in parallel. An example is given
in Figure 3.3.

Proceeding up the tree beginning with the two taxa sequences ATC and
ACC on the far left, we see we don’t need mutations in either the first or third
site, but do in the second. Thus the mutation count is now 1, and the ancestor
vertex is labeled as shown. At the vertex where the edge from the third taxa
joins, we find the first site needs a mutation, the second does not, and the third
does. This increases the mutation count by 2, to give us 3 so far. Finally, at
the root, we discover we need a mutation only in the second site, for a final
parsimony score of 4.

While this is not hard to do by hand with only a few sites, as more sites are
considered it quickly becomes a job best done by a computer.

We now prove the Fitch-Hartigan algorithm actually produces the correct
parsimony score for a rooted tree. For simplicity, we consider only binary trees.
The key idea is to prove something slightly stronger, as expressed in the last
sentence of the following.
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ATC ACC GTA GCA

T

C
A C

G

A

A

C
T

{  }

{  } {  }

{  }G     A
T

C

Figure 3.3: For multiple characters, the Fitch-Hartigan algorithm can be applied
in parallel, yielding a score of 4 in this example.

Theorem 8. Let χ be a character on X, and T ρ a rooted binary X-tree. Then
the Fitch-Hartigan algorithm computes psχ(T ). Furthermore, the set of states
it assigns to the root ρ is exactly the set of states that occur at ρ in the minimal
extensions χ̃ of χ.

Proof. We proceed by induction on the size of the set X. The |X| = 2 case is
clear.

For general |X|, let v1, v2 ∈ V (T ρ) be the children of ρ. Let Ti be the subtree,
rooted at vi, of descendants of vi, and Xi denote the labels on the leaves of Ti,
so that X = X1 ∪ X2 is a disjoint union. Let χi = χ|Xi . By the inductive
hypothesis, the Fitch-Hartigan algorithm assigns to vi the pair (Ui,mi) where
Ui is exactly the set of states that occur at vi in minimal extensions of χi on
Ti, and mi is psχi(Ti).

Suppose χ̃ is a minimal extension of χ to T , and let χ̃i = χ̃|V (Ti). Then (see
Exercise 7a) minimality ensures one of the following must hold:

(1) χ̃(ρ) = χ̃(v1) = χ̃(v2),

(2) χ̃(ρ) = χ̃(v1) 6= χ̃(v2), or

(3) χ̃(ρ) = χ̃(v2) 6= χ̃(v1).

Consider first case (2). Then χ̃2 must be a minimal extension of χ2, for
otherwise we could contradict the minimality of χ̃ by defining a character on T
that agreed with χ̃ on V (T1) ∪ {ρ} and agreed with a minimal extension of χ2

to T2 on V (T2).
We similarly see that χ̃1 must be a minimal extension of χ1 by applying the

same argument to the minimal extension ˜̃χ of χ defined by

˜̃χ(v) =

{
χ̃(v) if v 6= ρ,

χ̃(v2) if v = ρ.
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Thus in this case χ̃1, χ̃2 are both minimal extensions of χ1, χ2, respectively,
while χ̃(v1) 6= χ̃(v2). Using the inductive hypothesis, this shows psχ(T ) =
m1 + m2 + 1. It also shows there do not exist any minimal extensions of χi
on the Ti which agree on v1 and v2, since the existence of such would allow
us to construct an extension of χ on T with a state-change count of m1 + m2,
contradicting the minimality of χ̃. Thus the Ui are disjoint, and χ̃(ρ) ∈ U1∪U2.
Finally, we note that for each choice of an element of U1 ∪ U2 we can use
minimal extensions of the χi on Ti to define a minimal extension of χ taking on
the specified choice of state at ρ. This completes the proof in case (2). Case (3)
is essentially the same.

In case (1), we cannot conclude that both χ̃i are minimal extensions of the
χi, but only that at least one must be (see Exercise 7b). Assume then that χ̃1

is minimal. We consider two subcases, according to whether χ̃2 is (a) minimal,
or (b) not minimal.

In subcase (1a), we have that both χ̃i are minimal, and χ̃(ρ) = χ̃(v1) =
χ̃(v2). Thus psχ(T ) = m1 + m2, the Ui are not disjoint, and χ̃(ρ) ∈ U1 ∩ U2.
To see that for every s ∈ U1 ∩ U2 there is a minimal extension with χ̃(ρ) = s,
we choose any minimal extensions χ1, χ2 with χ1(v1) = χ2(v2) = s and define
χ̃ to agree with them on the subtrees and have χ̃(ρ) = s. Such a χ̃ achieves the
minimal score.

In subcase (1b), pick any minimal extension ˜̃χ2 of χ2. Define a new character
˜̃χ on V (T ) to agree with χ̃ on V (T1)∪{ρ}, and agree with ˜̃χ2 on V (T2). Note that
the state-change count for ˜̃χ cannot be greater than that of χ̃, since the number
of state changes on edges in T2 has been decreased, at the expense of only one
additional state change on the edge {ρ, v2}. Since it also cannot have a lower
state-change count by the minimality of χ̃, ˜̃χ is a minimal extension of χ, with
both ˜̃χ1 and ˜̃χ2 minimal on the subtrees. Thus psχ(T ) = c( ˜̃χ, T ) = m1 +m2 +1,
and χ̃(ρ) = ˜̃χ(ρ) ∈ U1 ∪ U2. From psχ(T ) = m1 +m2 + 1, it is straightforward
to see that the Ui must be disjoint. Finally, that a minimal extension of χ exists
with any element in U1 ∪ U2 as its value at ρ is as in case (2).

3.3 Informative Characters

We can save some computational effort in finding parsimonious trees if we ob-
serve that some characters do not affect the parsimony scores of trees in ways
that affect our judgment of which is optimal.

The obvious case is a character χ that assigns the same state to all taxa,
i.e., a constant character. This character extends to a constant character on
V (T ) for any T , and hence psχ(T ) = 0 for all T . Thus we can simply discard
the character from a sequence of characters, and not change parsimony scores.

A less obvious case is a character χ that assigns the same state to all taxa
but a few, assigning different states to each of these few taxa. For example,
suppose a character assigned the state A to one taxon, G to another, and C to
all others. Then whatever tree is considered will certainly require at least 2
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state changes, since 3 states are observed. On the other hand, regardless of the
tree, the extension of the character that assigns a C to all internal nodes would
achieve a state-change count of 2. Thus this character will have a parsimony
score of 2 on every tree, and its inclusion in a data set of characters will only
increase the parsimony score of every tree by the same amount. It therefore will
have no effect on our choice of the best tree under the parsimony criterion.

To formalize this reasoning, suppose |χ−1(i)| > 1 for at most one state i. In
this case, let j denote a state with |χ−1(j)| maximal, and l = |χ(X)|. Then for
any T we can extend χ to T by assigning to each internal vertex the state j.
This shows psχ(T ) ≤ l− 1. Since psχ(T ) ≥ l− 1 for any χ and T (see Exercise
8), this means psχ(T ) = l− 1 for all trees T . While the appearance of such a χ
among a sequence of characters does affect the parsimony score of all trees, it
simply inflates them all by the same amount, and so does not affect the selection
of the most parsimonious trees.

This leads to the idea of an parsimony-informative character.

Definition. A character on X is (parsimony-)informative if it assigns to the
taxa at least two different states at least twice each. That is, χ is informative
if, and only if, ∣∣{i ∈ S :

∣∣χ−1(i)
∣∣ > 1

}∣∣ > 1.

Before applying the Fitch-Hartigan parsimony algorithm, we can eliminate
all non-informative characters from our data since they will not affect the choice
of most parsimonious trees. For DNA sequence data, many characters are likely
to be non-informative, since identical, or nearly-identical sites are needed to
identify and align orthologous sequences. In the examples above, you’ll notice
only informative sites have been used.

There are several explicit warnings we should make concerning the notion
of informative sites. First, the concept applies only when one is using the
parsimony criterion for tree selection. Under other methods, deletion of these
sites will lead to biased results — they contain useful information under other
methods.

Second, even under parsimony the non-informative sites only have no infor-
mation for selecting the topological tree. After finding the most parsimonious
topological tree, sometimes lengths are assigned to edges as a measure of how
many state changes had to occur on that edge. To do this, all minimal exten-
sions of the characters are considered (see Section 3.6), and for each edge an
average is taken of the counts associated to it by each extension. The resulting
metric tree does depend on all characters except the ones that are identical for
all taxa.

Additional ‘pre-processing’ of the data can reduce the computations a bit
more. For instance, the particular states of a character at the leaves of a tree
do not matter, as long as we understand which are different. For instance on a
5-taxon tree, a character that has states A,C,C,G,A at leaves 1-5 will produce the
same parsimony score as a character with states G,A,A,T,G at those leaves, since
both are instances of a pattern of the form xyyzx. By counting the number of
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occurrences of each such pattern form in the data, parsimony scores can be found
by only performing the Fitch-Hartigan algorithm on a single representative of
each.

3.4 Complexity

If an algorithm is to be performed on a large data set, it is important to under-
stand how much work this will require. Even if a computer is used (as of course
is always the case), if the amount of work is too great, runtimes can be unac-
ceptably slow for an algorithm to be useful. For instance, if our approach to the
small parsimony problem was not the Fitch-Hartigan algorithm, but rather the
more naive and cumbersome approach of listing all possible extensions of our
characters, computing a score for each, and then picking the smallest, we could
never expect to have software capable of analyzing data sets with a large number
of taxa in an acceptable amount of time. We’ve already seen that the number
of such extensions is exponential in the number of taxa, and thus impossibly
large once there are many taxa.

To see that the Fitch-Hartigan algorithm is better than this, we have to
quantify the amount of work in it. To do this, first consider a single character
on an n-taxon set, with s possible states. A measure of the work to perform
a basic step of the process (i.e., to compare the sets of states at two child
nodes, determine the set for the parent, and possibly increase the state-change
count) is Cs, since we will have to consider each possible state in turn, and
do a fixed amount of work C for each. Since a rooted binary n-leaf tree has
n − 1 internal vertices, we will perform this work n − 1 times, for a total of
Cs(n − 1). If there are k characters, then the work must be done for each, for
a total of Csk(n − 1) < Cskn. Thus the amount of work grows only linearly
in the number of taxa, a vast improvement over the exponential growth of the
naive approach.

Although we have not given a value for C, there is certainly such a constant
(which might be measured in units of time, or computer operations). In standard
jargon we would say the Fitch-Hartigan algorithm has runtime O(skn) (read
“big-O of skn”), to indicate the runtime is less than some unspecified constant
times the given product. In general, algorithms with polynomial runtimes are
considered feasible, and those with exponential or worse are problematic. The
linear runtime here is excellent. (If the unspecified constant were huge, that
might also be a problem, but at least for the Fitch-Hartigan algorithm it should
be clear that it is quite small.) Thus the algorithm gives a very efficient way of
solving the small parsimony problem.

However, this is only for one tree T . For the large problem, we must compare
parsimony scores for all unrooted binary trees, and there are (2n− 5)!! of them
to consider. Searching through them all would be horribly slow. A natural
question asks if this slowness is unavoidable.

The answer to this last question appears to be ‘yes.’ More technically, finding
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a most parsimonious tree is an NP-hard problem1, and so we do not expect any
algorithm will be found that guarantees we have found all (or even one) optimal
trees when n is large. (That no NP-hard problem can be solved in polynomial
time has not yet been proved, but is widely believed. It is one of the most
famous open mathematical questions.)

In practice, there are heuristic search methods that seem to work well and
reasonably quickly. However, they do this by not considering all possible trees.
In some circumstances, they can rule out a class of trees as not possibly con-
taining the most parsimonious. But more often, after finding a reasonably good
tree they spend most of their time focusing on only searching among trees that
are “similar”. As a result, only when the number of taxa is small can we be sure
we have really found the most parsimonious trees. We will delay a discussion of
methods of exploring similar trees in a heuristic search until a later chapter.

3.5 Weighted Parsimony

A natural generalization of the basic idea of parsimony is to introduce differ-
ent penalties for different state changes in computing parsimony scores. For
instance, in DNA sequence data it is often clear that transitions and transver-
sions occur at different rates. If transversions are more rare, they may be less
prone to occurring multiple times at the same site than transitions, and thus
preserve more phylogenetic signal. We might then choose to give them a higher
weight in calculating parsimony scores, to take advantage of this. We now de-
velop an algorithm for computing the weighted parsimony scores that would
result from such a scheme.

The Fitch-Hartigan algorithm for computing unweighted parsimony scores is
an example of a dynamic programming algorithm, a rather common algorithmic
approach to solving problems. Roughly this means the algorithm proceeds by
finding optimal solutions to smaller instances of the problem (on subtrees) in
order to use those solutions to get an optimal solution to the problem we care
about.

The dynamic programming approach was used by Sankoff to develop an
algorithm for computing weighted scores. It is very similar to the Fitch-Hartigan
algorithm, but requires more bookkeeping as we work our way through the tree.

Suppose χ is an s-state character on X, and fix an s× s matrix W = (wij)
of weights. Here wij is the cost we wish to impose for a state change from state
i to state j in the descent from the root. While it is natural to assume wii = 0
and wij ≥ 0 for i 6= j, it is not required that we do so.

For a rooted X-tree T ρ, the weighted parsimony score is defined as follows:

1This is due to Foulds and Graham (1983). Ron Graham was sent to Fairbanks while in
the U.S. AIr Force in the 1950s, then earned his undergraduate degree at UAF. He was later
awarded an honorary doctorate from UAF.
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Definition. For any extension χ̃ of χ on T ρ, the cost of χ̃ is

cW (χ̃, T ρ) =
∑

e∈E(T )

wχ̃(te)χ̃(he).

Here te, he ∈ V (T ) denote the tail and head vertices of the edge e directed away
from the root.

Definition. The weighted parsimony score of T ρ is

psχ,W (T ρ) = min
χ̃∈ExtTρ (χ)

cW (χ̃, T ρ).

Rather then begin with an example, we’ll formally state an algorithm for
computing weighted parsimony scores first. Again, we only treat binary trees,
since generalizing to arbitrary trees is straightforward. Suppose X, T ρ, and χ
are given.

Algorithm.

1. Assign to each leaf x ∈ X of T ρ an s-element vector c, where

ci =

{
0 if χ(x) = i,

∞ otherwise .

2. If the two children of v ∈ V (T ) have been assigned vectors a and b, then
assign to v the vector c with

ci = min
j∈S

(wij + aj) + min
k∈S

(wik + bk).

Repeat until all vertices have been assigned vectors.

3. If the vector c has been assigned to ρ, output m = min
i

(ci).

Figure 3.4 shows an example of the algorithm, where transitions have been
given weight 1, transversions weight 2, and no substitution weight 0. The final
score for the tree is thus found to be 3. (While the character in this example
is uninformative for unweighted parsimony, that does not mean it must be
uninformative if weights are used. See Exercise 19.)

We’ll omit a formal proof that Sankoff’s algorithm gives the correct weighted
parsimony score, as it is similar to that for the Fitch-Hartigan algorithm.

Note also that allowing weights to be assigned to state changes may have
made the parsimony score of a tree dependent on the root location. While this
may be desirable for some purposes, it means we will have to search through all
rooted trees rather than just unrooted ones. If we restrict the allowable choices
of weights for state changes, however, we can preserve the independence of the
parsimony score from the root location. We leave determining how this is done
as Exercise 16.
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A C T C C
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(2,3,2,3)

(4,5,3,3)

(6,7,3,4)

(4,4,0,2)

Figure 3.4: The Sankoff algorithm for computing weighted parsimony scores,
requires that scoring vectors be computed at each internal node. In this example,
transitions are weighted 1 and transversions weighted 2, with the base order
A,G,C, T used for scoring vectors.

3.6 Recovering Minimal Extensions

In addition to the parsimony score of a tree, we may actually want to know what
minimal extensions of χ achieve that score. Thinking of minimal extensions as
likely evolutionary histories, we might want to know for each such history which
state changes occurred on which edges of a tree. Across many characters, this
would allow us to identify on which edges we had many state changes and
which had few, thus indicating something about either the length of time those
edges represent, or whether circumstances were highly favorable to state changes
during those periods. Of course the various minimal extensions may indicate
state changes along different edges, so at best we will be able to assign a range
to the number of changes (or the total cost for weighted parsimony) along each
edge, or the average over all minimal extensions.

Although we’ll outline how to find all minimal extensions only in the setting
of the weighted parsimony algorithm of Sankoff, there is also a more streamlined
variation for the unweighted case that builds on the Fitch-Hartigan algorithm.

Suppose then that we have computed the weighted parsimony score of a
character χ on a tree T ρ by the algorithm above. If c is the vector assigned to
ρ, then for each i with ci minimal, there will be a minimal extension of χ taking
on state i at ρ.

Considering only one such minimal ci, let v1 and v2 be the children of ρ,
with assigned vectors a,b. Then for each choice of state j at v1 and state k at
v2 with

ci = wij + aj + wik + bk,

there will be a minimal extension of χ taking on the states i, j, k at ρ, v1, v2, re-



3.7. FURTHER ISSUES 39

spectively. We simply continue down the tree in this way, to eventually produce
all minimal extensions.

3.7 Further Issues

There are a number of issues with parsimony that we won’t discuss in detail,
but that we leave for you to think about:

1. If several trees tie for most parsimonious (as they often do), what should
we do? There are various approaches to defining consensus trees that
attempt to summarize the features of several trees by a single tree. We
will touch on this in Chapter 4

2. What about trees that are ‘close’ to most parsimonious? Are we really
committed enough to the parsimony principle to feel that being only a
few state changes off from most parsimonious means a tree should not be
considered as biologically reasonable?

3. With more than a handful of taxa, there are many possible binary trees to
consider that might relate them. If there are too many to search through
to be sure of finding the most parsimonious, what heuristic search methods
are likely to do well in practice?

4. If weighted parsimony is to be used, how should weights be assigned?
Since assigning weights can affect which trees we view as ‘best,’ how can
we objectively choose?

5. We can also choose to weight various characters differently in computing
the parsimony score of a tree. This is different than assigning weights to
different state changes for a particular character: For instance we might
have morphological characters for body size and for wing shape of insects,
and decide that wing shape changes are more significant indicators of
evolutionary relationships than body size ones, so they should count twice
as much in the parsimony score. More generally, it might be reasonable to
assign higher weights to characters representing features of an organism
that change less often, and lower ones to characters that vary more freely.
But if this is done, how do we justify the precise choices of those weights?
(Conversely, if this is not done, how do we justify giving all characters
equal weights?)

6. A final issue, which has been the subject of much controversy among
biologists, concerns the philosophical underpinning of parsimony. There
are strong proponents of parsimony who believe it is the only valid way
of inferring phylogenies. There are others who may prefer other methods
but admit parsimony is a reasonable approach under some circumstances.
In Chapter 11 we will see that some reasonable probabilistic models of
mutation processes can sometimes lead to data that will cause parsimony
to infer an incorrect tree.
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We cannot yet explore this issue fully, but will give a hint as to part of the
problem. If, say, we are discussing DNA mutation, then along an edge of a
tree that represents a long period of time a single site may mutate several
times, for instance A → C → G, or A → C → A. Thus while two state
changes occurred, either one or none is observed if we only consider the
ends of the edge. The parsimony principle, however, rejects the possibility
of multiple changes as a preferred explanation.

As long as state changes are rare on all edges of a tree, parsimony is a quite
reasonable approach to inferring a phylogeny. It is when state changes are
less rare that potential problems arise. For characters describing morphol-
ogy, or other larger-scale observations, we often expect few, if any, hidden
mutations. For sequence data, the situation is less clear and depends on
the data set being examined.

3.8 Exercises

1. a. Using the Fitch-Hartigan algorithm, compute the minimum number of
base changes needed for the trees in Figure 3.5.

T

A

T

T

C

A

T

A

T

T

C

A

Figure 3.5: Trees for Problem 1

b. Give at least three trees that tie for most parsimonious for the one-base
sequences used in part (a).

c. For trees tracing evolution at only one DNA site as in (a) and (b), why
can we always find a tree requiring no more than 3 substitutions no matter
how many taxa are present?

2. a. Find the parsimony score of the trees in Figure 3.6. Only informative
sites in DNA sequences are shown.

b. Draw the third possible (unrooted) topological tree relating these se-
quences and find its parsimony score. Which of the three trees is most
parsimonious?
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CTCGC

CACCC

ATGGA

AAGCA

CTCGC

ATGGA

AAGCA

CACCC

Figure 3.6: Trees for Problem 2

3. What changes are necessary to the Fitch-Hartigan algorithm if a tree has
a polytomy? Give an example of how you would handle a vertex with 3
children.

4. Consider the following sequences from four taxa.

1

123456789012345

S1: AATCGCTGCTCGACC

S2: AAATGCTACTGGACC

S3: AAACGTTACTGGAGC

S4: AATCGTGGCTCGATC

a. Which sites are informative?

b. Use the informative sites to determine parsimony scores for the three
possible unrooted trees relating the taxa. Which is the most parsimonious?

c. If S4 is known to be an outgroup, use your answer to (b) to give a rooted
tree relating S1, S2, and S3.

5. Though non-informative sites in DNA do not affect which tree is judged to
be the most parsimonious, they do affect the parsimony score. Explain why,
if Pall and Pinfo are the parsimony scores for a tree using all sites and just
informative sites, then

Pall = Pinfo + n1 + 2n2 + 3n3,

where, for i = 1, 2, 3, by ni we denote the number of sites with all taxa in
agreement except for i taxa which are all different . (Notice that while Pall

and Pinfo may be different for different topologies, n1 + 2n2 + 3n3 does not
depend on the topology.)

6. Show that if χ is an informative character on a set X of n taxa (so n ≥ 4),
then there exist two phylogenetic X-trees T1, T2 with psχ(T1) 6= psχ(T2).

7. Complete the proof of Theorem 8 by doing the following:
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(a) Suppose χ̃ is a minimal extension of χ to T , and let χ̃i = χ̃|V (Ti), with
the Ti as defined in the proof. Explain why minimality ensures one of the
following must hold: (1) χ̃(ρ) = χ̃(v1) = χ̃(v2), (2) χ̃(ρ) = χ̃(v1) 6= χ̃(v2),
or (3) χ̃(ρ) = χ̃(v2) 6= χ̃(v1).

(b) Explain why in case (1) at least one of the χ̃i is a minimal extension of
χi. Give an example to show both need not be minimal. (You can do this
with a 4-leaf tree.)

8. Suppose χ is any character on X, and let l = |χ(X)|. Explain why the lower
bound psT (χ) ≥ l − 1 holds for any phylogenetic X-tree T .

9. For the character and first tree in Figure 3.7, calculate the parsimony score,
labeling the interior vertices according to the Fitch-Hartigan algorithm.
Then show that the second tree requires exactly the same number of base
changes, even though it is not consistent with the way you labeled the in-
terior vertices on the first tree. (The moral of this problem is that naively
interpreting the Fitch-Hartigan algorithm will not produce all minimal ex-
tensions of a character.)

AT TA A T AT TA A T

T

T

T

T

T

Figure 3.7: Trees for Problem 9

10. If characters are given for 3 terminal taxa, there can be no informative ones.
Explain why this is the case, and why it doesn’t matter.

11. The bases at a particular site in aligned DNA sequences from different taxa
form a pattern. For instance, in comparing n = 5 sequences at a site, the
pattern (ATTGA) means A appears at that site in the first taxon’s sequence,
T in the second’s, T in the third’s, G in the fourth’s, and A in the fifth’s.

a. Explain why in comparing sequences for n taxa, there are 4n possible
patterns that might appear.

b. Some patterns are not informative, such as the 4 patterns showing the
same base in all sequences. Explain why there are (4)(3)n non-informative
patterns that have all sequences but one in agreement.

c. How many patterns are non-informative because 2 bases each appear
once, and all the others agree?
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d. How many patterns are non-informative because 3 bases each appear
once, and all others agree?

e. Combine your answers to calculate the number of informative patterns
for n taxa. For large n, are most patterns informative?

12. A computer program that computes parsimony scores might operate as
follows: First compare sequences and count the number of sites fi for each
informative pattern pi that appears (e.g., for 4 taxa, we might have p1 =
AAAA, p2 = AAGG, . . . ). Then, for a given tree T , calculate the parsimony
score pspi(T ) for each of these patterns. Finally, use this information to
compute the parsimony score for the tree using the entire sequences. What
formula is needed to do this final step? In other words, give the parsimony
score of the tree in terms of the fi and pspi(T ).

13. Parsimony scores can be calculated even more efficiently by using the fact
that several different patterns always give the same score. For instance, in
relating four taxa, the patterns ATTA and CAAC will have the same score.

a. Using this observation, for 4 taxa how many different informative pat-
terns must be considered to know the parsimony score for all?

b. Repeat part (a) for 5 taxa.

14. Use the Sankoff algorithm to computed the weighted parsimony score, with
1:2 weights for transitions:transversions, for the following aligned sequences
on the tree which shows A and B most closely related.

A: TGA

B: TAT

C: TGT

D: TAC

15. For DNA data, what weight matrix makes weighted parsimony the same as
unweighted parsimony? Using it, perform the Sankoff algorithm on the tree
and character in Figure 3.1, and see that you recover the same score the
Fitch-Hartigan algorithm produced, and the same states at the root.

16. What natural condition on the weight matrix ensures that weighted parsi-
mony will always give the same score to any character extension regardless
of the root location of the tree?

17. How would you modify the Sankoff algorithm for a tree with a polytomy?

18. Create an example of 4 sequences where unweighted parsimony leads to a
different optimal tree than weighted parsimony with the transversion weight
twice that of transitions.

19. When using weighted parsimony, one must be careful with the notion of
an uninformative character. Consider a scheme in which transitions and
transversions are weighted as 1 and 2, as in the example in Figure 3.4.
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a. Explain why for the character in Figure 3.4 under this weighting every
tree will produce a score of no more than 3. (Hint: assign all internal nodes
the same state to achieve this score.)

b. Explain why for the character in Figure 3.4 under this weighting no tree
can achieve a score lower than 3, and thus the character is uninformative
under the weighted scheme.

c. Change the character so the taxon with state T instead has state G. Then
find two trees on which this new character has different parsimony scores.
This shows that the character is informative under the weighted scheme,
though it would be uninformative under standard (unweighted) parsimony.

20. Explain why the weighted parsimony algorithm for one s-state character on
a set of taxa X will involve O(s2|X|) steps.

21. When applying weighted parsimony to sequence data such as for DNA, it
is reasonable to require the weight matrix satisfy the condition

wij + wjk ≥ wik, for all i, j, k.

Explain why, and how this relates to the possibility of multiple mutations
along an edge.

22. How would you modify the Sankoff algorithm for weighted parsimony to
deal with missing information on a character’s value for some of the taxa?



Chapter 4

Combinatorics of Trees II

Now that we’ve developed one method of phylogenetic inference, parsimony, we
turn back to combinatorial considerations of phylogenetic trees. Our focus will
be on different ways we can view the information expressed by a tree, and how
those ways lead to methods of summarizing a collection of trees on the same
taxon set in a single consensus tree. This is often done when parsimony returns
many trees with the same minimal parsimony score, to summarize their common
features. However, it is improtant in many other situations as well.

We also briefly introduce a similar situation where one has a collection of
trees on possibly different but overlapping sets of taxa. Then the goal is to
combine the trees into a single supertree that shows the relationships that occur
in all the given trees, or if that is not possible attempts to show many of the
relationships.

4.1 Splits and Clades

Suppose T is an unrooted phylogenetic X-tree. Then if we delete any one edge
e of T , we partition the taxa X into two subsets, according to the two connected
components of the resulting graph. For instance, deleting the marked edge in
the tree T of Figure 4.1 produces the partition {a, b, d}, {c, e, f}, which we call
a split.

Definition. A split of X is any partition of X into two non-empty disjoint
subsets. We write X0|X1 to denote the split with subsets X0, X1.

If T is a phylogenetic X-tree, and e ∈ E(T ), then the split induced by e is the
partition of X obtained by removing the edge e from T and forming the subsets
of X that appear on each of the two connected components of the resulting
graph. We also say such a split is displayed on T .

In the split notation X0|X1, the order of the sets does not matter; X0|X1

is the same as X0|X1. Also, if X0|X1 is a split, then X1 = X r X0 is the
complement of X0. Thus to specify a split, we really only need to give one of

45
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a

b

d c
e

f

Figure 4.1: An edge inducing the split {a, b, d}|{c, e, f}.

the subsets. For instance, we might choose to give the smaller of the two, or
the one that contains a particular taxon.

For a given set X of n taxa, there are 2n−1 − 1 splits (see Exercise 2).
However, a binary tree has only 2n − 3 edges, and non-binary trees have even
fewer. Thus at most 2n− 3 splits will be displayed on any one tree.

A split induced by a pendent edge of a tree is particularly simple: In a tree
relating n taxa, if a leaf is labelled by taxon S1, then the split associated to that
edge is {S1}|{S2, S3, . . . , Sn}. This split reflects nothing more about a tree than
that S1 labels a leaf. For that reason, a split X0|X1 in which one of the Xi has
only a single element is said to be trivial. While trivial splits tell us essentially
nothing interesting about a tree, the non-trivial splits induced by internal edges
carry more information about the tree.

Suppose now that T is a phylogenetic X-tree and we consider the splits
induced by two different edges e1, e2 of T . Removing both e1 and e2 from T
produces three connected components, and thus a partition of X into three
disjoint subsets X1, X2, X3. With appropriate numbering of these sets, the split
induced by e1 is X1|X2 ∪ X3 and that induced by e2 is X1 ∪ X2|X3. This
shows splits induced from edges of a phylogenetic X-tree will have the following
pairwise property.

Definition. Two splits Y0|Y1 and Y ′0 |Y ′1 of a set Y are said to be compatible if
for some i, j we have Yi ∩ Y ′j = ∅.

It’s not hard to convince yourself that if you were given a pair of compatible
splits, then you could find a tree displaying both of them. But what if we have
a larger collection of splits? More broadly, to what extent does a collection of
pairwise compatible X-splits correspond to a phylogenetic tree?

To answer this question, we need a slight generalization of a phylogenetic
tree. While binary phylogenetic trees remain the biologists’ ideal, sometimes
the best tree we can produce has higher-degree vertices, some labels on internal
vertices (which you might think of as leaves which have not yet been resolved
from the interior of the tree, and multiple labels on some vertices (which you
might also think of as a result of not yet resolving the branching of all taxa from
one another). All that we will need is captured in the following definition.
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Definition. An X-tree is a tree T together with a labeling map φ : X → V (T )
such that for each v ∈ V (T ) of degree 1 or 2 is labelled; i.e., φ−1(v) 6= ∅ for all
v of degree at most 2.

Obviously we can refer to splits of X induced by edges of an X-tree, just
as for phylogenetic trees. Moreover, any two splits induced by edges in a single
X-tree will be compatible.

We now establish an important theorem giving the relationship between
compatible splits and trees.

Theorem 9. (Splits Equivalence Theorem) Let S be a collection of splits of
X. Then there is an X-tree whose induced splits are precisely those of S if,
and only if, the splits in S are pairwise compatible. Furthermore, this X-tree is
unique, up to isomorphism.

Proof. That an X-tree induces pairwise compatible splits has been discussed,
so suppose we have a set of pairwise compatible splits S and wish to construct
such an X-tree. We proceed by induction on the size of S. The case |S| = 1
is straightforward, since a one-edge tree whose two vertices are labeled by the
taxa in the two split sets has the desired property, and no other X-tree does.

Let S = S′ ∪ {X0|X1} where X0|X1 /∈ S′. Then by induction, there is
an X-tree T ′ whose induced splits are precisely those of S′. Color red all those
vertices of T ′ that are labeled by elements of X0, and color blue all those labeled
by elements of X1, so every vertex is either uncolored, red, blue, or both red
and blue.

Our first goal is to show there is a unique vertex v in T ′ whose removal
results in connected components all of whose colored vertices have the same
color. To do this, let T1 be the minimal spanning tree of all blue vertices in T ′,
and T2 the minimal spanning tree of all red vertices in T ′.

Observe that T1 and T2 cannot have an edge in common since if they did
that edge of T ′ would induce a split not compatible with X0|X1: There would
be both red and blue vertices in both components of the graph left by the edge’s
removal. However, if T1 and T2 are disjoint then they are joined by some path
in T ′, but picking any edge on that path induces the split X0|X1, and since
X0|X1 /∈ S′ we have a contradiction. Thus T1 and T2 must have only vertices in
common. In fact, they can have only one vertex in common, since having more
vertices in common would imply they have edges in common, and that has been
ruled out. Call this vertex v.

Note that when v is removed from T in each of the resulting connected
components all colored vertices have the same color. Indeed, if there were a
component with both red and blue vertices in it, then the red and blue min-
imal spanning trees would have in common the edge from v leading into this
component, and we know a shared edge is impossible.

Furthermore v is the unique vertex with this property, since removing any
other vertex will leave all of the minimal spanning tree of one color in a single
component, and at least part (and hence some colored nodes) of the other in
the same one.
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Now we modify T ′ to get T by replacing v by two vertices v0 and v1 connected
by an edge e, reconnecting the edges of T ′ incident to v so that red components
join to v0 and blue components to v1. We modify the labeling map for T ′ to
get a labeling map for T by reassigning all of v’s labels from X0 to v0, and all
of v’s labels from X1 to v1. We now see that the new edge e of T induces the
split X0|X1, while all other edges of T induce precisely the splits of S′.

That T is uniquely determined by S we leave as Exercise 7.

Notice that the argument given in this proof can easily be formulated as an
algorithm, called Tree-Popping, for constructing an X-tree from a collection of
splits. To illustrate this, we show only one step which might be done in the
middle of a longer process. Suppose the graph on the left of Figure 4.2 has
already been constructed from some splits, each of which was compatible with
the split {de}|{abcf}. Then we color the vertex labeled de red, and the other

ab

c

de f

ab

c
de

f

Figure 4.2: Incorporating the split {de}|{abcf} into a tree following the proof
of Theorem 9.

labeled vertices blue. If there were a red-blue vertex, that would have to be
the node we seek, since it would lie on both minimal spanning trees. But since
there is no red-blue vertex, to distinguish the vertex v that will be replaced, we
must find the minimal spanning trees of the vertices of each color. For red, this
just a single vertex, while for the blue, it is the entire tree. These intersect at
the vertex labeled de. We thus remove this vertex, replacing it by an edge with
all red vertices joined at one end, and all blue at the other. This gives the tree
on the right of Figure 4.2.

It is instructive to work through a more complete example, such as in Exer-
cise 9.

We also note that if the collection of splits includes all trivial ones (which, by
Exercise 3, are always compatible with the other splits), then Tree Popping will
produce a phylogenetic X-tree, where each of the taxa is located at a distinct
leaf.

The notion of a split is useful for unrooted trees. Its analog for rooted trees
is that of a clade:

Definition. If X is a set of taxa, then a clade is simply a non-empty subset of
X.
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If T ρ is a rooted phylogenetic X- tree, and v ∈ V (T ), then the subset U ⊆ X
of all taxa descended from v on T ρ is called the clade induced by v. We also say
the clade U is displayed on T ρ.

The trivial clades are those with only one element (which are induced by a
vertex that is a leaf of the tree), and the full set X (which is induced by the
root of the tree). Clades are sometimes called clusters, or if they are induced
by a vertex on a rooted tree, monophyletic groups.

There is a simple relationship between clades on rooted trees and splits
on unrooted trees, provided we are careful about how we relate the rooted
and unrooted trees: Given an n-taxon rooted tree T ρ, create an (n + 1)-taxon
unrooted tree T̃ by attaching an additional edge at the root, and labeling the
new leaf this introduces with a new taxon name, say r. (If the tree was originally
rooted by the use of an outgroup which was then deleted, this process simply
reintroduces the outgroup.) Then each clade U displayed on T ρ determines
a split U |V on T̃ with V = X ∪ {r} r U . Conversely, each split U |V on T̃
determines a clade on T ρ, by simply choosing which ever of the sets U, V does
not contain r. We will take advantage of this fact in discussing consensus trees,
since a method based on using splits from unrooted trees will automatically give
a method using clades on rooted trees.

Notice that this correspondence between splits and clades requires that we
change the number of taxa. We are not simply ignoring the root location in
passing from a rooted tree to an unrooted one, but rather encoding it in a special
way. This has implications for the notion of a consensus tree below: ignoring the
root location and constructing a consensus tree using splits may give a different
result than constructing a consensus tree using clades (encoded as splits on a
larger taxon set) and then ignoring the root. (See Exercise 18.)

The notion of compatibility of splits carries over to clades, capturing the
ability of two clades to be displayed on the same tree:

Definition. Two clades U1, U2 of X are said to be compatible if either U1 ⊆ U2,
U2 ⊆ U1 or U1 ∩ U2 = ∅.

4.2 Refinements and Consensus Trees

To illustrate the utility of the splits viewpoint on trees, we give two applications.

First, we can use Theorem 9 to determine when two X-trees can be ‘com-
bined’ into a more refined X-tree. This is useful in a biological setting if we have
several non-binary X-trees that we’ve inferred, perhaps from different data sets,
that have managed to resolve different parts of some unknown binary tree. We
want to combine the information they contain to give a tree that shows more
resolution. For example, in Figure 4.3, we see two trees which have a common
minimal refinement, in a sense that can be made precise through splits.

More formally, we say a tree T2 is a refinement of T1 if every split displayed
by T1 is also displayed by T2.
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Figure 4.3: Two trees and their common refinement

By Theorem 9 we easily see the existence of a common refinement of two (or
more) trees is equivalent to the compatibility of the splits of the two trees.

Corollary 10. Suppose T1, T2, . . . , Tn are X-trees. Then all induced edge splits
from these trees are pairwise compatible if, and only if, there exists an X-tree T
whose displayed splits are precisely those of the Ti. Furthermore, if this X-tree
T exists, it is unique.

In the example of Figure 4.3, one could list the splits from the trees on
the left (there is only one non-trivial split for each tree), check that they are
pairwise compatible, and then apply the Tree Popping algorithm to produce
their common refinement on the right. Of course this example is small, and the
correct common refinement is clear without being so formal, but this gives a
procedure that will produce common refinements in more complicated settings,
with many larger trees.

A more common situation, though, is to have a collection of X-trees which
have some incompatible splits, which therefore can not all be displayed on a
single tree. Then we might want to combine them into a single consensus tree
that only shows features common to all or most, and somehow ignores the
incompatibilities. For instance, this is frequently done when parsimony has
been used to infer trees, since many trees may tie for most parsimonious. Other
situations where this may be desirable include when different genes have been
used to infer highly resolved trees for the same set of taxa, but the trees are not
in complete agreement.

There are several different versions of what should be called a consensus
tree. We define these only for unrooted trees, using splits. For analogous ver-
sions using clades, one simply introduces an extra taxon to encode the root, as
discussed earlier.

Definition. Suppose X-trees T1, T2, . . . , Tn are given. Then the strict consen-
sus tree is the tree displaying precisely the splits that are displayed on every
Ti. The majority-rule consensus tree is the tree displaying precisely the splits
displayed on more than half of the Ti.

Note that the splits displayed on all Ti must be pairwise compatible since
every pair is displayed on a single tree (in fact, on any of the Ti). Thus by
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the Splits Equivalence Theorem, a strict consensus tree exists and is easily
constructed by Tree Popping. Since the splits we use are a subset of those
displayed on any of the Ti, the result will be a tree that has every Ti as a
refinement. In practice, a strict consensus tree is often very poorly resolved;
if there is a single Ti not displaying a particular split, then that split is not
displayed by the strict consensus tree. The strict consensus approach effectively
gives every tree veto power over the splits shown on the others.

The majority-rule consensus tree is defined to weaken the requirement of
complete agreement. The 50% cutoff for a split ‘winning’ the vote is due to the
following.

Theorem 11. Any two splits that are each displayed on more than 50% of the
trees in a collection must be pairwise compatible.

Proof. If two splits each occur on more than half the trees, then, by the pigeon-
hole principle, they must both occur on at least one tree. But splits occurring
on the same tree are compatible.

Because of this theorem, we know the splits occurring with frequency above
50% across the trees are pairwise compatible, and thus by the Splits Equivalence
Theorem they determine a tree. Thus the majority-rule tree actually exists, and
can be found by Tree Popping.

Another possibility is the loose consensus tree. Of the splits displayed on
any of the given trees, it displays exactly those that are compatible with all the
trees. It will therefore display every split that the strict consensus tree does, but
often some more, and thus be a refinement of it. It need not be a refinement of
the majority-rule consensus tree, though, since a split displayed most trees that
is incompatible with a single tree will not be displayed on the loose consensus
tree, but will be on the majority-rule one. This is used less commonly than
majority rule, perhaps because a single ‘error’ in one tree can effectively veto a
correct split in all the others.

One could also consider consensus trees between the strict and majority rule
levels, by choosing a parameter q between 1/2 and 1. Taking all the splits
displayed on more than the fraction q of the trees, we again obtain a pairwise
compatible set, and thus determine a unique tree displaying precisely those
splits.

It’s also possible to consider cut-offs lower than 1/2, but then we cannot be
sure all such splits will be compatible. To get around this issue, one can rank
the splits displayed on all the trees, from highest to lowest, by the number of
trees on which they appear. We then accept the first split in the list. Proceeding
down the list, we accept each split that is compatible with all those previously
accepted. If we continue this process through the full list, and then construct
a tree displaying all accepted splits, we have a greedy consensus tree. The
motivation behind this is that, once we pass below the 50% frequency level, we
are using compatibility with the more frequent splits to help us choose which of
the less frequent splits we should display.
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One issue with a greedy consensus tree is that we may have several splits
with equal ranking, and then the list ordering is chosen arbitrarily. A different
ordering can then lead to acceptance of a different collection of splits, and hence
to a different greedy consensus tree. Software implementations should at least
warn of this situation, though not all do so.

There are other approaches to consensus trees, that seek to resolve conflicts
using different criteria. One of these (MRP) we discuss below in the context
of supertrees, though it is straightforward to use it unchanged to construct a
consensus tree. Another is the Adams consensus tree, which exists only for
rooted trees. It shows the ‘nesting’ of groups of taxa within others that appears
in the clade structure of the input trees. Its construction should be explained
in a later version of these notes.

4.3 Quartets

A possible approach to determining a phylogenetic tree for a large number of
taxa is to try to determine trees for smaller subsets of taxa, and then piece
these together. For this, we’ll use unrooted trees, since the trees relating these
smaller sets might not all contain a common vertex.

If we focus on small subsets, then quartets of 4 taxa are the smallest ones
we should consider, as an unrooted tree relating 3 taxa gives us no information
on a tree topology.

Definition. A quartet tree is a unrooted binary tree with 4 labeled leaves. We
denote the tree by ab|cd if it induces the split {a, b}|{c, d}.

Now any phylogenetic X-tree T induces a collection Q(T ) of quartet trees:

Q(T ) = {ab|cd : for some X0|X1 displayed by T , a, b ∈ X0 and c, d ∈ X1}.

If T is binary, then for every 4-element subset {a, b, c, d} of X, exactly one

of the quartets ab|cd, ac|bd, or ad|bc is in Q(T ), so Q(T ) has
(|X|

4

)
elements.

For non-binary |X|, of course, it has fewer.
If using quartets to deduce phylogenies of larger collections of taxa is to have

a chance of working, we must have the following.

Theorem 12. The collection Q(T ) determines T for a binary tree.

Proof. If |X| ≤ 4 the result is clear, and so we proceed by induction.
If X = {a1, . . . , an}, let Q′ be those quartets in Q(T ) that only involve taxa

in X ′ = {a1, a2, . . . , an−1}. Then Q′ = Q(T ′) for a tree T ′ obtained from T in
the obvious way, by deleting an and its incident edge, and conjoining the two
other edges that edge meets, to get a binary tree. Thus Q′ determines T ′ by
the induction hypothesis.

To determine T , we need only determine the conjoined edge of T ′ to which
the edge leading to an should attach. So considering each edge e of T ′ in turn,
suppose e induces the split X ′0|X ′1 of X ′. Assuming this split is non-trivial, so
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each of the sets in the split has at least two elements, then if for all a, b ∈ X ′0
and c, d ∈ X ′1 both ab|can and aan|cd are in Q(T ), e is the edge we seek. If
the split X ′0|X ′1 is trivial, then whether an edge leading to an shold be attached
along e can be determined by a similar test, the formulation of which we leave
as Exercise 13.

This theorem can be extended to non-binary trees as well.

As you’ll see in the exercises, a subset of Q(T ) may be enough to identify T .
In fact only |X|−3 well-chosen quartets are needed, though not every collection
of quartets of that size is sufficient, and precisely what quartets are needed
depends on the tree.

Of course the real difficulty with determining a phylogenetic tree from quar-
tets is usually not the issue of having insufficiently many quartets. Rather,
whatever inference method is used to infer quartets is likely to give some wrong
results, and so produce a set of quartets that are incompatible. What is needed
is a construction of a tree that somehow reconciles as much information as pos-
sible from inconsistent sources. Such quartet methods for tree construction have
been explored in a number of research papers in recent years.

4.4 Supertrees

Assembling a tree from quartets is an example of a more general problem of
constructing a supertree. We might have obtained a collection of different trees,
with overlapping but different sets of taxa, which we wish to combine into a
single tree. Doing this might enable us to see relationships between species
which do not appear together on any of the individual trees.

Though there are a number of different approaches, here we describe only
one, called Matrix Representation with Parsimony (MRP).

First, we need to extend the idea of parsimony to encompass characters with
missing state information.

Suppose we only know the states some character assigns to some of the taxa
in X. For the remaining taxa, we have no information on what the state is,
though we believe there is some state. Then in a parsimony analysis we can
treat these taxa for which we have no information as we treat internal vertices
on the tree. We consider extensions of the character from the subset of taxa
with known states to all internal vertices and taxa with unknown states. The
standard definitions of parsimony scores can then be used to choose the most
parsimonious tree(s).

If the Fitch-Hartigan algorithm is used to compute parsimony scores for
trees, then only a simple modification needs to be made to deal with missing
information. If the character has state space S, then to any taxon with missing
information we assign the full set S. Taxa for which the state is known are
assigned that state as usual. Then one works up the tree from the leaves to
the root, assigning sets of states to each vertex and counting changes using the
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same rules as when no information is missing. (A similar modification can be
made for the Sankoff algorithm. See Exercise 22 of section 3.8.)

Now given a collection of trees {Ti}, where Ti is a phylogenetic Xi-tree and
the taxon sets Xi may be different but overlapping, let X = ∪Xi. For each split
displayed on each Ti, define a two-state character on Xi by assigning states in
accord with the partition sets. For instance, if an edge e of Ti induces a split
Xi,1|Xi,2 of Xi, we might define the character χTi,e to assign state 1 to those
taxa in Xi,1 and the state 0 to those in Xi,2. For any other taxa in X (i.e., for
those not on Ti), we treat the character value as missing. The MRP supertree is
then the maximum parsimony tree for this character sequence encoding all the
splits on all the Ti. This method thus seeks to find trees in which each split on
each input tree is displayed (or come close to being displayed) when one ignores
the taxa not on that input tree.

Of course as with any use of parsimony, the MRP tree may not be unique.
If there are multiple trees that are most parsimonious, it is common to take a
consensus tree of those.

The terminology ‘Matrix Representation with Parsimony’ may seem natural
to a biologist, but strange to a mathematician. It comes from the use of the
word ‘matrix’ to describe character information that has been placed in a table,
with rows corresponding to taxa, columns to characters, and entries specifying
states, and has little to do with a mathematicians notion of a matrix. In MRP,
the trees we wish to combine are ‘represented’ by a matrix encoding characters
corresponding to their splits.

4.5 Final Comments

All the concepts and methods discussed in this section have been combinatorial
in nature. Even though the problem of reconciling different trees, or summariz-
ing them in a single tree may arise naturally in a biological study, we have used
no biological ideas or models in developing consensus and supertree methods.
This should be kept firmly in mind when these methods are used. They may be
reasonable in some circumstances, but not in others.

As an example, the gene tree/species tree problem of using many gene trees
to infer a single species tree is one that can be approached with a biologically-
motivated model. In that setting the performance of various consensus methods
can be studied, and detailed results on the extent to which various consensus
methods are reliable can be obtained. We’ll return to this in a later chapter.

For now though, we have given no justification that in any particular bio-
logical setting it makes good sense to construct a consensus tree. Even though
it may be common to report a consensus tree when parsimony leads to mul-
tiple most-parsimonious trees, one may question how this procedure actually
fits with the parsimony criterion: a consensus tree of several most-parsimonious
trees may in fact require more state changes, and thus not be most-parsimonious



4.6. EXERCISES 55

itself. This does not mean that such a consensus tree should not be considered,
but just that one should understand the limitations.

Finally, Bryant [Bry03] gives an excellent survey on consensus trees, which
includes many more types than have been presented here. More material on
supertrees can be found in [SS03].

4.6 Exercises

1. List all the splits displayed on the tree in Figure 4.1, including trivial ones.

2. Explain why a set of n taxa will have 2n−1 − 1 splits.

3. Explain why a trivial split of X is compatible with any other split.

4. Show that if distinct splits Y0|Y1 and Y ′0 |Y ′1 of a set Y are compatible then
there is exactly one pair i, j with Yi ∩ Y ′j = ∅.

5. Show that two splits Y0|Y1 and Y ′0 |Y ′1 of a set Y are compatible if and only if
Yi ⊆ Y ′j for some i, j. Further show that Yi ⊆ Y ′j if and only if Y1−i ⊇ Y ′1−j .

6. Problem Deleted.

7. Complete the proof of Theorem 9 by showing a tree T which displays exactly
those splits in some collection S is in fact unique. (Hint: Use induction on
the number of splits. Assume there are two such trees, and ‘contract’ the
edge in each for one specific split.)

8. Elaborate on the given proof of Theorem 9 to explain why the T we con-
struct has the X-tree property that all vertices of degree ≤ 2 are labeled.

9. For X = {a, b, c, d, e, f, g} consider the pairwise compatible splits

a|bcdefg, eg|abcdf, b|acdefg, af |bcdeg, f |abcdeg.

a. By Tree Popping, find an X-tree inducing precisely these splits.

b. Use Tree Popping again, but with the splits in some other order, to again
find the same tree.

10. List all the splits displayed on the two trees on the left of Figure 4.3, and
then use Tree Popping to produce the tree on the right from them.

11. If T1, T2 are X-trees with T2 a refinement of T1, write T1 ≤ T2. Show that
‘≤’ is a partial order on the set of X-trees. Then characterize X-trees that
are maximal with respect to ‘≤’.

12. List all 15 quartets displayed on the tree of Figure 4.1.

13. Complete the proof of Theorem 12, by addressing the issue in its final line.
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14. A collection of quartets is said to be compatible if there is some tree T that
displays them all.

(a) Show that the quartets ab|cd and ac|be are compatible.

(b) Explain why the quartets ab|cd, ac|be, and bc|de are not compatible.
(Note: every pair of these are compatible, so pairwise compatibility of quar-
tets is not enough to show they can all be displayed on a single tree.)

15. For a 5-leaf binary phylogenetic X-tree T , Q(T ) has 5 elements. Draw such
a 5-leaf tree and give a set of only two of these quartets that still determine
T . Give another set of two of these quartets that does not determine T .

16. Generalize the result of the last problem by showing that for any binary
phylogenetic X-tree, there are |X| − 3 quartets that determine T .

17. Show that the definition of compatibility of clades given in the text is con-
sistent with that for compatibility of splits, using the relationship of n-taxon
rooted trees to (n+1)-taxon unrooted ones. (You may find it helpful to use
the result in Exercise 4.)

18. Consider the three trees (a, (b, (c, d))), ((a, b), (c, d))), and (((a, b), c), d)))
on taxa X = {a, b, c, d}.
(a) Construct the strict consensus tree, treating these as rooted.

(b) Construct the strict consensus tree, treating these as unrooted 4-taxon
trees. Is your answer the same as the unrooted version of the tree from (a)?

(c) Construct the majority-rule consensus tree, treating these as rooted.

19. Explain why the greedy consensus tree is a refinement of the loose consensus
tree.

20. If an unrooted binary tree relates n taxa, how many quartets will it display?
How many possible quartets (not necessarily compatible) are there for n
taxa?



Chapter 5

Distance Methods

The next class of methods for inferring phylogenetic trees that we will discuss
are distance methods.

Roughly put, a distance is some numerical measure of similarity of two taxa.
A distance of 0 should indicate the two taxa are the same, and a larger number
signifies the degree of their ‘differentness.’ Although a distance could be based
on something other than a comparison of genetic sequences, in our examples that
will be its origin. Given a collection of taxa, we somehow compute distances
between each pair. We then attempt to find a metric tree so that distances
between taxa on it matches our collection of distances. For a variety of reasons,
it is seldom possible to do this exactly, so a key issue is how we deal with inexact
fit.

We primarily focus on fast algorithmic approaches to using distances to build
a single tree, though we will mention some other approaches that instead choose
a ‘best’ tree according to some criterion.

5.1 Dissimilarity Measures

Before beginning, we need to clarify our terminology. In the introductory para-
graph above, we actually used the word ‘distance’ in two different ways. First, it
was the measure of differentness between taxa, and second it was a measurement
along branches of a metric tree that described the relationships of the taxa. The
first of these should be thought of as coming from data, and the second from
some processing of the data that yields an inferred metric tree. When necessary
to avoid confusion between these two distinct meanings, we’ll call the first a
dissimilarity, and the second a tree metric (as defined in Section 2.3). However
it is very common for the word ‘distance’ to be used for both, so we will also
use that term when it either seems unlikely to be confusing, or its use in some
special terminology is standard practice.

Definition. A dissimilarity map for the set X of taxa is a function δ : X×X →
R such that δ(x, x) = 0 and δ(x, y) = δ(y, x).

57
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In our applications, we’ll always use dissimilarities with non-negative values:
δ(x, y) ≥ 0.

If we already knew a metric tree relating the taxa in X, then the tree metric
arising from it as defined in Chapter 2 would give a dissimilarity measure on X.
Indeed, Proposition 5 shows it has the required properties, and additional ones
as well.

But since our goal is to find such a tree, we instead look for a dissimilarity
measure that can be calculated from data. The simplest such natural one is the
Hamming metric, which simply counts the proportion of sites that are different
in two sequences. If we are given a sequence of characters χ1, χ2, . . . , χn on X,
set

δ(x, y) =
1

n

n∑
i=1

δχi(x),χi(y),

where

δa,b =

{
0 if a = b

1 if a 6= b
.

For instance, given sequences such as

x : AACTAGATCCTGTATCGA

y : ACCTAGGTCCTGTTTCGC

we count 4 differences among 18 sites, so δ(x, y) = 4/18. In biological literature,
the Hamming metric is more usually called the p-distance (because its value is
often denoted by p) or the uncorrected distance. While it is a metric by the
mathematical definition of that term, it usually is not a tree metric as defined
in Section 2.3.

Of course one can easily imagine variations on the Hamming metric, for in-
stance that might assign different weightings to transitions or transversions. We
won’t pursue such possibilities, though, since in a subsequent chapter we’ll con-
struct much more sophisticated dissimilarity maps using a probabilistic model
of molecular evolution. We introduce this particular dissimilarity map here only
to provide a concrete example to keep in mind as we explore how a dissimilarity
can lead to trees.

Dissimilarities can be defined in very different ways than by comparing sites
in sequences. For instance, before sequencing was affordable, DNA hybridization
was sometimes used to measure dissimilarity. DNA from two taxa was heated,
mixed, and cooled, so that the two strands of the helices would separate, and
then combine with similar strands from the other taxon, to form less stable
molecules due to mismatches in base pairings. The melting temperature (on an
appropriate scale) of the hybridized DNA could then be used as a measure of
dissimilarity. One could also imagine using measures of dissimilarity that have
nothing to do with DNA directly, but capture other features of the taxa.

We’d like to think of dissimilarity values as representing at least approximate
distances between taxa along some metric tree, even if we don’t think they will
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exactly match any tree metric. That is, we hope there is some metric tree (T,w),
with positive edge lengths and tree metric d, so that the dissimilarity map δ has
values close to the restriction of the tree metric d when applied to pairs of taxa.
Of course there’s nothing in our definition of a dissimilarity map to ensure this,
or even to suggest that the dissimilarity values are even close to such distances
measured along a metric tree. For now, we simply hope for the best, and forge
ahead.

Suppose then that we have 4 taxa, and using some dissimilarity map we’ve
computed a table of dissimilarities such as:

S1 S2 S3 S4
S1 .45 .27 .53
S2 .40 .50
S3 .62

Table 5.1: Dissimilarities between taxa

How might we find a metric tree (T,w) for which these data are at least
approximately the same as distances computed by the tree metric? More infor-
mally, if we know how far apart we want every pair of leaves to be, how can we
come up with a tree topology and edge lengths to roughly ensure that?

If there were only 2 taxa, and so one dissimilarity value, this would be simple;
draw a one edge unrooted tree and make the edge length match the dissimilarity
value.

With 3 taxa, the situation is not much harder: draw the only possible binary
unrooted tree relating the taxa. Then with the edge lengths called x, y, z, the 3
leaf-to-leaf distances on the tree are x+y, y+z, and x+z. If we set these equal
to the three dissimilarity values, we have 3 linear equations in 3 unknowns, and
can easily solve for x, y, and z.

However, if there are 4 taxa, this approach encounters two problems: First,
we have 3 different unrooted trees to consider, and since we don’t know which
one is going to be best, we have to try them all. Second, there are 5 edge lengths
to be determined on each of these trees. Since there are 6 dissimilarity values,
if we attempt to solve equations to find the edge lengths, we obtain 6 linear
equations in 5 unknowns. Such a system typically has no solution, indicating
that there is no tree metric that will exactly match the dissimilarity values.

With larger sets of taxa, the problem only grows worse. There are more
and more trees to consider, and we find we always have more equations than
unknowns. Although computing a least-squares approximate solution would be
a possible way of dealing with the overdetermined systems of equations, having
to consider all trees will still be as difficult as it was with parsimony.
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5.2 An Algorithmic Construction: UPGMA

Instead of trying to consider all possible trees, an alternative is to use a dis-
similarity measure to build a tree. That is, by considering the dissimilarity
values, we guess or infer certain features of the tree, trying to then combine
these features until we reach a single tree. In this process we think of the dis-
similarities as approximations of an unknown tree metric. We use the numbers
in the dissimilarity table to assign plausible edge lengths on the metric tree we
build.

When pressed to follow this outline, most students come up with some vari-
ant of an approach that is called the average distance method, or, more formally,
the unweighted pair-group method with arithmetic means (UPGMA). Rather
than present the algorithm formally, we develop it through the example data in
Table 5.1 above.

The first natural step is to assume that the two taxa which are shown as
closest by the dissimilarity map are probably closest in the tree. With the data
table above, we pick the two closest taxa, S1 and S3, and join them to a common
ancestral vertex by edges. Drawing Figure 5.1, since S1 and S3 should be .27
apart, we decide to split this, making each edge .27/2 = .135 long.

.1
35

.135

S1

S3

Figure 5.1: UPGMA, step 1

Since S1 and S3 have been joined, we now collapse them into a single com-
bined group S1-S3. To say how far this group is from another taxon, we simply
average the distances from S1 and S3 to that taxon. For example, the distance
between S1-S3 and S2 is (.45 + .40)/2 = .425, and the distance between S1-S3
and S4 is (.53 + .62)/2 = .575. Our dissimilarity table thus collapses to Table
5.2.

S1-S3 S2 S4
S1-S3 .425 .575

S2 .50

Table 5.2: Distances between groups; UPGMA, step 1

Now we simply repeat the process, using the distances in the collapsed table.
Since the closest taxa and/or groups in the new table are S1-S3 and S2, which
are .425 apart, we draw Figure 5.2.
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S1

S3

S2

.135

.135

.0775

.2125

Figure 5.2: UPGMA; step 2

Note the edge to S2 must have length .425/2 = .2125. However the other
new edge must have length (.425/2) − .135 = .0775, since we already have the
edges of length .135 to account for some of the distance between S2 and the
other taxa.

Again combining taxa, we form a group S1-S2-S3, and compute its distance
from S4 by averaging the original distances from S4 to each of S1, S2, and S3.
This gives us (.53+ .5+ .62)/3 = .55. Note that this is not the same as averaging
the distance from S4 to S1-S3 and to S2. That average would downweight the
contribution from S1 and S3, and thus not treat all our dissimilarities in the
same way.

Since a new collapsed distance table would have only the one entry 0.55,
there’s no need to give it. We draw Figure 5.3, estimating that S4 is .55/2 = .275
from the root. The final edge has length .0625, since that places the other taxa
.275 from the root as well.

S1

S3

S2

S4

.135

.135

.0775

.0625

.275

.2125

Figure 5.3: UPGMA; step 3

As suspected, the tree in Figure 5.3 constructed from the dissimilarity data
does not exactly fit it. The tree metric from S3 to S4, for instance, gives .55,
while according to the dissimilarity it should be .62. Nonetheless, the tree metric
distances are at least fairly close to the dissimilarity distances.

If we had more taxa to relate, we’d have to do more steps to perform in the
UPGMA algorithm, but there would be no new ideas involved. At each step, we
join the two closest taxa or groups together, always placing them equidistant
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from a common ancestor. We then collapse the joined taxa or groups into a
single group, using averaging to compute a distance from that new group to the
taxa and groups still to be joined. The one point to be particularly careful about
is that when the distances between two groups are computed, we average all the
original distances from members of one group to another — if one group has n
members and another has m members, we have to average nm distances. Each
step of the algorithm reduces the size of the distance table by one group/taxon,
so that after enough steps, all of the taxa are joined into a single tree.

A few comments on the algorithm are in order here.

First, UPGMA requires little work to give us a tree — at least in com-
parison to using a parsimony approach where we search through all possible
trees, performing an algorithm on each. UPGMA requires searching only for
the smallest entry in a succession of tables, and some rather simple algebraic
computations. This can be viewed as a strength, as the algorithm is very fast1,
and we get a single answer. But it also can be viewed as a weakness, since it is
not completely clear why we should consider the output tree ‘good.’ We have
not explicitly formulated a criterion for judging trees and then found the tree
that is optimal. Instead we’ve designed a process that uses many small steps,
each of which may be reasonable on its own, to simply give us a tree.

Second, UPGMA implicitly assumes that we are seeking a rooted ultrametric
tree. In this example, when we placed S1 and S3 at the ends of equal length
branches, we assumed that the amount of mutation each underwent from their
common ancestor was equal. UPGMA always places all the taxa at the same
distance from the root. While this feature of UPGMA might be desirable if
we believe a molecular clock underlies our data, in other situations it could be
problematic.

5.3 Unequal Branch Lengths

It is not always desirable to impose a molecular clock hypothesis, as use of
UPGMA requires. One way of dealing with this arose in a suggested algorithm
of Fitch and Margoliash, which builds on the basic approach of UPGMA, but
attempts to drop the molecular clock assumption through an additional step.
Though the Fitch-Margoliash algorithm is probably never used in current data
analysis, understanding it is useful for developing ideas.

Before giving the algorithm, we make a few mathematical observations.
First, if we attempt to put 3 taxa on an unrooted tree, then there is only one
topology that needs to be considered. Furthermore, for 3 taxa we can assign
lengths to the edges to exactly fit any given dissimilarities (provided we possibly
accept negative lengths). To see this consider the tree in Figure 5.4. If we have

1For n taxa, UPGMA takes O(n3) steps, though clever programming can reduce this
somewhat.



5.3. UNEQUAL BRANCH LENGTHS 63

A
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Figure 5.4: The unrooted 3-taxon tree

some dissimilarity data δAB , δAC , and δBC , then

x + y = δAB ,
x + z = δAC ,

y + z = δBC .
(5.1)

Solving these equations leads to

x = (δAB + δAC − δBC)/2,

y = (δAB + δBC − δAC)/2, (5.2)

z = (δAC + δBC − δAB)/2.

We’ll refer to the formulas in equations (5.2) as the three-point formulas for
fitting taxa to a tree. Unfortunately, with more than 3 taxa, exactly fitting
dissimilarities to a tree is usually not possible (see Exercise 8). However, the
Fitch-Margoliash algorithm uses the 3-taxon case to handle more taxa.

Now we explain the operation of the algorithm with an example. We’ll use
the dissimilarity data in Table 5.3.

S1 S2 S3 S4 S5
S1 .31 1.01 .75 1.03
S2 1.00 .69 .90
S3 .61 .42
S4 .37

Table 5.3: Dissimilarities between taxa

We begin by choosing the closest pair of taxa to join, just as we did with
UPGMA. Looking at our distance table, S1 and S2 are the first pair to join.
In order to join them without placing them at an equal distance from a com-
mon ancestor, we temporarily reduce to the 3 taxa case by combining all other
taxa into a group. For our data, we thus introduce the group S3-S4-S5. We
find the distance from each of S1 and S2 to the group by averaging their
distances to each group member. The distance from S1 to S3-S4-S5 is thus
d(S1,S3-S4-S5) = (1.01 + .75 + 1.03)/3 = .93, while the distance from S2 to
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S1 S2 S3-S4-S5
S1 .31 .93
S2 .863

Table 5.4: Distances between groups; FM algorithm, step 1a

S3-S4-S5 is d(S2,S3-S4-S5) = (1.00 + .69 + .90)/3 = .863. This gives us Table
5.4.

With only three taxa in this table, we can exactly fit the data to the tree
using the three-point formulas to get Figure 5.5. The key point here is that the

.7415

.1885

.1
215

S1

S2

S3-S4-S5

Figure 5.5: FM Algorithm; step 1

three-point formulas, unlike UPGMA, can produce unequal distances of taxa
from a common ancestor.

We now keep only the edges ending at S1 and S2 in Figure 5.5, and return to
our original data. Remember, the group S3-S4-S5 was only needed temporarily
so we could use the three-point formulas; we didn’t intend to join those taxa
together yet. Since we have joined S1 and S2, however, we combine them into a
group for the rest of the algorithm, just as we would have done with UPGMA.
This gives us Table 5.5.

S1-S2 S3 S4 S5
S1-S2 1.005 .72 .965

S3 .61 .42
S4 .37

Table 5.5: Distances between groups; FM algorithm, step 1b

We again look for the closest pair (now S4 and S5), and join them in a
similar manner. We combine everything but S4 and S5 into a single temporary
group S1-S2-S3 and compute d(S4,S1-S2-S3) = (.75 + .69 + .61)/3 = .683 and
d(S5,S1-S2-S3) = (1.03+ .90+ .42)/3 = .783. This gives us Table 5.6. Applying
the three-point formulas to Table 5.6 produces Figure 5.6.

We keep the edges joining S4 and S5 in Figure 5.6, discarding the edge
leading to the temporary group S1-S2-S3. Thus we now have two joined groups,
S1-S2 and S4-S5. To compute a new table containing these two groups we’ve
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S1-S2-S3 S4 S5
S1-S2-S3 .683 .783

S4 .37

Table 5.6: Distances between groups; FM algorithm, step 2a

S4

S5

S1-S2-S3

.548

.1
3
5

.235

Figure 5.6: FM Algorithm; step 2

found, we average d(S1-S2,S4-S5) = (.75 + 1.03 + .69 + .90)/4 = .8425 and
d(S3,S4-S5) = (.61 + .42)/2 = .515. We’ve already computed d(S1-S2,S3) so
we produce Table 5.7. At this point we can fit a tree exactly to the table by a

S1-S2 S3 S4-S5
S1-S2 1.005 .8425

S3 .515

Table 5.7: Distances between groups; FM algorithm, step 2b

final application of the three-point formulas, yielding Figure 5.7.
Now we replace the groups in this last diagram with the branching patterns

we’ve already found for them. This gives Figure 5.8.
Our final step is to fill in the remaining lengths a and b, using the lengths

in Figure 5.7. Since S1 and S2 are on average (.1885 + .1215)/2 = .155 from
the vertex joining them and S4 and S5 are on average (.135 + .235)/2 = .185
from the vertex joining them, we compute a = .66625 − .155 = .51125 and
b = .17625− .185 = −.00875 to assign lengths to the remaining sides.

Notice that one edge has turned out to have negative length. Since that
can’t really be meaningful, many practitioners would choose to simply reassign
the length as 0. If this happens, however, we should at least check that the
negative length was close to 0. If not, we should doubt that our data really are
described well by the tree we produced.

A dissappointing feature of the Fitch-Margoliash algorithm is that from any
dissimilarity data it always produces the same unrooted topological tree as UP-
GMA. The reason for this is that each time we decide which taxa or groups
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Figure 5.7: FM Algorithm; step 3
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Figure 5.8: FM Algorithm; completion

to join, both methods consider exactly the same collapsed data table and both
choose the pair corresponding to the smallest entry in the table. It is therefore
only the metric features of the resulting trees that will differ.

To be fair, Fitch and Margoliash actually proposed their algorithm not as an
end in itself, but a heuristic method for producing a tree likely to have a certain
optimality property (see Exercise 10). We are viewing it here as a step toward
the Neighbor Joining algorithm which will be introduced shortly. Familiarity
with UPGMA and the Fitch-Margoliash algorithm will aid us in understanding
that more elaborate method.

5.4 The Four-point Condition

If we are interested in potentially non-ultrametric trees, as is often the case
because of the implausibility of a molecular clock hypothesis, there is a fun-
damental flaw in using UPGMA to construct trees. Moreover, this flaw is not
corrected by the use of the three-point formulas alone.

To better understand the problem, consider the metric quartet tree in Figure
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5.9, which we imagine representing the true relationships between the taxa. Here
x and y represent specific lengths, with x much smaller than y. Then perfect
dissimilarity data (i.e., dissimilarities determined by the tree metric) would give
us the distances in Table 5.8.

S3 S4

S1 S2

x

x

x

y y

Figure 5.9: The true relationships of taxa S1, S2, S3, S4

S1 S2 S3 S4
S1 3x x+ y 2x+ y
S2 2x+ y x+ y
S3 x+ 2y

Table 5.8: Distances between taxa in Figure 5.9

But if y is much bigger than x, (in fact, y > 2x is good enough) then the
closest taxa by distance are S1 and S2. Now the first step of UPGMA will
be to look for the smallest dissimilarity in the table, and join those two taxa.
This means we’ll choose S1 and S2 as the most closely related, and relate them
by a tree that already has a topological mistake. No matter what we do to
compute edge lengths, or how the subsequent steps proceed, we will not recover
the original tree topology.

The essential problem here is a conflict between closeness of taxa as measured
by the tree metric and closeness in the graph theoretic sense as measured by
the number of edges on the path connecting them. These are very different
notions. It is only reasonable to expect the first to be obvious from data, while
the second is the one more relevant to determining the topology of the tree.
This is the issue we need to explore theoretically, so that in the next section we
can give a practical algorithm to address the problem.

Definition. Two leaves of a tree that are graph-theoretic distance 2 apart are
said to form a cherry, or are said to be neighbors.

Focusing on quartet trees for simplicity, the problem with UPGMA is that
it can incorrectly identify a cherry. Once this first cherry is chosen, the full
topological quartet tree is determined. So to improve on UPGMA, the key
insight is to that we must find a better way to pick a cherry.
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S1

S2

S3

S4

Figure 5.10: A quartet tree with cherries S1,S2 and S3,S4

Consider the quartet tree in Figure 5.10, viewed as a metric tree with positive
edge lengths. Letting dij = d(Si,Sj) denote the tree metric between leaves, we
see that

d12 + d34 < d13 + d24,

since the quantity on the left includes only the lengths of the four edges leading
from the leaves of the tree, while the quantity on the right includes all of those
and, in addition, twice the central edge length. Notice also that

d13 + d24 = d14 + d23

by similar reasoning.
On the other hand, if we consider a different quartet tree, ((S1,S3), (S2,S4)),

we find

d13 + d24 < d12 + d34 = d14 + d23.

Notice the inequalities and equalities in this statement are all incompatible with
those for the first tree. For instance d13 +d24 < d12 +d34 for ((S1,S3), (S2,S4)),
while d13 + d24 > d12 + d34 for ((S1,S2), (S3,S4)) . These simple observations
lead to a way of using metric information to identify cherries. We summarize
this as a theorem.

Theorem 13. A metric quartet tree relating taxa a, b, c, d which has positive
edge lengths has cherries a, b and c, d if, and only if, any (and hence all) of the
three inequalities/equalities in the tree metric that follow hold:

d(a, b) + d(c, d) < d(a, c) + d(b, d) = d(a, d) + d(b, c).

It should already be clear this observation will be useful, since identifying
quartet trees enables us to identify larger tree topologies: For a positive-edge-
length binary phylogenetic X-tree T , we get induced positive-edge-length trees
for every 4-element subset of X, and hence we can identify the appropriate
quartet tree for each such subset. Then, by results in Chapter 4, these quartet
trees determine the topology of the tree T .

However, we can do even better in this vein, giving a condition on a dissim-
ilarity map that enables us to relate it to a tree metric.
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Definition. A dissimilarity map δ on X satisfies the four-point condition if for
every choice of four taxa x, y, z, w ∈ X (including non-distinct ones),

δ(x, y) + δ(z, w) ≤ max{δ(x, z) + δ(y, w), δ(x,w) + δ(y, z)}. (5.3)

Note the non-strict inequality in this definition allows us to formulate the
following for trees that are not necessarily binary.

Theorem 14. Given any metric tree with positive edge lengths, its tree metric
is a dissimilarity map that satisfies the four-point condition.

Proof. We leave the proof as Exercise 17.

The converse to this theorem is more remarkable.

Theorem 15. Suppose |X| ≥ 3, and δ is a dissimilarity on X with δ(x, y) 6= 0
whenever x 6= y. Then if δ satisfies the four-point condition, there is a unique
metric X-tree with positive edge lengths whose tree metric agrees with δ.

Proof. The case of |X| = 3 follows by taking z = w in the 4-point condition as
stated above, and applying the three-point formulas with a little care to show
edge lengths are positive (see Exercise 18). The case |X| = 4 is Exercise 19.

For larger |X| = N , we proceed by induction. However, we first need the
notion of a generalized cherry on an X-tree. For any taxon labeling an internal
vertex of the tree, temporarily attach a new edge at that vertex and move the
label to its other end, so all labels are now on unique leaves of a phylogenetic
X-tree. Then we refer to any cherry on this modified tree as a generalized cherry
on the original tree.

Now suppose X = {S1,S2, . . . ,SN}. Using the inductive hypothesis, let
T ′ be the unique metric X ′-tree with positive edge lengths relating X ′ =
{S1,S2, . . . ,S(N − 1)} whose tree metric restricts to δ on X ′. Now choose
some generalized cherry on T ′, and, assume the taxa in the cherry are S1,S2 by
renaming them if necessary.

For all j 6= 1, 2, N consider the 4-leaf metric trees on the taxa {S1,S2,Sj,SN}
whose tree metrics agree with δ. (These trees exists by the 4-taxon case pre-
viously shown.) We claim that at least one of the pairs S1,SN , or S2,SN , or
S1,S2 forms a generalized cherry in all of these 4-leaf trees. To see why this is
so, suppose S1,SN form a generalized cherry in the tree for {S1,S2,Sk, SN} for
some k. On this 4-leaf tree if the vertex where paths to S1, S2 and SN meet is
at a metric distance a from S1, and the vertex where paths from S1, S2, Sk meet
is at a distance b from S1, then a ≤ b. But since S1 and S2 form a generalized
cherry in T ′, the vertex where paths from S1, S2, Sk meet on T ′ is the same
as that where paths from S1, S2, and Sj meet for all j < N . Now a can be
computed from the distances between S1,S2 and SN , and b from the distances
between S1,S2,Sj for any 2 < j < N , always giving the same value regardless
of j, by the inductive hypothesis. But then the inequality a ≤ b shows that
S1 and SN must form a generalized cherry in the trees for all {S1,S2,Sj,SN}.
Similarly if S2,SN form a generalized cherry for one of the 4-leaf trees, they
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form a generalized cherry for all. If there are no 4-leaf trees where either S1,SN
or S2,SN form a generalized cherry, then S1,S2 must form a generalized cherry
in all.

Using the claim of the last paragraph, by interchanging the names of S1,S2,SN
if necessary, we may assume S1,SN always form a generalized cherry for all the
4-leaf trees relating S1,S2,Sj,SN . Again let T ′ be the tree for {S1,S2, . . . ,S(N−
1)}. (So now S1 and S2 may not form a generalized cherry in T ′ due to in-
terchanging taxa names.) We leave to the reader the final step of giving the
unique way to ‘attach’ SN to T ′ consistent with all dissimilarity values (Exercise
20).

5.5 The Neighbor Joining Algorithm

In practice, UPGMA with its ultrametric assumption is only used on biolog-
ical data in very special circumstances. Much preferred is a more elaborate
algorithm, called Neighbor Joining, which is built on the four-point condition.

However, it is important that Neighbor Joining not require that the four-
point condition be exactly met for the dissimilarity data to which it is applied,
since dissimilarities computed from data should be expected at best to be only
roughly consistent with a metric tree. We therefore want to perform various
averaging processes as we go along in order to smooth out some of the errors in
fit.

To motivate the algorithm, we imagine a binary positive-edge-length tree in
which taxa S1 and S2 form a cherry joined at vertex v, with v somehow joined
to the remaining taxa S3, S4,. . . , SN , as in Figure 5.11.

S1

S2
SN

S3
S4

.
.
.
.

.

.

.

V

Figure 5.11: Tree with S1 and S2 forming a cherry

If our dissimilarity data agreed exactly with a metric for this tree then for
every i, j = 3, 4, . . . , N , we’d find from the four-point condition that

d12 + dij < d1i + d2j . (5.4)

For fixed i, there are N − 3 possible choices of j with 3 ≤ j ≤ N and j 6= i. If
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we sum the inequalities (5.4) for these j we get

(N − 3)d12 +

N∑
j=3
j 6=i

dij < (N − 3)d1i +

N∑
j=3
j 6=i

d2j . (5.5)

To simplify this, define the total dissimilarity between taxon Si and all other
taxa as

Ri =

N∑
j=1

dij .

Then adding di1 + di2 + d12 to each side of inequality (5.5) allows us to write it
in the simpler form

(N − 2)d12 +Ri < (N − 2)d1i +R2.

Subtracting R1 + R2 + Ri from each side of this then gives a more symmetric
statement,

(N − 2)d12 −R1 −R2 < (N − 2)d1i −R1 −Ri.

If we apply the same argument to Sn and Sm, rather than S1 and S2, we
are led to define

Mnm = (N − 2)dnm −Rn −Rm. (5.6)

Then if Sn and Sm form a cherry, we’ll have that

Mnm < Mnk

for all k 6= m.
This gives us the criterion used for Neighbor Joining: From the dissimilarity

data, compute a new table of values for Mij using equation (5.6). Then choose
to join the pair Si,Sj of taxa with the smallest value of Mij .

The argument above shows that if Si and Sj form a cherry in a metric tree
producing the dissimilarity data, then the value Mij will be the smallest of the
values in the ith row and jth column of the table for M . However, this is not
enough to justify the Neighbor Joining criterion. An additional argument is still
needed to show the smallest entry in the entire table for M truly identifies a
cherry. Though this claim is plausible, we outline a proof of it in Exercise 24.

We now describe the full Neighbor Joining algorithm.

Algorithm.
1. Given dissimilarity data for N taxa, compute a new table of values of M

using equation (5.6). Choose the smallest value in the table for M to determine
which taxa to join. (This value may be, and usually is, negative, so ‘smallest’
means the negative number with the greatest absolute value.)

2. If Si and Sj are to be joined at a new vertex v, temporarily collapse all
other taxa into a single group G, and determine the lengths of the edges from
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Si and Sj to v by using using the three-point formulas for Si, Sj, and G as in
the algorithm of Fitch and Margoliash.

3. Determine distances/dissimilarities from each of the taxa Sk in G to v by
applying the three-point formulas to the distance data for the three taxa Si, Sj
and Sk. Now include v in the table of dissimilarity data, and drop Si and Sj.

4. The distance table now includes N − 1 taxa. If there are only 3 taxa, use
the three-point formulas to finish. Otherwise go back to step 1.

Exercise 24 completes the proof of the following theorem, by showing that for
dissimilarity data consistent with a tree metric, the Neighbor Joining algorithm
really does join taxa to correctly recover the metric tree.

Theorem 16. Suppose a dissimilarity map on X is the restriction of a tree
metric for a binary metric phylogenetic X-tree T with all positive edge lengths.
Then the Neighbor Joining algorithm will reconstruct T and its edge lengths.

As you can see already, Neighbor Joining is not pleasant to do by hand.
Even though each step is relatively straightforward, it’s easy to get lost in the
process with so much arithmetic to do. In the exercises you’ll find an example
partially worked that you should complete to be sure you understand the steps.
After that, we suggest you use a computer program to avoid mistakes (or, even
better, write your own program).

The accuracy of various tree construction methods – the ones outlined so far
in these notes and many others – has been tested primarily through simulating
DNA mutation according to certain specified models of mutation along phylo-
genetic trees and then applying the methods to see how often they recover the
tree that was the basis for the simulation. These tests have lead researchers to
be considerably more confident of the results given by Neighbor Joining than
by UPGMA. While UPGMA may be reliable, or even preferred, under some
special circumstances, Neighbor Joining works well on a broader range of data.
Since it appears that a molecular clock hypothesis is often violated by real data,
Neighbor Joining is by far the most commonly used distance method for tree
construction in phylogenetics.

5.6 Additional Comments

An important point to remember is that so far we have simply hoped the dis-
similarity measure we began with was reasonably close to a tree metric, and
so could be lead to an appropriate metric tree. But we have given no argu-
ment that the Hamming distance, or any other dissimilarity measure, should be
approximately ‘tree-like.’ In fact, under plausible models for the evolution of
DNA sequences the Hamming distance need not be close to tree-like, unless the
total amount of mutation between taxa is small. We’ll overcome this problem in
the next chapter, by developing such models and then using them to introduce
corrections.
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Although Neighbor Joining and UPGMA lack an explicit criterion for how
they determine the ‘best’ tree to fit data, there are distance methods which
are based on such criteria. For instance, the Minimum Evolution approach
considers each possible topological tree in turn, use least-squares minimization
to determine edge lengths that best fit the dissimilarity data, and then chooses
from these metric trees the one with the minimum total of edge lengths. To
follow this scheme, however, one is forced to consider all possible topological
trees, and this prevents the method from being comparable in speed to the
algorithmic approaches discussed here. A variant of this, Balanced Minimum
Evolution, introduces weights in the least-squares minimization in a specific way.
Neighbor Joining has been shown to be a greedy algorithm to approximate the
BME tree, which avoids searching over all trees.

A valid criticism of all distance methods is that they do not use the full
information in the data, since they are based on only pairwise comparisons
of the taxa. By not comparing all taxa at once, some potential information
is lost. It’s not too hard to see that it is impossible to reconstruct sequence
data, or even a rough description of it, from the collection of pairwise Hamming
distances between them. Thus we have lost something by boiling the sequences
down so crudely into a few numbers. Indeed, this is probably the main reason
distance methods should be viewed as a less than optimal approach, to be used
primarily for quick initial explorations of data, or on very large data sets when
other methods are too slow to be feasible. Often software for more elaborate
inference methods will begin by constructing an initial ‘pretty-good’ tree by a
distance method, before searching for a better tree that is similar to it. However,
for a very large number of taxa it may not be possible to effectively search among
similar trees in an acceptable amount of time.

Finally, theoretical work on distance methods is continuing. There is a
variant of Neighbor Joining, called Bio-NJ, that gains improved performance by
taking into account that the dissimilarity between taxa a, b will be statistically
correlated with that between c, d if the path from a to b shares some edges
with that from c to d. Other recent theoretical work has indicated that if
this correlation were more fully exploited, then distance methods could be (in
a precise technical sense) similar in effectiveness to more elaborate inference
through a maximum likelihood framework.

5.7 Exercises

1. For the tree in Figure 5.3 constructed by UPGMA, compute a table of
distances between taxa along the tree. How does this compare to the original
dissimilarities of Table 5.1?

2. Suppose four sequences S1, S2, S3, and S4 of DNA are separated by dissim-
ilarities as in Table 5.9. Construct a rooted tree showing the relationships
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between S1, S2, S3, and S4 by UPGMA.

S1 S2 S3 S4
S1 1.2 .9 1.7
S2 1.1 1.9
S3 1.6

Table 5.9: Dissimilarity data for Problems 2 and 5

3. Perform UPGMA on the data in Table 5.3 that was used in the text in the
example of the FM algorithm. Does UPGMA produce the same tree as the
FM algorithm topologically? metrically?

4. The fact that dissimilarity data relating three taxa can be exactly fit by
appropriate edge lengths on the single unrooted topological 3-taxon tree is
used in the Neighbor Joining algorithm.

a. Derive the three-point formulas of Equation 5.1.

b. If the dissimilarities are δAB = .634, δAC = 1.327, and δBC = .851, what
are the lengths x, y, and z?

5. Use the FM algorithm to construct an unrooted tree for the data in Table
5.9 that were also used in Problem 2. How different is the result?

6. A desirable feature of a dissimilarity map on sequences is that it be additive,
in the sense that if S0 is an ancestor of S1, which is in turn an ancestor of
S2, then

d(S0,S2) = d(S0,S1) + d(S1,S2).

a. Explain why an additive dissimilarity map is desirable if we are trying
to use dissimilarities to construct metric trees.

b. Give an example of sequences to illustrate that the Hamming dissimilar-
ity might not be additive.

c. If mutations are rare, why might the Hamming dissimilarity be approxi-
mately additive?

7. While any dissimilarity values between 3 taxa can be fit to a metric tree
(possibly with negative edge lengths), that’s not the case if we want to fit
an ultrametric tree.

a. If the three dissimilarities are 0.3, 0.4, and 0.5, find an unrooted tree
that fits them, and explain why no choice of a root location can make this
tree ultrametric.

b. If the three dissimilarities are 0.2, 0.3, 0.3 find an unrooted tree that fits
them, and locate a root to make it ultrametric.
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c. If the three dissimilarities are 0.3, 0.3, and 0.4, find an unrooted tree
that fits them, and explain why no choice of a root location can make this
tree ultrametric.

8. While distance data for 3 taxa can be exactly fit to an unrooted tree, if
there are 4 (or more) taxa, this is usually not possible.

a. For the tree ((a, b), (c, d)), denoting distances between taxa with notation
like dab, write down equations for each of the 6 such distances in terms of
the 5 edge lengths. Explain why if you use dissimilarity values in place of
the distances these equations are not likely to have an exact solution.

b. Give a concrete example of 6 dissimilarity values so that the equations
in part (a) cannot be solved exactly. Give another example of values where
the equations can be solved.

9. Suppose you have a dissimilarity values for n taxa, and wish to see if it could
exactly fit a tree metric on a particular binary tree T . How many equations
and how many unknowns would be in the resulting system of equations
you would need to solve? Show for n ≥ 4 there are more equations than
unknowns in this system, and thus it is unlikely to have a solution.

10. A number of different measures of goodness of fit between dissimilarity
data and metric trees have been proposed. Let δij denote the dissimilarity
between taxa i and j, and eij denote the tree metric distance from i to j.
A few of the these measures are:

sFM =

∑
i,j

(
δij − eij
δij

)2
 1

2

,

sF =
∑
i,j

|δij − eij | ,

sTNT =

∑
i,j

(δij − eij)2

 1
2

.

In all these measures, the sums include terms for each distinct pair of taxa,
i and j.

a. Compute these measures for the tree constructed in the text using the
FM algorithm, as well as the tree constructed from the same data using
UPGMA in Problem 3. According to each of these measures, which of the
two trees is a better fit to the data?

b. Explain why these formulas are reasonable ones to use to measure good-
ness of fit. Explain how the differences between the formulas make them
more or less sensitive to different types of errors.
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Note: Fitch and Margoliash proposed choosing the optimal metric tree to
fit data as the one that minimized sFM . The FM algorithm was introduced
in an attempt to get an approximately optimal tree.

11. Suppose the unrooted metric tree in Figure 5.12 correctly describes the
evolution of taxa A, B, C, and D.

A B

C D

.02 .02

.02

.1 .1

Figure 5.12: Tree for problem 11

a. Explain why, regardless of the location of the root, a molecular clock
could not have operated.

b. Give a dissimilarity table by calculating tree metric distances between
each pair of the four taxa. Perform UPGMA on that data.

c. UPGMA did not reconstruct the correct tree. Where did it go wrong?
What was it about this metric tree that led it astray?

d. Explain why the FM algorithm will also not reconstruct the correct tree.

12. Show that every unrooted binary phylogenetic tree with at least three taxa
has at least two cherries. (A unrooted binary tree with n leaves that has
only two cherries is sometimes called a caterpillar. Despite the unfortunate
mixing of metaphors, why is this terminology reasonable?)

13. For the quartet tree ((a, d), (b, c)) that was not explicitly treated in Section
5.4, write the inequalities and equalities that hold expressing the four-point
condition.

14. Show that if a dissimilarity map on X satisfies the four-point condition,
then it satisfies the triangle inequality on X. (Rather than deducing this
from Theorem 15, show it directly by taking several of the taxa to be the
same in the four-point condition.)

15. If a dissimilarity map arises from a tree metric on X, then it is a metric on
X. Show that the converse is false by giving an example of a metric on a
set X that is not a tree metric.

16. Show that the four-point condition is equivalent to the following statement:
For every choice of x, y, z, w ∈ X, of the three quantities

δ(x, y) + δ(z, w), δ(x, z) + δ(y, w), δ(x,w) + δ(y, z)
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the two (or three) largest are equal.

17. Prove Theorem 14, by first observing that it’s enough to prove it for 4-leaf
trees. For 4-leaf trees, be sure you consider both binary and non-binary
trees, and cases where x, y, z, w are all distinct and when they are not.

18. Prove Theorem 15 for the case |X| = 3. (Be sure you show all edge lengths
are non-negative by using the four-point condition.)

19. Prove Theorem 15 for the case |X| = 4.

20. Give the final step of the proof of Theorem 15.

21. Before working through an example of Neighbor Joining, it’s helpful to
derive formulas for Steps 2 and 3 of the algorithm. Suppose we’ve chosen
to join Si and Sj in Step 1.

a. Show that for Step 2, the distances of Si and Sj to the internal vertex v
can be computed by

d(Si, v) =
δ(Si,Sj)

2
+

Ri −Rj
2(N − 2)

,

d(Sj, v) =
δ(Si,Sj)

2
+

Rj −Ri
2(N − 2)

.

Then show the second of these formulas can be replaced by

d(Sj, v) = δ(Si,Sj)− d(Si, v).

b. Show that for Step 3, the distances of Sk to v, for k 6= i, j can be
computed by

d(Sk, v) =
δ(Si,Sk) + δ(Sj,Sk)− δ(Si,Sj)

2
.

22. Consider the distance data of Table 5.10. Use the Neighbor Joining algo-

S1 S2 S3 S4
S1 .83 .28 .41
S2 .72 .97
S3 .48

Table 5.10: Taxon distances for Problem 22

rithm to construct a tree as follows:

a. Compute R1, R2, R3 and R4 and then a table of values for M for the
taxa S1, S2, S3, and S4. To get you started

R1 = .83 + .28 + .41 = 1.52 and R2 = .83 + .72 + .97 = 2.52
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so
M(S1,S2) = (4− 2).83− 1.52− 2.52 = −2.38.

b. If you did part (a) correctly, you should have a tie for the smallest value
of M . One of these smallest values is M(S1,S4) = −2.56, so let’s join S1
and S4 first.

For the new vertex v where S1 and S4 join, compute d(S1, v) and d(S4, v)
by the formulas in part (a) of the previous problem.

c. Compute d(S2, v) and d(S3, v) by the formulas in part (b) of the previous
problem.

Put your answers into the new distance Table 5.11.

v S2 S3
v
S2 .72

Table 5.11: Group distances for Problem 22

d. Since there are only 3 taxa left, use the three-point formulas to fit v, S2,
and S3 to a tree.

e. Draw your final tree by attaching S1 and S4 to v with the distances given
in part (b).

23. Consider the distance data in Table 5.12, which is exactly fit by the tree of

S1 S2 S3 S4
S1 .3 .4 .5
S2 .5 .4
S3 .7

Table 5.12: Taxon distances for Problem 23

Figure 5.9, with x = .1 and y = .3.

a. Use UPGMA to reconstruct a tree from these data. Is it correct?

b. Use Neighbor Joining to reconstruct a tree from these data. Is it correct?

24. Complete the proof of Theorem 16 by showing that the criterion used by
Neighbor Joining to pick cherries from dissimilarity data arising from a
positive edge length binary metric tree will pick only true cherries. Do this
by following the outline below of the proof of Studier and Keppler.

a. Show Mmn −Mij =
∑

k 6=i,j,m,n

((dik + djk − dij)− (dmk + dnk − dmn)).

Now suppose Mij is minimal but that i and j do not form a cherry.
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b. Explain why neither i nor j are in any cherry.

Pick some cherry Sm,Sn, and consider the 4-leaf subtree Q of T joining
Si,Sj,Sm,Sn inside T . Denote the internal vertices of it with degree 3 by u
(joined to i, j) and v (joined to m,n). For each additional taxon Sk, show
the following:

c. If the path in T from Sk to Q joins Q at a vertex x along the path from
i to j, then (dik + djk − dij)− (dmk + dnk − dmn) = −2dux − 2duv.

d. If the path in T from Sk to Q joins Q at a vertex x along the path from
u to v, then (dik + djk − dij)− (dmk + dnk − dmn) = −4dvx + 2duv.

e. Conclude from the fact that left hand side of the equality in (a) is non-
negative that at least as many of the Sk are described by (d) as by (c); and
thus there are strictly more leaves that are joined to the path from i to j
at u than at any other vertex.

f. Explain why since i and j are not in any cherries there must be a cherry
r, s which is joined to the path from i to j at some vertex other than u.

g. Applying the argument of parts (c), (d), (e) to r, s instead of m,n, arrive
at a contradiction.
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Chapter 6

Probabilistic Models of
DNA Mutation

The methods developed so far have not required any detailed mathematical
description of the mutation processes DNA undergoes from generation to gen-
eration. In fact, the only real consideration we’ve given to the mutation process
is to point out that if we believe mutations are sufficiently rare events, then
both parsimony and use of the uncorrected p-distance are justifiable approaches
to inferring a tree. Under such circumstances mutations are unlikely to occur
multiple times at the same site, so possible hidden mutations would be negligi-
ble.

However, if mutations are not so rare, either because of a high mutation rate
or because of a long elapsed time, then along any edge of a tree a particular
site might experience more than one change. In the idealized situation of ob-
serving both the ancestral and descendant sequence, at most one mutation is
observable at a site, though several might have occurred. Under these circum-
stances both the principal of parsimony and the Hamming dissimilarity map
would give inappropriate views as to how much mutation has occurred — they
both underestimate the true amount of change.

To do better, we need explicit mathematical models describing how base
substitutions occur. Since mutations appear to be random events, we formulate
these probabilistically. In subsequent chapters these models will be used first
to develop improved dissimilarity maps for distance methods, and then as a
basis for the primary statistical approaches to phylogenetic inference, Maximum
Likelihood and Bayesian analysis.

6.1 A first example

To begin, we present a simple example in order to illustrate the basic modeling
approach. We’ll keep this discussion as informal as possible, and then be more
careful with our terminology later on. For those who have seen Markov models

81
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before, either in a probability or linear algebra course, the framework will be
familiar.

Our model will first describe one site in a DNA sequence, and how it changes
from an ancestral sequence to a descendant sequence along a single edge of a
tree. To further simplify, we focus not on the precise base at that site, but only
on whether a purine R or a pyrimidine Y appears.

To be concrete about the situation we wish to describe, suppose we somehow
had access to data of an ancestral sequence S0 and a descendant sequence S1:

S0 : RRYRYRYYRYYYRYRYYRRYY

S1 : RYYRYYYYRYYYRYRYYRRYR

To describe an arbitrary site in an ancestral sequence, we simply specify the
probabilities that site might be occupied by either an R or Y. For instance the
two numbers

(P(S0 = R),P(S0 = Y)) = (pR, pY ) = (.5, .5)

would indicates an equal chance of each, while (pR, pY ) = (.6, .4) would indicate
a greater likelihood of a purine. Since our site must have either a purine or
a pyrimidine, note the two probabilities must add to 1. If (pR, pY ) = (.5, .5),
then we can think of the ancestral base as being determined by the flip of a fair
coin. If (pR, pY ) = (.6, .4), then we can still think of the ancestral base as being
determined by a coin flip, but the coin must be biased so that its ‘R’ side lands
up in 60% of a large number of tosses.

Although our model is describing only one site in the sequence, we view the
data sequences as being many different trials of the same probabilistic process.
Thus (pR, pY ), the probabilities that a site in an idealized ancestral sequence of
infinite length is occupied by an R or Y, can be estimated by the frequencies at
which these occur in the observed sequence. For example, the 21-base sequence
S0 above has 9 Rs and 12 Ys, which leads us to estimate pR = 9/21 and pY =
12/21.

To justify this estimate, we are making what is often called an i.i.d. assump-
tion, that each site behaves independently with an identical distribution. If the
sites are independent and identically distributed, we may use the data for them
all to infer things about the common process they all undergo.

With the ancestral sequence described, we now focus on probabilities of base
substitutions as S0 evolves into S1. There are 4 possibilities here, R→ R, R→ Y,
Y→ R and Y→ Y, which in our data occurred in a total of 7, 2, 1, and 11 sites,
respectively. It is most convenient to summarize this through conditional prob-
abilities. For instance, the conditional probability that an ancestral R remains
an R is denoted by

P(S1 = R | S0 = R),

which we read as ‘the probability that we have an R in S1 given that we had an
R in S0.’ For our data, using the i.i.d. assumption, we estimate

P(S1 = R | S0 = R) = 7/9,
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since of the 9 ancestral Rs, 7 remained Rs. Similarly we estimate

P(S1 = Y | S0 = R) = 2/9,

P(S1 = R | S0 = Y) = 1/12,

P(S1 = Y | S0 = Y) = 11/12.

Notice

P(S1 = R | S0 = R) + P(S1 = Y | S0 = R) = 1,

P(S1 = R | S0 = Y) + P(S1 = Y | S0 = Y) = 1,

as the total conditional probability of either an R or Y appearing in S1, assuming
that the base in S0 is given, must be 1.

Now our model is summarized by six probabilities, which we organize into a
row vector and a matrix:

p0 =
(
pR pY

)
=
(
9/21 12/21

)
,

M =

(
P(S1 = R | S0 = R) P(S1 = Y | S0 = R)
P(S1 = R | S0 = Y) P(S1 = Y | S0 = Y)

)
=

(
pRR pRY
pY R pY Y

)
=

(
7/9 2/9
1/12 11/12

)
.

(Note the switch in order here for the state indications on the matrix entries,
where P(S1 = R | S0 = Y) = pY R, for instance.) The rows of the matrix refer
to ancestral states, while the columns refer to descendant ones. As a result, the
entries across any row add to 1, though the column sums have no special value.

One point of this matrix notation is that the product p0M has meaningful
entries:

p0M =
(
pR pY

)(pRR pRY
pY R pY Y

)
=
(
pRpRR + pY pY R pRpRY + pY pY Y

)
where, for instance, the left entry is

pRpRR + pY pY R = P(S1 = R | S0 = R)P(S0 = R) (6.1)

+ P(S1 = R | S0 = Y)P(S0 = Y) (6.2)

= P(S1 = R). (6.3)

Although this last equality follows from various formal multiplication and sum
rules of probabilities, it can also be understood intuitively: The term on the
right side of (6.1) gives the probability that we have an ancestral R that then
remains an R. The term in (6.2) gives the probability that we have an ancestral
Y that then changes to an R. Since these are the only ways we could have an R

in the descendant site, by adding these, we are computing the probability that
the descendant has an R, as claimed in equation (6.3).
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Similarly, the right entry of the product p0M is P(S1 = Y). Thus if p1

denotes the probability distribution of Rs and Ys for S1, we have shown

p1 = p0M.

The matrix M is therefore not just a table to encapsulate the various probabili-
ties of changes in the substitution process between the ancestral and descendant
sequences; the multiplication of a vector by M actually ‘does’ the process.

What, then, might happen if the sequence S1 continues to evolve? Assuming
circumstances are similar to those during the evolution of S0 to S1, and the
elapsed time is similar, it’s reasonable to hypothesize that we would obtain a
sequence S2 whose R/Y composition would be described by

p2 = p1M = p0M
2.

Thinking of M as describing one time-step, we now have a model of sequence
evolution using discrete time, with a descendant sequence after n time steps
being described by

pn = p0M
n.

The parameters of our model are a vector p0 of non-negative numbers that sum
to 1, which we call the root distribution vector, and a matrix M of non-negative
numbers whose rows sum to one, which we call a Markov matrix (or stochastic
matrix ). The root distribution describes the models starting conditions (the
ancestral sequence) while the Markov matrix describes the substitution process
in a single time step.

A continuous-time version

In the presentation above, we initially thought of M as describing evolution
along a full edge of a tree. Then we shifted to imagining it as describing evolution
for just one time-step, and that an edge might be many time steps long. While
both of these views are useful in some settings, they essentially use a discrete
notion of time.

While mutations do occur at discrete times, corresponding to generations
of the evolving organism, this is not always the simplest way to view things.
Since the span of a generation is usually quite small relative to evolutionary
time scales, it is more common to describe the evolutionary process using a
continuous notion of time.

In this formulation, we imagine that there are certain rates at which the
various types of substitutions occur, and we organize them into a matrix such
as

Q =

(
qRR qRY
qY R qY Y

)
.

Here, for instance qRY denotes the instantaneous rate at which Rs are replaced
by Ys, and would be measured in units like (substitutions at a site)/(unit of
time). Moreover qRY ≥ 0, or more likely qRY > 0.
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At first it seems nonsensical to say entry qRR should be the rate at which Rs
are replaced by Rs. But if some Rs are being replaced by Ys, then some Rs will
cease to be Rs. Thus qRR ≤ 0 gives this rate of loss of Rs. Moreover, we must
have qRR + qRY = 0 since these two rates must balance.

Considering the second row of Q similarly, we see that the entries in each
row of Q must add to give 0 (unlike the 1 of the discrete-time Markov matrix).
The off-diagonal entries of Q giving rate of changes from one state to another
must be non-negative, so the diagonal entries must be non-positive.

Letting pt = (pR(t) pY (t)) denote the distribution vector of purines and
pyrimidines at time t, with t = 0 for the ancestral sequence, we have a system
of differential equations:

d

dt
pR(t) = pR(t)qRR + pY (t)qY R

d

dt
pY (t) = pR(t)qRY + pY (t)qY Y .

Expressing this system in matrix form, by letting pt = (pR(t), pY (t)), yields

d

dt
pt = ptQ. (6.4)

(While systems of differential equations such as this are commonly covered in
ordinary differential equations courses, they are usually presented using column
vectors, with the matrix appearing to the left of the column vector. Our notation
is more standard for probabilistic models, and is equivalent, through a matrix
transpose.)

Before we sketch the solution of this system of differential equations, for
motivation recall a similar differential equation that involves no vectors or ma-
trices:

p′(t) = rp(t), p(0) = p0.

This equation is often used to model a population, whose initial size is p0, and
which grows at a rate proportional to its size, with r being the constant of
proportionality. The solution of this is

p(t) = p0e
rt.

Moreover, the exponential function appearing in this solution can be understood
by a Taylor series:

ex = 1 + x+
1

2
x2 +

1

3!
x3 +

1

4!
x4 + . . . .

The system of differential equations (6.4) is solved similarly, using the initial
values given by p0, with solution

pt = p0e
Qt.
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This formula involves the exponential of a matrix A = Qt, which can be defined
by the usual Taylor series formula, where all terms are reinterpreted as matrices.
For any square matrix A

eA = I +A+
1

2
A2 +

1

3!
A3 +

1

4!
A4 + . . . . (6.5)

Note that this is not the same as applying the usual exponential function to the
entries of A individually; the powers that appear in the Taylor series result in
interaction between the various entries of A.

While the Taylor series for the matrix exponential can provide a good concep-
tual understanding, to compute matrix exponentials easily requires more theory
from linear algebra. Provided A can be diagonalized, then writing A = SΛS−1

with Λ the diagonal matrix of eigenvalues of A and S the matrix whose columns
are the corresponding (right) eigenvectors, we also have (Exercise 16)

eA = SeΛS−1, (6.6)

where eΛ is a diagonal matrix with diagonal entries the exponentials of the
entries of Λ.

Returning to our model, since pt = p0e
Qt, it is natural to define

M(t) = eQt

as the Markov matrix which encodes the substitutions of bases that occur when
an amount of time t passes. The entries of M(t) are thus the conditional prob-
abilities of the various substitutions being observed as we compare sequences
from time 0 to those from time t, so that M(t) is a single matrix describing the
mutation along an edge representing a time of length t.

Our formulation of the model through the rate matrix Q has made the
assumption that over the full time interval state changes have been occurring
at exactly the same rates. Although we can be a little less strict than this by
imagining our clock runs slow or fast at different times, we are still assuming
the rates at which Rs becomes Ys and the rate at which Ys become Rs are in
fixed proportion to each other. Thus the state substitution process is viewed as
uniform, except perhaps for clock speed changes

Note the important distinctions between a Markov matrix M and a rate
matrix Q. The entries of M are probabilities, and hence lie between 0 and 1,
its rows sum to 1, and it describes a substitution process either along an entire
edge, or over a discrete time step. The entries of Q are not probabilities, but
rather rates describing the instantaneous substitution process, and hence do
not need to be between 0 and 1. The off-diagonal entries, however, cannot be
negative, and the ones on the diagonal cannot be positive. The rows of Q sum
to 0 . Applying the matrix exponential function to the product of a rate matrix
and an elapsed time gives a Markov matrix.
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6.2 Markov Models on Trees

We now more carefully define a rather general model of DNA evolution along a
tree. Although we use 4-state characters, the connection to the 2-state character
version developed in the previous section should be clear. It is also straight-
forward to formulate a 20-state version appropriate for describing protein se-
quences, or a 61-state version for a codon model (61 = 43− 3, since the 3 ‘stop’
codons are generally excluded).

A general DNA base-substitution model

The possible states of our character are A,G,C,T. We always use this order for the
four bases, so that the purines precede pyrimidines, with each in alphabetical
order.

Consider a fixed rooted tree T ρ. Then parameters for the general Markov
model model on T ρ consist of the following:

1) A root distribution vector pρ = (pA, pG, pC , pT ), with all entries non-
negative and pA + pG + pC + pT = 1. We interpret these entries as giving
the probabilities that an arbitrary site in a DNA sequence at ρ is occupied
by the corresponding base, or, equivalently, as the frequencies with which
we would expect to observe these bases in a sequence at ρ. (Note the
i.i.d. assumption here.)

2) For each edge e = (u, v) of T directed away from ρ, a 4 × 4 Markov
matrix, Me, whose entries are non-negative and whose rows sum to 1.
The i, j-entry of Me we interpret as the conditional probability that if
base i occurs at the site in the parent vertex on the edge, then base j
occurs at the descendant vertex. Using abbreviated notation with pij =
P(Sv = j | Su = i), where Su, Sv denote sequences at u and v respectively,
we let

Me =


pAA pAG pAC pAT
pGA pGG pGC pGT
pCA pCG pCC pCT
pTA pTG pTC pTT

 .

Note that the only mutations described by this model are base substitu-
tions. No events such as insertions, deletions, or inversions are included in the
formulation.

This basic model, called the general Markov model, will be our starting
point. Shortly we will discuss more restrictive models, where we place addi-
tional requirements on the model parameters, and then later will present some
generalizations. Although the general Markov model is seldom directly used for
data analysis, it provides the basic framework for all models in widespread use.

As a final notational point, since we have fixed the ordering A, G, C, T, and
will often need to refer to particular entries of vectors and matrices, it will also
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be convenient to sometimes use numbers to refer to the bases, with

1 = A, 2 = G, 3 = C, 4 = T.

A common rate-matrix model

Rather than allow completely unrelated Markov matrices for the base substitu-
tion process on each edge of the tree, most model-based phylogenetic analyses
specify that the substitution processes along the various edges of the tree have
some commonality. The usual way to do this is to replace point (2) above with
the following:

2a) A continuous-time 4 × 4 rate matrix Q, whose rows add to 0, and whose
off-diagonal entries are nonnegative. With

Q =


qAA qAG qAC qAT
qGA qGG qGC qGT
qCA qCG qCC qCT
qTA qTG qTC qTT

 ,

we interpret an entry qij as the instantaneous rate (in substitutions at a
site per unit time) at which base i is replaced by base j.

2b) For each edge e of the tree a non-negative scalar length te. Then the
Markov matrix

Me = M(te) = eQte

can be interpreted as above in (2) for the edge e.

One attractive feature of this model is that it gives meaning to edge lengths
te in a metric tree as specifying the ‘amount’ of substitution that will occur
along that edge. With the general Markov model it is not immediately clear
how to associate a single number to an edge to indicate such a measure. On
the other hand, the assumption of a common process across the entire tree is a
strong one (though overwhelmingly common in data analysis). In practice, the
choice of Q is usually further restricted, as we will discuss later.

The distribution of character states at the leaves

With either general Markov parameters, or continuous-time parameters for a
model on a tree T ρ specified, we can compute probabilities of observing any
particular combination of bases in aligned sequences at the vertices of a tree.
We focus only on the probabilities of various base observations at the leaves,
since that is the only sort of data that we typically can obtain from organisms.
(For statistical inference, we will not know appropriate parameters to use for
our model, but will have to somehow infer them from leaf data, inverting the
process we are explaining here. That is the subject of later chapters.)

To see how to compute leaf distributions, we begin with several examples
for very simple trees.
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A one-edge tree

This case is similar to that discussed in the purine/pyrimidine example which
began the chapter. But now we adopt the viewpoint that we know the root
distribution, and a Markov matrix describing the substitution process over the
edge, and we wish to compute the probability of observing each base at the
single leaf of the tree.

If pρ and Me are the parameters on a one edge tree from root ρ to descendant
S1, then

p1 = pρMe

gives a vector of probabilities of observing the four bases at any site in the
descendant sequence. For instance, from the definition of matrix multiplication,
the first entry of p1, which should refer to the probability of observing an A in
the descendant sequence, is

p1Me(1, 1) + p2Me(2, 1) + p3Me(3, 1) + p4Me(4, 1) =

pApAA + pGpGA + pCpCA + pT pTA,

which has the claimed probabilistic interpretation. We are summing 4 terms
for the 4 possible ancestral bases; each term gives the probability we had that
ancestral base and it changed to (or remained as) an A. The other entries of p1

are produced similarly.

A two-edge tree

Suppose now S1,S2 are two children of a root ρ, with Mi the Markov matrix
on the edge leading to Si, as in Figure 6.1.

S1 S2

M1 M2

ρ

Figure 6.1: A two-edge tree

Then, if we ignore S2, we can compute the probabilities of the various bases
appearing in S1 by the product pρM1, and similarly for S2. But what is the
joint probability that at a particular site we observe base i in S1, and base j
at S2? Since we will have to consider every pair i, j of bases at the two leaves,
we should organize the probabilities of these observations into a matrix P , with
P (i, j) denoting the probability of observing i at S1 and j at S2.
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For an observation (i, j) to be produced, we might have any base k at ρ.
Then this k must become an i in S1, and a j in S2. For a particular k, this
means the probability is

pkM1(k, i)M2(k, j).

But since k could be anything, we need to sum over the possibilities to get

P (i, j) =

4∑
k=1

pkM1(k, i)M2(k, j) = p1M1(1, i)M2(1, j) + p2M1(2, i)M2(2, j)

+ p3M1(3, i)M2(3, j) + p4M1(4, i)M2(4, j).

This can be more succinctly expressed as a matrix equation. Letting diag(v)
denote a diagonal matrix with the entries of a vector v on its diagonal, the 4×4
matrix P whose entries give the joint distribution of bases at the leaves is given
by

P = MT
1 diag(pρ)M2. (6.7)

We leave checking this claim as Exercise 7.

We should also point out that once all the entries of any joint distribution P
are computed, it is easy to recover the distribution of bases at a single leaf, by
summing over the other indices, a process usually called marginalization. For
instance, the probabilities of observing the base j at S2, without regard to what
appears at S1 is found by summing over the index corresponding to S1, giving

4∑
i=1

P (i, j).

Checking that this agrees with the jth entry of pρM2 is Exercise 8.

A many-edge tree

Suppose now T ρ has many edges, such as in Figure 6.2

S1 S2

M1

M2

ρ

S3

M3

M4

Figure 6.2: A small, many-edged tree
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In general, we will not be able to give a simple formula for the joint distribu-
tion of bases at the leaves of the tree using standard matrix notation. Indeed,
we should not expect to, because the joint distribution itself will be specified
by an array of more than 2 dimensions. For instance, in the tree above, since
there are 3 leaves, the joint distribution tensor P will be a 4× 4× 4 array, with
the entry P (i, j, k) giving the probabilities that a site has bases i, j, k at the
leaves S1, S2, S3, respectively. Using slightly different terminology, P (i, j, k)
gives the probability of observing the pattern ijk at a site in aligned sequences
for S1, S2, S3.

A formula for any particular entry P (i, j, k) of the joint distribution tensor
is easily given, however, by following the same sort of reasoning as for the two-
edge tree. We simply imagine each possible assignments of bases to all internal
nodes of the tree, and then write a product expression for the probability of
this particular evolutionary history. Afterwards, we sum over all such interior
node assignments, since these are all the distinct ways of obtaining the pattern
we are interested in. For example, for the tree above we have

P (3, 1, 1) =

4∑
i=1

4∑
j=1

piM1(i, j)M2(j, 3)M3(j, 1)M4(i, 1) (6.8)

as one of the 64 entries of P . Since there are 2 interior nodes in this tree, this
sum has 42 = 16 terms in it. Since there are 4 edges in the tree, each term is a
product of 1 + 4 = 5 parameters, one for each edge and one for the root. The
other 63 entries are given by quite similar formulas.

For a tree relating more taxa, of course the formulas get more complicated,
but the idea of how they are formed should be clear. It is worth emphasizing,
though, that the formulas for the entries of P depend not just on the number
of taxa, but also on the particular tree topology. Indeed, until we fix a tree
topology to consider, we can’t even relate Markov matrices to the particular
edges.

Assumptions of the models

While we’ve been calling the matrices of conditional probabilities Markov ma-
trices, we should say a little more about this terminology.

A probabilistic model of a system is called a Markov model if it incorporates
an assumption of the following sort:

The behavior of the system over any given time period depends only
on the state the system is in at the beginning of that period. The
earlier history of the system can affect what happens in the future
only through having already affected the system’s current state.

More formally, in a Markov model the probability that a particular state
change occurs given the system is in state i is the same as the probability of
the same change, given any entire earlier history of states ending in state i. In
particular, a ‘memory’ of what state changes occurred during earlier times is
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useless for predicting future changes. We say the probabilities of state changes
are independent of the earlier history.

The model we have given here, of molecular evolution occurring through ran-
dom base substitutions, satisfies the Markov assumption. Since time proceeds
from the root to the leaves, and the probabilities of the various possible state
changes on any given edge depend only on the state at the ancestral node on
that edge, the above condition is met.

In fact, the general Markov model makes an even stronger, but equally
reasonable, assumption that mutation process on one edge is not affected by
what occurs on any edge that is not ancestral to it. Any correlations we observe
between state observations at two leaves arise solely from the state of their most
recent common ancestor.

In applications of the model we will also assume that each site in the sequence
behaves identically, and independently of every other site (i.i.d). Though the
model describes substitutions at a single site, it applies equally well to every
site in the sequence. We used this assumption in our introductory example in
order to find the various probabilities we needed from our sequence data, by
thinking of each site as an independent trial of the same probabilistic process.
We will continue to do this when we use more elaborate methods to determine
appropriate parameter values from data.

The i.i.d. assumption is probably not very reasonable for DNA in many
circumstances. For instance, since the genetic code allows for many changes in
the third site of each codon that have no affect on the product of the gene, one
could argue that substitutions in the third sites might be more likely than in
the first two sites, violating the assumption that each site behaves identically.
Also, since genes may lead to the production of proteins which have functional
roles in life’s processes, the chance of change at one site may well be tied to
changes at another, through the need for the gene product to have a particular
form. This violates the assumption of independence. A similar issue arises from
the secondary structure of RNA formed by the transcription of genes. In the
single-stranded RNA sequence, some bases form bonds to bases further down
the sequence, producing features called ‘stems’ and ‘loops’ . This means that
mutations at one site may well be tied to mutations at sites that are not even
nearby in the sequence.

It’s easy to come up with a host of other problems with the i.i.d. assumption:
If sequences encode both coding and noncoding regions, should they really evolve
the same way? Might some genes tend to mutate faster than others? Might
not the bases in some sites be so crucial to a sequence’s functioning that they
are effectively prevented from mutating? Modifications to the basic modeling
framework will at least partially address some of these issues, but some form of
an i.i.d. assumption is always needed in order to have well-behaved inference in
standard statistical frameworks. What matters is not that it is exactly true, but
rather that it is a good enough approximation of the truth to apply statistical
methods.

A useful analogy for understanding why the i.i.d. assumption is so crucial,
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is to imagine data from a hundred coin flips. If your model is that the same (or
an essentially identical coin) was flipped in the same way a hundred times, then
the i.i.d. assumption holds, and by computing the frequency of heads, you can
obtain a good estimate of the probability a single coin flip gives heads.

However, if you instead insist that these coin flips should be modeled as a
hundred flips of varying coins, so we drop the identically distributed assumption,
it is possible that all the heads were produced by coins weighted to always land
heads up, and the tails by ones biased oppositely. If this were the case, then
computing the frequency of heads among the hundred would not tell us anything
useful about a single coin flip, or enable us to say anything about what might
happen at additional sites if the sequences were longer.

If we instead drop the independent assumption, then we might flip one fair
coin, and have it determine all the other outcomes, so that our data could only
be all heads, or all tails. In this case, the frequency of heads among the hundred
would either be 0 or 1, but that again tells us nothing about the probability of
outcomes of a single coin flip.

6.3 Jukes-Cantor and Kimura Models

The general Markov model, or its continuous-time variant, is usually further
restricted to special forms for data analysis. We present a few of these, starting
from the most restricted, and then relaxing assumptions.

The Jukes-Cantor model

The simplest Markov model of base substitution, the Jukes-Cantor model, adds
several additional assumptions to the general Markov model.

First, it assumes the root distribution vector describes all bases occurring
with equal probability in the ancestral sequence. Thus

pρ =
(
1/4 1/4 1/4 1/4

)
.

Second, as a continuous-time model it assumes a rate matrix of the form

Q =


−α α/3 α/3 α/3
α/3 −α α/3 α/3
α/3 α/3 −α α/3
α/3 α/3 α/3 −α

 . (6.9)

This indicates that the rate of all specific base changes, A ↔ T, A ↔ C, A ↔ G,
C ↔ T, C ↔ G, and T ↔ G are the same, α/3. The total rate at which any
specific base is changing to the other 3 bases is therefore α.

The associated Markov matrix on an edge of length t can now be calculated
as

M(t) = eQt.
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This requires first finding eigenvectors and eigenvalues for Q (see exercise 18)
to obtain the diagonalization formula

Q = SΛS−1,

with

S =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , Λ = diag

(
0, −4

3
α, −4

3
α, −4

3
α

)
. (6.10)

Thus the Jukes-Cantor Markov matrix for an edge of length t is

M(t) = eQt

= SeΛtS−1

= S−1 diag
(

1, e−
4
3αt, e−

4
3αt, e−

4
3αt
)
S

=


1− a a/3 a/3 a/3
a/3 1− a a/3 a/3
a/3 a/3 1− a a/3
a/3 a/3 a/3 1− a

 ,

where

a = a(t) =
3

4

(
1− e− 4

3αt
)
. (6.11)

Since the entries of M(t) are probabilities, we interpret a(t) as the probability
that any specific base at time 0 will have changed to any of the 3 other bases at
time t. This might have happened by only one base substitution occurring, or
it might have happened through a succession of substitutions. The continuous-
time model accounts for all possible ways the final state could have been achieved
from the initial one. We are likely, of course, to use a different value of a for
each edge of the tree, since the formula for a depends on the edge length. Larger
values of t produce larger values of a, as more mutation occurs on that edge.

The Jukes-Cantor model also implies a stable base distribution at all vertices
of the tree. To see this, we simply compute the effect of the substitution process
as we proceed down an edge:

pρM =
(
1/4 1/4 1/4 1/4

)
1− a a/3 a/3 a/3
a/3 1− a a/3 a/3
a/3 a/3 1− a a/3
a/3 a/3 a/3 1− a


=
(
1/4 1/4 1/4 1/4

)
.

Of course the simple, highly-symmetric form of the Jukes-Cantor matrix means
that for every substitution from state i to j we should expect a substitution
from j to i, so that is it not surprising the base distribution never changes.
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We will return to equation (6.11) in the next chapter, as αt has an impor-
tant interpretation. Since α is a mutation rate, measured in units (number of
substitutions at a site)/(unit of time), and t represents an amount of time, the
product tells us the number of substitutions that should occur at a site over the
elapsed time t. While both α and t depend on our choice of units of time, the
product has a meaning independent of those units.

Mutation rates such as α for DNA in real organisms are not easily found,
since estimating them appears to require both an ancestral and descendant
sequence, and knowledge of the evolutionary time separating them. For reasons
that will be explained in the next chapter, its possible to avoid finding an
ancestral sequence, but we do need an independent estimate of the divergence
time of two descendants from their common ancestor, perhaps obtained from a
fossil. Various estimates of α place it around 1.1× 10−9 mutations per site per
year for certain sections of chloroplast DNA of maize and barley and around
10−8 mutations per site per year for mitochondrial DNA in mammals. The
mutation rate for the influenza A virus has been estimated to be as high as .01
mutations per site per year. The rate of mutation is generally found to be a bit
lower in coding regions of nuclear DNA than in non-coding DNA.

The Kimura models

The Jukes-Cantor model is a particularly simple model of mutation since it
depends on only one single parameter α to specify the rate of mutation.

The model can be made more flexible by allowing several parameters. A good
example of this is the Kimura 2-parameter model, which allows for different
probabilities of transitions and transversions.. If we let

Q =


∗ β γ γ
β ∗ γ γ
γ γ ∗ β
γ γ β ∗

 ,

then β is the rate at which each state undergoes transitions, and 2γ is the
rate that any state undergoes transversions, with transversions equally likely to
produce either possible outcome. The entries denoted by * should be −β − 2γ,
since that is what is needed so that row sums are 0.

Although we leave the details as an exercise, a computation of the matrix
exponential shows the associated Markov matrix has the form

M(t) = eQt =


∗ b c c
b ∗ c c
c c ∗ b
c c b ∗

 ,

with

b =
1

4
(1− 2e−2(β+γ)t + e−4γt), c =

1

4
(1− e−4γt).
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Here the entries denoted * are 1−b−2c, since the rows must add to 1. Notice that
if the probabilities of a transition and each transversion are equal so β = γ, then
this model includes the Jukes-Cantor one as a special case with α = 3β = 3γ.

An even more general model is the Kimura 3-parameter model, which as-
sumes a rate matrix of the form

Q =


∗ β γ δ
β ∗ δ γ
γ δ ∗ β
δ γ β ∗

 ,

which leads to a Markov matrix of the form

M =


∗ b c d
b ∗ d c
c d ∗ b
d c b ∗

 .

By an appropriate choice of the parameters, this includes both the Jukes-Cantor
and Kimura 2-parameter models as special cases. (While the structure of the
Kimura 2-parameter model is suggested by biology, the generalization to the
3-parameter is primarily motivated by mathematical properties.)

Both Kimura models also assume that the root distribution vector is the
uniform one,

pρ =
(
1/4 1/4 1/4 1/4

)
.

A quick calculation shows that for either of these models this distribution will
be stable, occurring at all vertices in the tree.

There is a clear relationship between the form of the rate matrix for the
Jukes-Cantor and Kimura models and the form of the associated Markov ma-
trices, with both exhibiting a very similar pattern of entries. However, this is a
very special feature of these models, and such simple relationships do not occur
more generally. While the entries of the Markov matrix will always be express-
ible in terms of those of the rate matrix and t, there is generally no easy way
to find these expressions, except as outlined in the computation above for the
Jukes-Cantor model.

A note of caution: When a Kimura model is used on a tree, there are two
ways it might be used. It may be that one Kimura rate matrix (with fixed β,γ)
is used for the entire tree with the 1 parameter of a scalar length assigned to
each edge. Alternately, one may assign different and unrelated Kimura Markov
matrices on each edge (giving 2 or 3 parameters per edge). The first approach
is more common in standard approaches to phylogenetic inference, and is likely
to be what is assumed in software performing Maximum Likelihood or Bayesian
analyses. The second is a more general model, and often appears in more
theoretical works, especially those dealing with Hadamard conjugation.
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6.4 Time-reversible Models

An important feature of the Jukes-Cantor and Kimura models is that they are
time-reversible. What this means is that given an ancestral and a descendant
sequence separated by one edge of the tree, if we reverse the flow of time,
interchanging which sequence we view as ancestor and descendant, we would
describe evolution by exactly the same model parameters.

To see what this means mathematically, suppose p is the ancestral base
distribution and M the Markov matrix describing the descent. Let P denote
the joint distribution of bases in the ancestral and descendant sequences, so
P (i, j) gives the probability of an ancestral i and a descendant j appearing at
a site. Then since P (i, j) = piM(i, j), we have the matrix equation

P = diag(p)M.

Now interchanging our view of what sequence is ancestral means interchang-
ing the order of indices, or equivalently transposing P . Thus time reversibility
means P = PT , or

diag(p)M = (diag(p)M)T = MT diag(p). (6.12)

In fact, this equation implies the intuitive fact that time-reversibility requires
that p be a stable base distribution for M . (See Exercise 27.)

For the Jukes-Cantor and Kimura models it is easily checked that equation
(6.12) holds in the discrete-time formulation. However there are many other
possible parameter choices for a time-reversible model.

To elaborate, in the continuous-time formulation of a model, for time-reversibility
to hold we need

diag(p)Q = QT diag(p). (6.13)

If we let
p =

(
pA pG pC pT

)
be the root distribution, then a little work (Exercise 28) shows Q should be of
the form

Q =


∗ pGα pCβ pT γ
pAα ∗ pCδ pT ε
pAβ pGδ ∗ pT η
pAγ pGε pCη ∗

 , (6.14)

with α, β, γ, δ, ε, η ≥ 0 and where the diagonal entries are chosen so rows sum
to zero.

Perhaps the most commonly-used basic continuous-time model used in data
analysis is the general time-reversible model (GTR). It is specified by the fol-
lowing parameters:

1. an arbitrary choice of a root distribution p =
(
pA pG pC pT

)
2. arbitrary choices of 6 parameters α, β, γ, δ, ε, η, with the common time-

reversible rate matrix Q on all edges, given by equation 6.14, and



98 CHAPTER 6. PROBABILISTIC MODELS OF DNA MUTATION

3. lengths of edges in the tree

The form of Q then ensures that p is stable under the model, and thus is the
distribution of bases at all vertices in the tree.

It’s easy to see that with special choices of the parameters, the GTR includes
the Jukes-Cantor and Kimura models. But it has more flexibility due to the
larger number of parameters, and thus is capable of describing a larger class of
data sets well.

Practically, the GTR model seems to be a good compromise between sim-
plicity and complexity. Having a common rate matrix reduces the number of
parameters considerably from what would be needed without this assumption.
This can help avoid ‘overfitting’ of data, keeping the variance in the inferred
tree lower with the same amount of data. It also allows for faster run-times
of software, as there are fewer parameters to be varied in searching for a good
fit. A common rate matrix also imposes some commonality on the mutation
process throughout the tree, which in some circumstances is biologically rea-
sonable. That the base distribution is stable may also be reasonable, if all the
data sequences have a similar base composition. Time reversibility means we
will be able to ignore issues of root location when we try to find optimal trees,
thereby reducing search time slightly. Nonetheless, it’s hard to imagine a full
justification of this model solely on biological grounds. Base compositions are
not always identical across taxa, and the model cannot capture that. It is also
hard to imagine a biological justification for time-reversibility.

While models that drop some of the characteristics of the GTR model are
occasionally used in data analysis, the vast majority of phylogenetic analyses
currently use the GTR model, or special cases of it, as their basis. While many
of these special cases have their own names, they can all be viewed as simply
imposing relationships among the GTR parameters to reduce their number. For
instance the F81 model (introduced by Felsenstein in a paper in 1981) allows
for any choice of the base distribution, but sets the remaining GTR parameters
α = β = γ = δ = ε = η = 1. It can thus be viewed as an analog of the
Jukes-Cantor model that does not require equidistribution of the bases. The
HKY model (introduced by Hasegawa, Kishino, and Yano) also allows any base
distribution, but sets β = γ = δ = ε = 1 and α = η = κ where the parameter
κ can be viewed as a transition/transversion rate ratio. Thus it is an analog of
the Kimura 2-parameter model for unequal base distribution.

While its tempting to think that the GTR model should always be the best
one to use since it makes fewer special assumptions, that in fact is not the case.
In general its desirable to use a model that fits the data reasonably well, but has
few parameters. More restrictive models of this sort can lead to better inference,
since they avoid overfitting data.
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6.5 Exercises

1. Suppose ancestral and descendant sequences of purines and pyrimidines are

S0 = RRYRYYRRRRYYYRYYRRYYRYYR

S1 = RYYRYRRRRRRYYRRYRRYYRYYY

Use this data to estimate a distribution vector for S0 and a Markov matrix
describing the mutation process from S0 to S1.

2. The joint frequencies of purines and pyrimidines in ancestral and descendant
sequences S0 and S1 is summarized in Table 6.1. Use this data to estimate
a distribution vector for S0 and a Markov matrix describing the mutation
process from S0 to S1.

S0�S1 R Y

R 183 32
Y 15 211

Table 6.1: Frequencies from site comparisons for a pair of sequences

3. An ancestral DNA sequence of 40 bases was

CTAGGCTTACGATTACGAGGATCCAAATGGCACCAATGCT,

but in a descendant it had mutated to

CTACGCTTACGACAACGAGGATCCGAATGGCACCATTGCT.

a. Give an initial base distribution vector and a Markov matrix to describe
the mutation process.

b. These sequences were actually produced by a Jukes-Cantor simulation.
Is that surprising? Explain. What value would you choose for the Jukes-
Cantor parameter a to approximate your matrix by a Jukes-Cantor one?

4. Data from two comparisons of 400-base ancestral and descendant sequences
are shown in Table 6.2.

a. For one of these pairs of sequences a Jukes-Cantor model is appropriate.
Which one, and why?

b. What model would be appropriate for the other pair of sequences? Ex-
plain.

5. The Markov matrices that describe real DNA mutation tend to have their
largest entries along the main diagonal in the (1,1), (2,2), (3,3), and (4,4)
positions. Why should this be the case?



100 CHAPTER 6. PROBABILISTIC MODELS OF DNA MUTATION

S0�S1 A G C T

A 92 15 2 2
G 13 84 4 4
C 0 1 77 16
T 4 2 14 70

S′0�S′1 A G C T

A 90 3 3 2
G 3 79 8 2
C 2 4 96 5
T 5 1 3 94

Table 6.2: Frequencies from 400 site comparisons for two pairs of sequences

6. On the tree in Figure 6.2, consider the Jukes-Cantor model where all the Mi

have a = 0.1. Compute the probabilities of observing each of the following
characters

a) S1: G, S2: G, S3: G

b) S1: G, S2: G, S3: T

c) S1: G, S2: T, S3: G

Are the largest and smallest of these probabilities what you might have
expected? Explain.

7. Check that the matrix equation (6.7) is correct.

8. Let u denote a column vector with all entries 1. Explain why for a Markov
matrix M that Mu = u. Then use this fact to show that summing over the
first index of

MT
1 diag(pρ)M2

gives
pρM2.

Interpret this as explaining why the marginalization of a joint distribution
of bases at two leaves gives the distribution of bases at one leaf.

9. For the 4-taxon tree ((a, b), (c, d)) give a formula like that in equation (6.8)
for the joint distribution of bases at the leaves in terms of parameters of the
general Markov model. Do the same for the 4-taxon tree (((a, b), c), d).

10. Suppose T ρ is a rooted binary n-taxon tree. How many terms would be
summed in the formula analogous to Equation (6.8) for computing the prob-
ability of a particular character? How many parameters would be multiplied
in each term of this sum?

11. Make up a 4× 4 Markov matrix M with all positive entries, and an initial
p0. To be biologically realistic, make sure the diagonal entries of M are the
largest.

a. Use a computer to observe that after many time steps pt = p0M
t

appears to approach some equilibrium. Estimate the equilibrium vector as
accurately as you can.
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b. Is your estimate in part (a) a left eigenvector of M with eigenvalue 1? If
not, does it appear to be close to having this property?

c. Use a computer to compute the eigenvectors and eigenvalues of M .
(In MATLAB the command [S D]=eig(M) computes right eigenvectors, so
you will have to apply it to M’). Is 1 an eigenvalue? Is your estimate of the
equilibrium close to its eigenvector?

12. Express the Kimura 2-parameter model using a 4 × 4 matrix, but with
the bases in the order A,C,G,T. How is your matrix different from the one
presented in the text? Explain.

13. Suppose we wish to model molecular evolution not at the level of DNA
sequences, but rather at the level of the proteins that genes encode.

a. Create a simple one-parameter mathematical model (similar to the Jukes-
Cantor model) describing the process. You will need to use that there are 20
different amino acids from which proteins are constructed in linear chains.

b. In this situation, how many free parameters would the general Markov
model have on a single edge of the tree?

14. Do the data in Exercise 1 appear to be fit by a time-reversible model?
Explain.

15. Suppose you have compared two sequences Sα and Sβ of length 1000 sites
and obtained the data in Table 6.3 for the number of sites with each pair
of bases.

Sα�Sβ A G C T

A 105 15 15 15
G 25 175 25 25
C 35 35 245 35
T 25 25 25 175

Table 6.3: Frequencies of Sα = i and Sβ = j in 1000 site sequence comparison

a. By marginalizing, compute the base distribution for each of the taxa
individually. Does it appear to be stable?

b. Assuming Sα is the ancestral sequence, find an initial base distribution
p0 and a Markov matrix M to describe the data. Is your matrix M Jukes-
Cantor? Is p0 a stable distribution for M?

c. Assuming Sβ is the ancestral sequence, find an initial base distribution
p′0 and a Markov matrix M ′ to describe the data. Is your matrix M ′ Jukes-
Cantor? Is p′0 a stable distribution for M ′?

You should have found that one of your matrices was Jukes-Cantor and the
other was not. This can’t happen if both Sα and Sβ have base distribution
(.25, .25, .25, .25).



102 CHAPTER 6. PROBABILISTIC MODELS OF DNA MUTATION

16. Assuming A = SΛS−1, show that equation (6.5) implies equation (6.6).
Also explain why if a matrix B is diagonal then eB is also diagonal, with
diagonal entries obtained by exponentiating those of B.

17. Show that if the rows of Q sum to 0, then the rows of eQt sum to 1. (Hint:
Use the Taylor series for the exponential, and the fact that the rows of Q
summing to 0 is expressible as Qu = 0, where u is a column vector with all
entries 1.)

18. Check that the eigenvectors and eigenvalues of the Jukes-Cantor rate matrix
Q in equation (6.9) are those given in equations (6.10).

19. The matrix S of eigenvectors of a Jukes-Cantor matrix that is given in
equation 6.10 is quite special, and is sometimes called a Hadamard matrix.
Compute S2, and explain why this shows that S−1 = 1

4S.

20. The formula for eQt for the Jukes-Cantor model in equation (6.11) and its
predecessor can be used to understand the effect of an infinite amount of
mutation, by letting t→∞.

a. If α > 0, what is limt→∞ e−
4
3αt.

b. Use this to explain why

eQt →


.25 .25 .25 .25
.25 .25 .25 .25
.25 .25 .25 .25
.25 .25 .25 .25

 .

Note that each of the rows of this matrix is the stable distribution.

Explain informally why this limit is what you should have expected.

c. Why did we exclude α = 0 from our analysis?

21. Based on the last problem, one might conjecture that powers of a Markov
matrix all of whose entries are positive approach a matrix whose rows are
the stable distribution. On a computer, investigate this experimentally by
creating a Markov matrix, computing very high powers of it to see if the
rows become approximately the same, and then checking whether this row
is a left eigenvector with eigenvalue 1 of the original matrix.

22. Let M(a) denote a Jukes-Cantor Markov matrix with parameter a.

a) Show the product M(a1)M(a2) is M(a3), and give a formula for a3 in
terms of a1, a2.

b) If a Jukes-Cantor matrix M(a) describes the evolution of one sequence to
another, then the Hamming distance estimates a. Explain why the formula
you found in part (a) indicates the Hamming distance is not usually additive
in the sense defined in Exercise 6 of Chapter 5.

c) Explain why the formula you found in (a) indicates the Hamming distance
is approximately additive when its values are small.
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23. Show the product of two Kimura 3-parameter Markov matrices is again a
Kimura 3-parameter Markov matrix.

24. Show the Kimura 3-parameter matrices (both Markov and rate) have the
same eigenvectors as those given in the text for the Jukes-Cantor matrices.
What are the eigenvalues of the Kimura 3-parameter rate matrices?

25. Use the results of the last problem to find the entries of eQt where Q =
Q(β, γ, δ) is the Kimura 3-parameter rate matrix. Your result should be a
Kimura 3-parameter Markov matrix. Give formulas for the Markov matrix
entries b, c, d in terms of β, γ, δ, t. Show that in the special case of the Jukes-
Cantor and Kimura 2-parameter models, these agree with the formulas given
in the text.

26. The Jukes-Cantor model can be presented in a different form as a 2 × 2
Markov model. Let qt represent the fraction of sites that agree between
the ancestral sequence and the descendant sequence at time t, and pt the
fraction that differ, so q0 = 1 and p0 = 0. Assume that the instantaneous
rate at which base substitutions occurs is α, and that each of the 3 possible
base substitutions is equally likely. Then(

q′(t)
p′(t)

)
=

(
1− α α

3
α 1− α

3

)(
q(t)
p(t)

)
,

(
q(0)
p(0)

)
=

(
1
0

)
.

a. Explain why each entry in the matrix has the value it does. (Observe
that 1− α

3 = (1− α) + 2α
3 .)

b. Compute the stable distribution of the model by finding the eigenvector
with eigenvalue 1.

c. Find the other eigenvalue and eigenvector for the matrix.

d. Use (b) and (c), together with the initial conditions to give a formula for
q(t) and p(t) as functions of time.

27. Show equation (6.12) implies that p is a stable base distribution for M .

28. Show that a time reversible rate matrix Q can be expressed by the formula
(6.14).

29. Suppose Q is a rate matrix.

a) Show that if pQ = λp and M(t) = eQt for some t, then pM(t) = eλtp.

b) From a) deduce that if pQ = 0, then p is a stable distribution for all
M(t).

30. Suppose Q is a time-reversible rate matrix with stable base distribution p.

a) Explain why replacing Q with any positive scalar multiple cQ can lead to
exactly the same joint distributions on any tree, if edge lengths are adjusted
appropriately. Why is this change equivalent to using a new time scale?
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b) In light of part (a), it is sometimes convenient to choose a specific nor-
malization of Q. Explain why −Tr(diag(p)Q) gives the instantaneous rate
of substitutions for the model, and why we can always rescale Q so this is
1. Here Tr(M) =

∑n
i=1Mi,i denotes the trace of a matrix M .

31. Show that a time-reversible Markov matrix M with a stable distribution
vector p which has all positive entries must have a full set of real eigenvalues
and eigenvectors. (Hint: Show diag(p)1/2M diag(p)−1/2 is symmetric.)

32. The general Markov model is not time reversible, but has a related weaker
property.

a. Show it is not time reversible by giving a specific p, M that do not satisfy
equation (6.12).

b. Show that with mild conditions on p, M , there exist p̃, M̃ so that

diag(p)M = M̃T diag(p̃).

Thus, by changing parameter values for the general Markov model, we can
change our viewpoint as to what is ancestral and what is descendant.

c. Explain the connection between part (b) and Bayes Theorem.



Chapter 7

Model-based Distances

With an explicit model of DNA mutation in hand, we can now develop more
sophisticated dissimilarity measures than the Hamming metric. The advantage
of using a probabilistic model is that it enables us to account for the hidden
substitutions that might have occurred, even though they are not seen when
sequences are compared. We will then be able to use a measure of total change,
rather than just directly observed change, as a measure of dissimilarity. These
improved measures might then be used with any distance method for inferring
a tree — either an algorithmic one such as UPGMA or Neighbor Joining, or
one based on an optimality criterions.

As mentioned earlier, the Hamming dissimilarity is often called the uncor-
rected distance between sequences. The distances we will develop from explicit
models are called corrected distances, since they account for the unobservable
hidden base changes to give a better estimate of the total amount of change.

7.1 Jukes-Cantor Distance

To frame the issue we want to address more clearly, let’s begin with the simplest
model, Jukes-Cantor. We imagine an ancestral sequence S0 has base distribution
p0 = (1/4, 1/4, 1/4, 1/4) and its mutation is governed by a Jukes-Cantor rate
matrix

Q =


−α α/3 α/3 α/3
α/3 −α α/3 α/3
α/3 α/3 −α α/3
α/3 α/3 α/3 −α

 .

Here α is the rate at which any given base is replaced by a different base.

As we saw in the last chapter, if an amount of time t passes, then the total
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mutation process over that elapsed time can be described by

M(t) = eQt =


1− a a/3 a/3 a/3
a/3 1− a a/3 a/3
a/3 a/3 1− a a/3
a/3 a/3 a/3 1− a

 ,

where a and αt are related by equation (6.11), which we recall was

a = a(t) =
3

4

(
1− e− 4

3αt
)
. (7.1)

Letting S1 be the descendant sequence of S0 after time t, the distribution of
characters at the sites in the 2 sequences is given by the table

diag(p0)M(t) =


(1− a)/4 a/12 a/12 a/12
a/12 (1− a)/4 a/12 a/12
a/12 a/12 (1− a)/4 a/12
a/12 a/12 a/12 (1− a)/4

 . (7.2)

Here rows refer to the state in S0, and columns to S1. (The time-reversibility
of the model results in a symmetric matrix, so if we reversed rows and columns
it actually would not matter.)

While equation (7.2) is a theoretical distribution arising from our model, we
could easily obtain a corresponding empirical distribution simply by computing
the frequency with which we observe each pair of states at sites in the two
sequences. If our model is a good one for the data, these should be close, and
thus we should be able to obtain an estimate â of a from the empirical version
of the matrix in equation (7.2).

Recall the expression αt appearing in equation (7.1) has a simple interpre-
tation: It is the product of a rate, measured in units of (substitutions at a
site)/(unit of time), and an elapsed time. While choosing some specific unit
of time would be necessary to give α and t specific values, the product αt has
meaning even without this choice. It is the total number of substitutions at a
site that occur over the full time period, including all those that are hidden due
to multiple substitutions at that site. While αt is not something we can directly
observe by comparing initial and final sequences, it is the correct measure of the
total amount of mutation that occurred under this model.

Notice also that equation (7.1) will not let us tease out values of α and t
separately from an estimated value for a; only their product appears. If twice
the time passed, but the mutation rate was halved, that would result in exactly
the same distribution. This is the first indication of a rather fundamental issue
that will continue to arise from these probabilistic models. While it is possible
to recover the total amount of mutation on each branch of a tree from sequence
data, we cannot recover times or mutation rates without using some additional
information. The elapsed time and the mutation rate are unidentifiable from
the basic model, although their product is identifiable.
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A molecular clock assumption of a constant mutation rate would ensure the
amount of mutation is just a rescaled measure of time, but that also suggests
our trees should be ultrametric. Since that is not usually the case for trees
inferred from data sequences, we have to conclude the rate is generally not
constant. However, when we specified a rate matrix for a model, we appeared to
be assuming the rate was constant. The way around this apparent contradiction
is by viewing time in our model not as measured by a normal clock, but rather
by one that might speed up and slow down on each edge independently. Changes
in generation time could be a simple biological explanation of this, but there
might be other causes as well. By simply allowing non-ultrametric trees, we can
incorporate this simple sort of rate variation into our models.

To estimate αt from two sequences our strategy is simple. First by comparing
the sequences obtain an estimate â of a in the table in equation (7.2). Since
an empirical version of (7.2) will not have exactly the pattern of the theoretical
one, but rather show variation in the off-diagonal entries, we define â to be the
sum of all 12 off-diagonal entries. Then if the model fits well we should have
â ≈ a. Since the off-diagonal entries are the frequencies of the various ways the
states may disagree at a site in the two sequences,

â =
number of sites that show different states

total number of sites

which is just the Hamming dissimilarity measure, or p-distance, introduced in
Chapter 5. To estimate a, then, there is really no need to even create the table
(except to judge whether a Jukes-Cantor model might be plausible).

Since solving for αt in equation 7.1 yields

αt = −3

4
ln

(
1− 4

3
a

)
,

we can estimate the total amount of mutation by

α̂t = −3

4
ln

(
1− 4

3
â

)
.

We therefore define the Jukes-Cantor distance between DNA sequences S0
and S1 as

dJC(S0,S1) = −3

4
ln

(
1− 4

3
â

)
.

Provided the Jukes-Cantor model accurately describes the evolution of one se-
quence into another, this distance is an estimate of the total number of substi-
tutions per site that occurred during the evolution.

Example. Suppose an ancestral sequence ATTGAC has evolved into a descen-
dant sequence ATGGCC. We estimate â = 2/6 ≈ .3333, so that on average we
observe 1/3 of a substitution per site when we compare the sequences. Then

dJC(S0, S1) = −3

4
ln

(
1−

(
4

3

)(
2

6

))
≈ 0.4408.
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Note that the Jukes-Cantor distance is larger than â, as it should be since it
accounts for hidden substitutions as well as observed ones. We have estimated
that, on average, there were actually about 0.4408 substitutions of bases in each
site during the evolution of S0 to S1.

Of course if this were real data we’d have little faith in this estimate, since
the sequences were so short. We’d be more confident of an estimate derived
from longer sequences, with hundreds of sites.

In practice, ancestral and descendant sequences are rarely available to com-
pare. Typically only the sequences at the leaves of a tree, from currently living
taxa, are available. However, because the Jukes-Cantor model is time reversible,
we can get around this issue. In modeling the descent of sequences S1 and S2

S1 S2

M1 M2

S0

Figure 7.1: Two descendants of an ancestor. Under a time-reversible model, we
may view S1 as ancestral to S0 which is ancestral to S2.

from S0, we originally think of the root as S0, with Jukes-Cantor matrices
M1 = M(t1) and M2 = M(t2) describing the state change process. However,
time-reversibility ensures S0 and S1 will have the same distribution of charac-
ters if we instead think of S1 as ancestral to S0, using the same Markov matrix
M(t1). Then the relationship between S1 and S2 can be viewed as S1 evolving
into S0 which then evolves into S2. The combined process from S1 through S0
to S2 is described by the product M1M2 = M(t1 + t2). Thus the Jukes-Cantor
distance dJC(S1, S2) estimates α(t1 + t2), the total mutation that occurred on
the path from S1 to S2.

If one had infinitely long sequences produced exactly in accord with the
Jukes-Cantor model on a metric tree, then one could use the Jukes-Cantor dis-
tance formula to give dissimilarities that exactly match the tree metric distance
between any pair of taxa, up to scaling by α. Since these distances would then
exactly fit a metric tree (the tree on which evolution occurred, with ‘time’ scaled
by α), one could use Neighbor Joining, or other methods, to recover the tree
from the dissimilarities. In the real world of finite length sequences, and a sub-
stitution process that is at best roughly described by the Jukes-Cantor model,
the Jukes-Cantor distance will not exactly match a tree metric, but should be
close if our modeling assumptions are reasonable. If the error is not too large,
one can prove that Neighbor Joining and many other distance methods will still
recover the correct tree topology, and give good estimates of edge lengths.
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To further explore the Jukes-Cantor distance, fix the rate to be α = 1.
This choice is arbitrary, but amounts to setting a time scale so that a site
undergoes mutations at a rate of 1 substitution per unit of time. Then equation
7.1 becomes a = a(t) = 3

4 (1− e− 4
3 t), which is graphed in Figure 7.2. This figure

can also be read with a as the independent variable, in which case the graph is
of t = − 3

4 ln
(
1− 4

3a
)
. Therefore it relates Hamming distances on the vertical

axis to Jukes-Cantor distances on the horizontal axis.
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Figure 7.2: The relationship between elapsed time t and the probability a of
differing states in a character for 2 taxa under the Jukes-Cantor model, with
rate α = 1. This graph can also be read as the Hamming distance â between
two sequences on the vertical axis, and the resulting Jukes-Cantor distance on
the horizontal axis.

In the figure we of course see that a(0) = 0, since at time t = 0 no sub-
stitutions have yet occurred. For small values of t (say 0 ≤ t ≤ .2), we find
a(t) ≈ t, so whether we use the Jukes-Cantor distance or simply the Hamming
distance as a dissimilarity measure has little effect. However, when t is large,
a(t) approaches the ‘saturation point’ of 3/4, where we find 3 out of 4 sites are
observed to have changed. Equivalently, when the Hamming distance is near
3/4, the Jukes-Cantor distance will be much greater than 3/4, and using this
corrected distance instead of the Hamming distance may have a dramatic effect
on inferring a tree.

The saturation value of 3/4 deserves more explanation. Imagine picking
two unrelated sequences at random, using the base distribution assumed by the
Jukes-Cantor model. Then regardless of what base is chosen at a site in the
first sequence, we have a 1/4 probability of picking the same base in the second
sequence. Thus we expect that 3/4 of the sites in the sequences will show
disagreement. The graph in Figure 7.2 shows that as more time passes, two



110 CHAPTER 7. MODEL-BASED DISTANCES

related sequences will come closer to resembling ones that have no relationship
whatsoever.

The shape of the graph in Figure 7.2 also has implications for how much
confidence we should place in a Jukes-Cantor distance estimate. Suppose the
‘true’ value of a differs slightly from the Hamming distance â computed from
data, so â = a + ε. Then if a and â are both small, locating them on the
lower end of the vertical axis shows they correspond to differing values of t and
Jukes-Cantor distance t̂. In the region of the graph where a ≈ t, we see that
t̂ ≈ t+ ε. Thus the error in our time estimate is roughly the same as it was in
the estimate of a.

On the other hand, if a and â are larger, locating them higher on the vertical
axis shows they correspond to values of t and t̂ that are much further apart than
ε. The error is thus magnified by the Jukes-Cantor distance formula. More
formally, one could show that a confidence interval for the estimate of t is much
larger when â is large. Informally, large distances are likely to be less reliable
than smaller ones.

Before we leave the Jukes-Cantor model, we note that the explanation given
here for the Jukes-Cantor distance formula, while clearly based on a mathemat-
ical model, has shortchanged some statistical issues. In particular, while it is
certainly reasonable, no justification has been given that the Hamming distance
is the best estimate to use for the true but unknown value a in the distance for-
mula. We’ll return to this issue when we discuss Maximum Likelihood methods
in Chapter 8.

7.2 Kimura and GTR Distances

Given a Markov model of base substitutions one can try to imitate the steps
above in the derivation of the Jukes-Cantor distance formula. For this to make
sense, however, we need a time-reversible continuous-time model, so that it
includes a notion of elapsed time, and we can freely take the viewpoint that any
of our data sequences represent the ancestral one.

Such distances have been found for a number of models, ranging from Jukes-
Cantor to GTR. As the models become more complex, with more parameters,
the formulas of course become more complicated.

For instance, the distance formula for the Kimura 3-parameter model (see
Exercise 10) is

dK3(S1, S2) = −1

4

(
ln(1− 2b̂− 2ĉ) + ln(1− 2b̂− 2d̂) + ln(1− 2ĉ− 2d̂)

)
,

where b̂, ĉ, and d̂ are estimates of parameters b, c, and d for a Kimura 3-
parameter Markov matrix describing the mutation process between the two
sequences. Specifically, b̂ is the proportion of sites in the sequences showing
transitions, ĉ is the proportion showing transversions of the type A ↔ C and
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G ↔ T, and d̂ is the proportion showing transversions of the type A ↔ T and
G↔ C. The Kimura 3-parameter distance is an estimate of (β + γ + δ)t.

For the Kimura 2-parameter model, c = d, so we instead let ê = ĉ+ d̂ be the
proportion of transversions, and obtain the Kimura 2-parameter distance from
this as

dK2(S1, S2) = −1

2
ln(1− 2b̂− ê)− 1

4
ln(1− 2ê).

The distance formula appropriate for the GTR model is more complex, given
by the formula

dGTR(S1, S2) = −Tr(diag(p) ln
(
diag(p)−1(1/2)

(
F + FT

))
.

where F is the 4 × 4 table of observed frequencies of base pairs in the two
sequences. The logarithm here is a matrix one, the inverse of the matrix expo-
nential. (See Exercise 14 for more details.)

7.3 Log-det Distance

One drawback of the distances developed so far is that they assume an under-
lying continuous-time models with a stable base distribution and a common
substitution process occurring at all parts of the tree. For some data sets these
assumptions are inappropriate. For instance, the sequences for different taxa
may have substantial differences in base composition, or there may be reason to
suspect the substitution process has varied. Although the GTR model and its
submodels are not appropriate in this situation, the general Markov model, in
which possibly unrelated Markov matrices are placed on each edge of the tree
and an arbitrary root distribution is chosen, may be.

However, there is no notion of a flow of time in the general Markov model;
the Markov matrices simply represent the full substitution process from one end
of an edge to the other. Thus to develop a distance appropriate for this model
we focus on mathematical properties of matrices and of distances.

Our motivation is thus not on reconstructing the total number of base sub-
stitutions that occurred, but rather on the properties we need if our distance is
to be a restriction of a tree metric.

These are:

1) d(S0,S1) ≥ 0, and d(S0,S1) = 0 if, and only if, S0 = S1,

2) d(S0,S1) = d(S1,S0),

3) d(S0,S2) = d(S0,S1) + d(S1,S2) provided S1 lies at an vertex along the
path between S0 and S1.

The first property says that a distance should indicate when sequences are
different. The second is similar to time-reversibility of a model, in that it says the
distance will not be affected by which sequence we view as ancestral. However,
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it does not require that the model itself be time-reversible. The last of these
properties, called additivity means that individual distances down a lineage will
add to give the total distance. In the earlier discussion of the Jukes-Cantor
distance, these last two properties were the ones we used in arguing that we
could compute a Jukes-Cantor distance between sequences on leaves of a tree
to estimate the length of the path between them.

As motivation for the distance we will soon define, we focus on property (3).
If M1, and M2 are the Markov matrices describing the substitution process from
S0 to S1 and from S1 to S2, respectively, then the product M1M2 describes the
process from S0 to S2. Now to associate a scalar distance to each edge, we might
try the determinant of the matrices, since that is a natural way of obtaining a
single number from a matrix. Moreover, a key property of the determinant is

det(M1M2) = det(M1) det(M2).

By taking a logarithm (which requires that the number be positive) this can be
converted into an additive statement.

ln |det(M1M2)| = ln |det(M1)|+ ln |det(M2)|.

Thus the logarithm of the determinant of the Markov matrix relating two se-
quences has some of the features we need. Unfortunately it isn’t quite a good
definition of a distance, since it fails to satisfy properties (1) and (2).

A closely related quantity that does have the desired properties when ap-
plied to data from infinitely long sequences produced in accord with the general
Markov model is obtained as follows:

Definition. Let F̂ be the 4 × 4 frequency array obtained by comparing sites
in sequences S0 and S1, with the i, j entry of F̂ being the proportion of sites
with base i in the S0 sequence and j in the S1 sequence. Let f0 and f1 be the
frequency vectors for the bases in S0 and S1, respectively, which are obtained
from F̂ by row and column marginalizations.

Then the log-det distance between S0 and S1 is defined by

dLD(S0,S1) = −1

4

(
ln
∣∣∣det(F̂ )

∣∣∣− 1

2
ln(g0g1)

)
,

where gi is the product of the 4 entries in fi.

The log-det distance is also called the paralinear distance, as it was given
different names when independently constructed by two authors.

That the formula for the log-det distance, when applied not to F̂ but to a
theoretical distribution F arising from the general Markov model, gives a quan-
tity that satisfies properties (2) and (3) will be shown in Exercise 13. (Property
(1) is a little messier to establish.) As F̂ is an estimate of F , the properties
hold approximately when log-det distance are computed from finite length data
sequences produced roughly in accord with the general Markov model.
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Unlike the other distance formulas discussed here, the log-det distance can-
not always be interpreted as the total number of mutations per site that must
have occurred over the evolutionary history. Still, because the distance has
the three formal properties above it is a reasonable measure of the amount of
mutation that has occurred. In special circumstances, such as when the Jukes-
Cantor or Kimura models apply exactly, and theoretical rather than empirical
distributions are used, it gives the same result as some other distance formulas.
(See Exercise 11.)

Finally, if a Jukes-Cantor, Kimura, or other submodel of the GTR model
is adequate for describing sequence data, it is better to use distance formulas
designed for the most restrictive yet adequate model. The use of a more gen-
eral model increase the possibility of ‘overfitting’ the data, making statistical
infererence of the amount of mutation that occurred less reliable. Since dis-
tances computed from data are unlikely to ever fit a metric tree exactly, getting
values closer to the ‘true’ distances by using the most restrictive model that is
appropriate will improve our chance of recovering the ‘true’ tree by whatever
distance method is used. The use of the log-det distance is justified if either
the sequences being analyzed have significant differences in base composition, or
there is reason to doubt that the substitution process is the same on all edges of
the tree. Both of these possibilities rule out the use of standard continuous-time
models, but not the general Markov model which is the basis of log-det.

7.4 Exercises

1. Calculate dJC(S0, S1) for the two 40 base sequences

S0 : CTAGGCTTACGATTACGAGGATCCAAATGGCACCAATGCT

S1 : CTACGCTTACGACAACGAGGATCCGAATGGCACCATTGCT.

2. Ancestral and descendant sequences of 400 bases were simulated according
to the Jukes-Cantor model. A comparison of aligned sites gave the frequency
data in Table 7.1.

S0�S1 A G C T

A 90 3 3 2
G 3 79 8 2
C 2 4 96 5
T 5 1 3 94

Table 7.1: Frequencies of S0 = i and S1 = j in 400 site sequence comparison

a. Compute the Jukes-Cantor distance between the sequences, showing all
steps.
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b. Compute the Kimura 2-parameter distance between the sequences, show-
ing all steps.

c. Are the answers to (a) and (b) identical? Explain.

3. Ancestral and descendant sequences of 400 bases were simulated according
to the Kimura 2-parameter model with β/γ = 5. A comparison of aligned
sites gave the frequency data in Table 7.2.

S0�S1 A G C T

A 92 15 2 2
G 13 84 4 4
C 0 1 77 16
T 4 2 14 70

Table 7.2: Frequencies of S1 = i and S0 = j in 400 site sequence comparison

a. Compute the Jukes-Cantor and Kimura 2-parameter distances, showing
all steps.

b. Which of these is likely to be a better estimate of the number of substi-
tutions per site that actually occurred? Explain.

4. Compute the Kimura 3-parameter and log-det distances for the sequences
of the last two problems. Why would these distances be less appropriate
for these data?

5. Reasoning from the formula for the Jukes-Cantor distance, answer the fol-
lowing:

a. If two sequences are identical, why will dJC = 0 ?

b. If two sequences differ in 3/4 or more of the sites, why will dJC not make
sense? Should this cause problems when trying to use the formula on real
data?

c. If two sequences differ in just under 3/4 of the sites, why will the value
of dJC be very large?

6. The Jukes-Cantor distance formula is sometimes given as

dJC = −3

4
ln

(
4q − 1

3

)
,

where q is the proportion of bases that are the same in the two sequences.
Show this this formula is equivalent to the one in the text.

7. When transitions are more frequent than transversions, the Kimura 2-
parameter distance often gives a larger value than the Jukes-Cantor distance
when applied to the same pair of sequences. Explain this informally by ex-
plaining why hidden mutations are more likely under this circumstance.
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8. Suppose that the Jukes-Cantor model perfectly describes sequence evolution
along a metric tree T with positive edge lengths. The rate parameter α = 1
is fixed in the Jukes-Cantor rate matrix Q. Each edge ei has length ti, with
associated Markov matrix Mi = eQti .

a) Suppose a path from taxon S0 to taxon S1 in a tree is composed of edges of
length t1, t2, . . . , tn. Show that if sequence data is exactly described by the
distribution the Jukes-Cantor model predicts, then dJC(S0, S1) =

∑n
i=1 ti,

and thus that the Jukes-Cantor distance agrees with the tree metric.

b) What if the rate parameter α is some number other than 1? How will
the tree metric and the Jukes-Cantor distance between taxa be related?

9. Show that the formula for the Jukes-Cantor distance can be recovered from
the formula for the Kimura 2-parameter distance by letting b, e be appro-
priate expressions involving a.

10. Derive the formula for the Kimura 3-parameter distance. Use the result
of Exercise 25 of Chapter 6, in which you found the entries b, c, and d in
M = eQt were given in terms of β, γ, δ, t by the formulae:

b =
1

4

(
1− e−(2β+2δ)t + e−(2γ+2δ)t − e−(2β+2γ)t

)
,

c =
1

4

(
1 + e−(2β+2δ)t − e−(2γ+2δ)t − e−(2β+2γ)t

)
,

d =
1

4

(
1− e−(2β+2δ)t − e−(2γ+2δ)t + e−(2β+2γ)t

)
.

11. The goal of this problem is to show that the Jukes-Cantor distance is a
special case of the log-det distance. You will need to know the following
two facts about determinants of k × k matrices:

i) det(cA) = ck det(A).

ii) det(A) = the product of A’s k eigenvalues.

a. Suppose the Jukes-Cantor model with α = 1 and edge length t exactly
describes the evolution of a sequence S0 to S. Explain why the character
distribution for the two sequences is F = 1

4M(t).

b. Explain why f1 = f2 = (1/4, 1/4, 1/4, 1/4).

c. Use the facts above to show that in this case dLD(S0,S1) = dJC(S0,S1).

12. Proceeding as in the last problem, show that the Kimura 3-parameter dis-
tance is a special case of the log-det distance.

13. Show the log-det distance formula is additive and symmetric through the
following steps. You will need to know the following three facts about
determinants of k × k matrices:

i) det(AB) = det(A) det(B).
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ii) If D is a k × k diagonal matrix, then

det(D) = D(1, 1) ·D(2, 2) · · ·D(k, k).

iii) det(AT ) = det(A).

a. Suppose S0 is the parent of S1 which is the parent of S2, the initial base
distribution for S0 is p0, and Markov matrices describing base substitutions
are M0→1 and M1→2, respectively. Let M0→2 = M0→1M1→2. Explain why
p1 = p0M0→1 and p2 = p1M1→2 are the base distributions in S1 and S2
respectively, and explain the meaning of M0→2.

b. For the vector pi = (a, b, c, d) let

Di =


√
a 0 0 0

0
√
b 0 0

0 0
√
c 0

0 0 0
√
d

 .

Then for each pair i, j with 0 ≤ i < j ≤ 2, define the matrix

Ni→j = DiMi→jD
−1
j .

Show N0→1N1→2 = N0→2, and use fact (i) to conclude

ln |det(N0→1)|+ ln |det(N1→2)| = ln |det(N0→2)| .

c. Show the distribution array of characters on Si and Sj is Fi→j =
DiNi→jDj , and then use fact (i) to show

ln |det(Fi→j)| = ln |det(Ni→j)|+ ln |det(Di)|+ ln |det(Dj)| .

d. Combine (b), (c), and fact (ii) to show the log-det distance is additive.

e. Explain why Fj→i = FTi→j , and then use fact (iii) to show the log-det
distance is symmetric.

14. Suppose Q is a time-reversible rate matrix with stable base distribution p.

a. If you have not already, do Exercise 30 of Chapter 6.

b. Since for a one-edge tree of length t this model predicts a joint distri-
bution matrix P = diag(p)eQt, explain why −Tr(diag(p) ln(diag(p)−1P )
gives the expected number of substitutions per site on the edge. (Here
logM denotes the matrix logarithm, the inverse of the matrix exponen-
tial, which can be defined through applying the usual Taylor series for the
natural logarithm to a matrix.)

c. To define a GTR distance, we should apply the formula obtained in part
(b) to an estimate of the joint distribution P . Explain why a reasonable
estimate for P is P̂ = (1/2)(F +FT ) where F is the 4× 4 table of observed
frequencies of base pairs in the two sequences.



Chapter 8

Maximum Likelihood

There are two dominant statistical paradigms in common use for inference of
phylogenetic trees: Maximum Likelihood, and Bayesian analysis. Although the
differences in these method can be viewed as profound philosophical ones, in
fact both have much in common. They both assume a probabilistic model of
the evolution of sequences on trees, and then attempt to find the tree(s) and
model parameters that are most in accord with the data. Though exactly what
this means varies between the methods, implementing them involves many of
the same calculations. These calculations are, unfortunately involved enough
that it is not feasible to work out any interesting analysis by hand, so specialized
software is needed.

The Maximum Likelihood and Bayesian frameworks are both very general
approaches, used across all disciplines, for statistical inference. Since typical
introductory statistics courses often omit introducing either as a general method,
scientists often learn of them informally, in specialized settings, without gaining
much understanding of exactly what they mean, what calculations must be
performed for inference, or how they differ. Though our goal in these notes is to
develop phylogenetic inference, we will first step back to viewing much simpler
statistical inference questions to try to make the methods clearer. We begin
with Maximum Likelihood.

8.1 Probabilities and Likelihoods

Suppose we have a probabilistic model that we believe predicts outcomes of
some experiment. Our model depends on one or more parameters, which are
typically numerical quantities. However, we do not know what values of these
parameters are appropriate to fit our data. How can we infer a ‘best’ choice of
parameter values from experimental data?

We’ll give two examples of such a problem, the first as simple as possible, the
second a bit more complex, in order to motivate the ML approach to addressing
such an issue.

117
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Example (1). Our experiment is the toss of a (possibly unfair) coin. Our model
is simply that the toss will produce ‘heads’ with probability p and ‘tails’ with
probability 1 − p. The parameter here is p, which might have any numerical
value from 0 to 1.

We conduct many i.i.d. trials of this experiment, obtaining a sequence of
‘heads’ and ‘tails’. While we either know or assume our model applies to this
experiment, we do not know the value of the parameter p. How should we
estimate p?

For Example (1), we do not need to be very sophisticated because the model
is so simple. Using a frequentist interpretation of probability, p simply expresses
what fraction of a large number of trials we believe will produce heads. So if,
for instance, out of 100 trials we record 37 heads, we estimate p̂ = 37/100 = .37.
In general, if we find m heads out of n trials, we estimate p̂ = m/n.

But there is another way we can arrive at the same result. Naively, we
might decide the best estimate for p would be the numerical value that is most
probable, given that we obtained the specific data we did. That is, we want p̂
to be the value of p that maximizes

P(p | data).

Unfortunately, it isn’t at all clear how to do this, since we have no idea how
to compute such a conditional probability, or even whether it makes sense. As
we’ve seen previously for phylogenetic models, P(data | p) can be calculated,
but that is not what we are interested in here.

However, we can observe that by formal properties of probabilities

P(p | data)P(data) = P(p, data) = P(data | p)P(p). (8.1)

This can also be written as

P(p | data) = P(data | p) P(p)

P(data)
, (8.2)

which is an instance of Bayes’ theorem relating conditional probabilities. Now
the terms P(p) and P(data) in the fraction on the right are not things we can
address1. In fact, from a traditional, frequentist viewpoint, it doesn’t even
make sense to talk about P(p), since p represents some fixed, though unknown,
parameter value, and is not random in any way. As for P(data), since we have
observed the data we might say it has probability 1. However, from equation
(8.1) we see it is really intended to mean the probability of the data before p
is specified, and this is again nonsensical. Thus equation (8.2) has no rigorous
meaning from a frequentist perspective, and is best considered as a motivational
guide.

1In fact, taking these terms into account is done in a Baysian analysis, and is the primary
difference between the frameworks.
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However, proceeding informally, if we are interested in finding a value of p
to make the left hand side of equation (8.2) large, we might choose to focus on
the first term appearing on the right, as this is something we can calculate from
our model. We call this function L, the likelihood function for our model and
data:

L(p) = L(p | data) = P(data | p)

Note that while the likelihood function is a conditional probability, it is not the
conditional probability we originally were interested in. We insist on referring
to it as a likelihood, rather than a probability, to remind us it is most definitely
not telling us the probability of any p given the data.

Definition. Given some data presumed to be in accord with a model, a maxi-
mum likelihood estimate for the set of parameters p for a model is a set of values
p̂ that maximizes the likelihood function L(p | data).

Put another way, a maximum likelihood estimate of the model parameters
is a choice of parameters that would make it most probable to produce the data
we collected.

Note that our definition does not refer to the maximum likelihood estimate,
since it is possible that more than one choice of p̂ produces the maximum value
of L(data | p). We generally hope for and expect a single ML estimate p̂, but it
is possible that there is more than one.

To make this more concrete, let’s find the maximum likelihood estimate for
p in Example (1), the coin toss experiment. Suppose our data are m heads
out of n tosses, in some particular order. Then the likelihood function, which
depends on the unknown p, is L(p) = L(p | data) = P(data | p). But, because
we assume our tosses are independent, this probability is simply the product of
the probabilities of the outcomes of each individual toss.2 With m heads and
n−m tails we have

L(p) = P(data | p) = pm(1− p)n−m.

To find the maximum in the interval [0, 1], we use calculus, and compute

d

dp
pm(1− p)n−m = mpm−1(1− p)n−m − (n−m)pm(1− p)n−m−1

= pm−1(1− p)n−m−1 (m(1− p)− (n−m)p) .

But this is zero exactly when

0 = m(1− p)− (n−m)p = m− np.
2This assumes we are referring to a specific ordering of heads and tails in the data sequence.

If the order is discarded, and we refer only to the number of heads and tails, then the prob-
ability should be increased by a factor of

(n
m

)
, to account for the many possible orders. But

this extra constant factor has no effect on determining the value of p at which the likelihood
is maximal.
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Thus we find p̂ = m/n, exactly as before.

In computing maximum likelihood estimates of model parameters, it is often
simpler to consider the logarithm of the likelihood function (often called the
log-likelihood), rather than the likelihood function itself. The likelihood and
log-likelihood are maximized at the same parameter values, so this does not
affect our judgment of the best estimates to infer. However, the form of the
log-likelihood function often makes the computation of the maximizer simpler,
as in fact it does even for Example (1):

lnL(p) = m ln p+ (n−m) ln(1− p),

so
d

dp
lnL(p) =

m

p
− n−m

1− p
.

Setting this equal to zero and solving for p again yields p̂ = m/n.

We now consider a more elaborate example, where the parameter estimate
we should use is not quite so obvious.

Example (2). Suppose we have two (possibly unfair) coins, with probabilities
of heads p1, p2 respectively, giving us two parameters. We toss the first coin,
and depending on whether it gives heads or tails, either retain it, or switch to
the second coin for a second toss. We then make a second toss and report the
(ordered) result of these two tosses as the outcome of the experiment.

Then we find the probability of the various outcomes are

phh = p2
1, pht = p1(1− p1), pth = (1− p1)p2, ptt = (1− p1)(1− p2).

Now we wish to estimate p1 and p2 from some data: Suppose in n trials, we
find nhh, nht, nth, ntt occurrences of the 4 outcomes, where

n = nhh + nht + nth + ntt.

Before taking an ML approach, we might hope to just set pij = nij/n for
each i, j ∈ {h, t} and solve for p1, p2. However, this is not likely to work, since
it gives 3 independent equations in 2 unknowns. (While at first it appears we
have 4 equations, the fact that

∑
i,j∈{h,t} pij = 1 means one of the equations is

implied by the others.) But for a system of 3 equations in only 2 unknowns, we
generally do not expect a solution to exist. Indeed, for most data there will be
no solutions to this polynomial system.

Taking a maximum likelihood approach to the estimation of p1, p2, however,
is straightforward. Using the assumption that the trials are i.i.d., the likelihood
function is

L(p1, p2) = (p2
1)nhh (p1(1− p1))

nht ((1− p1)p2)nth((1− p1)(1− p2))ntt ,

= p2nhh+nht
i (1− p1)nht+nth+nttpnth2 (1− p2)ntt .
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Thus the log-likelihood is

lnL(p1, p2) = (2nhh+nht) log p1+(nht+nth+ntt) log(1−p1)+nth log p2+ntt log(1−p2).

To find maximizers we compute partial derivatives with respect to p1 and
p2, equate them to zero, and see

0 =
2nhh + nht

p1
− nht + nth + ntt

1− p1
, 0 =

nth
p2
− ntt

1− p2
.

Solving for p2 gives

p̂2 =
nth

nth + ntt
, (8.3)

which is a formula that, in retrospect, we could have made up as a reasonable
estimator. It is simply the proportion of trials in which the second coin was used
(because the first coin produced a tail) that produced a head for the second coin.

Solving for p1 gives

p̂1 =
2nhh + nht

2nhh + 2nht + nth + ntt
. (8.4)

We can also see that this formula is reasonable: The denominator represents
the total number of times the first coin was tossed, and the numerator is the
number of these that produced a head.

We leave as an exercise checking that for ‘perfect’ data, where nij = npij ,
these formulas recover the correct values p̂1 = p1, p̂2 = p2.

This example has shown an instance of a common phenomenon, that when
ML estimators are computed for simple models, they usually are given by for-
mulas that are intuitively reasonable. For simple models we don’t necessarily
need the ML framework to justify these estimators, since we could reason in
other ways. For more complicated models, where it is less clear how to come
up with any intuitive estimation formulas, we find it reassuring that ML offers
a general procedure extending our intuition.

In addition, ML estimators have important statistical properties as well.
For instance, it’s possible to prove in great generality that maximum likelihood
estimators are statistically consistent. This means that if the chosen model
accurately describes our experiment, then as the number of trials is increased
to infinity, the estimators converge to the true parameters. ML estimators are
also asymptotically efficient, in that they have minimal variance as the number
of trials is increased. Note both of the statements refer to having large amounts
of data, though, and say nothing about behavior for small data sets. In fact,
there are some statistical inference problems for which ML is known to be quite
poorly behaved for small data sets. However ML is a widely-accepted inference
framework, and its use is quite common throughout statistics.

On a more practical level, there are often difficult computational issues in-
volved in ML. In the examples above, we have found maximum likelihood es-
timators by first computing derivatives of the log-likelihood function, and then
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solving several simultaneous equations. This last step in particular may be
quite difficult for more complicated models. For instance, even if the model is
expressed through polynomial equations, we may obtain rational expressions of
high degree from the partial derivatives. If the model is given by transcenden-
tal formulas, we may be forced to solve transcendental equations. In practice,
then, numerical approaches to finding approximate maxima must be used. (Of-
ten these are based on the same idea as Newton’s method, which you may be
familiar with from Calculus.) Techniques for numerically maximizing general
function are highly developed, and form an entire subfield of applied mathe-
matics called Optimization. These approaches do not give formulae for ML
estimators, but do allow the development of software that will produce numer-
ical approximations of the estimators for any data.

It is also possible for a likelihood function to have several local maxima. (In
the case of a single parameter, this simply means the graph of the likelihood
function has several ‘bumps’.) If these local maxima are all located, then the
values of the likelihood function at them must be compared in order to choose
the global maximum as the ML estimator. Numerical maximization schemes,
however, are usually unable to ensure that the global maximum has been lo-
cated. Searches may become trapped in local maxima, so some effort must be
taken to try to prevent this from happening. Often searches are performed from
several different starting points, in hopes that all local maxima may be found.

Before turning back to phylogenetics, consider a final example of ML infer-
ence, this time in a biological setting:

Example (3). A population of a diploid organism has two alleles for a particular
gene, which we denote A and a. If the population is in Hardy-Weinberg equilib-
rium, and the frequency of the alleles are pA and pa = 1−pA, then the genotypes
of individuals in the populations should have the following frequencies:

AA : p2
A, Aa : 2pApa, aa : p2

a.

If in a random sample of n individuals in the population, we have nAA, nAa,
and naa individuals with these genotypes, what are the ML estimates of pA and
pa?

Notice first the naive approach of simply setting theoretical genotype fre-
quencies to empirical ones give the equations:

p2
A =

nAA
n

,

2pA(1− pA) =
nAa
n
,

(1− pA)2 =
naa
n
,

and this system of 3 equations in 1 unknown is unlikely to be solvable. However,
the log-likelihood is

lnL(pA) = nAA ln(p2
A) + nAa ln(2pA(1− pA)) + naa ln((1− pA)2)

= nAA2 ln(pA)) + nAa(ln 2 + ln(pA) + ln(1− pA))) + naa2 ln(1− pA).
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Differentiating with respect to pA and setting equal to 0 yields

0 =
2nAA
pA

+
nAa
pA
− nAa

1− pA
− 2naa

1− pA
,

so
2nAA + nAa

pA
=
nAa + 2naa

1− pA
,

Solving for pA then yields

pA =
2nAA + nAa

2(nAA + nAa + naa)
=

2nAA + nAa
2n

. (8.5)

With a little thought, this formula should be intuitively reasonable.

8.2 ML Estimators for One-edge Trees

As a first application of maximum likelihood ideas to phylogenetics, consider
a Jukes-Cantor model on a one-edge tree, from an ancestral sequence S0 to a
descendant sequence S1. Let the length of the edge be t, measured in units so
that α = 1 in the Jukes-Cantor rate matrix.

Then the Markov matrix along the edge is

M = eQt =


1− a a/3 a/3 a/3
a/3 1− a a/3 a/3
a/3 a/3 1− a a/3
a/3 a/3 a/3 1− a


where

a = a(t) =
3

4

(
1− e− 4

3 t
)
,

while we have a uniform base distribution

p0 =
(
1/4 1/4 1/4 1/4

)
in the ancestral sequence S0.

We are interested in estimating the parameter t from aligned sequence data
for S0 and S1. We summarize the sequence data by counting how often each
pattern appears, and let N(i, j) = nij be the number of sites with base i in S0
and base j in S1. This N is a 4 × 4 matrix of data counts, such as the ones
given in Table 6.2.

We have a corresponding joint distribution matrix of probabilities of bases
predicted by the model, with

P = (pij) = diag(p0)M

=


(1− a)/4 a/12 a/12 a/12
a/12 (1− a)/4 a/12 a/12
a/12 a/12 (1− a)/4 a/12
a/12 a/12 a/12 (1− a)/4

 .
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Here every pij is a function of the parameter t through the formula for a(t).
Thus the likelihood function is

L(t | {nij}) =

4∏
i,j=1

p
nij
ij ,

and the log-likelihood is

lnL(t | {nij}) =

4∑
i,j=1

nij ln pij = ln(a/12)
∑
i 6=j

nij + ln((1− a)/4)
∑
i

nii.

To find the maximizer t̂, we differentiate the log-likelihood with respect to t and
set the result equal to 0:

0 =

∑
i6=j nij

a(t̂)
a′(t̂)−

∑
i nii

1− a(t̂)
a′(t̂).

Since a′(t) 6= 0 for any value of t, we may divide by a′(t̂), and with a little
algebra obtain

a(t̂) =

∑
i6=j nij∑
i,j nij

.

This should not be too surprising, since a(t) described the proportion of sites in
which we expect to observe a substitution, and the formula for a(t̂) computes
the proportion of sites in which we actually observe one, i.e., the Hamming
distance.

Maximum likelihood has now given us a firm justification for the what we did
in Chapter 7 when we defined the Jukes-Cantor distance: We set the formula
for a(t̂) derived from the model equal to the Hamming distance between the
sequences. Solving for t̂ led us to the Jukes-Cantor distance formula. But
now interpreting that work in the light of maximum likelihood, we see that the
Jukes-Cantor distance is actually the ML estimate for the edge length t under
the Jukes-Cantor model.

Using maximum likelihood to estimate the time parameter under the Kimura
models, and other more complicated models, can be handled similarly, so we
leave them for exercises. The resulting formulas for the parameter estimate
match with the distance formulas we’ve given previously. This places all of
those distances on firmer theoretical footing, as arising from the ML framework
applied to 2-taxon trees.

8.3 Inferring Trees by ML

So how does maximum likelihood give us a framework for phylogenetic inference
of trees? Suppose we have aligned sequence data for the n taxa in a set X, and
we assume a particular model of molecular evolution.
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To be concrete, we might use a general time-reversible model with a common
rate matrix Q for all edges, and a root base distribution which is an eigenvector
of Q with eigenvalue 0. With the root distribution given by

p =
(
pA pG pC pT

)
,

we let

Q =


∗ pGα pCβ pT γ
pAα ∗ pCδ pT ε
pAβ pGδ ∗ pT η
pAγ pGε pCη ∗

 ,

where the diagonal entries are chosen so rows sum to zero. We can also choose,
say, η = 1 to fix a time-scale. The parameters for our model are 1) a binary
phylogenetic X-tree T , 2) any 3 of the entries of p, 3) α, β, γ, δ, ε, and 4) the
edge lengths {te}e∈E(T ). There are additional restrictions on parameter values
so that edge lengths, the root distribution entries, and the off diagonal entries
of Q are non-negative, but we will not be explicit about them here.

Notice that the tree itself is a parameter — a non-numerical one, but a
parameter nonetheless. When we attempt to maximize the likelihood function,
we will have to do so over all allowable numerical parameters as well as the
discrete variable of the tree topology.

We thus consider a log-likelihood function for each fixed tree T ,

lnLT =
∑

(i1,...,in)∈{A,G,C,T}n
n(i1, . . . , in) ln(p(i1, . . . , in)), (8.6)

where p(i1, . . . , in) is a function of the numerical parameters giving the prob-
ability of observing the pattern (i1, . . . , in) at a site (as computed in Chapter
6), and n(i1, . . . , in) is the count of this pattern in the aligned sequence data.
We emphasize that lnLT is a function of all the numerical model parameters
associated to T — essentially a function of the variable entries of pρ, Q, and
{te}e∈E(T ).

We now need to find the values of the numerical parameters that maximize
LT . In practice, for more than a few taxa this will have to be done by numerical
methods rather than by exact solution.

Once we have maximized LT for a fixed T , however, we will have to do
the same for all other T , comparing the maximum values we found for each.
We then pick the tree T and the numerical parameter values that maximize its
likelihood function as the ML estimators for our data.

As should be obvious, these computation are simply too involved to be done
by hand, even in a toy problem for instructional purposes. Armed with a com-
puter, we still have a tremendous amount of work to do, optimizing numerical
parameters for each fixed tree, as we search among all trees. Heuristic ap-
proaches are necessary to make the calculations tractable. We will seldom be
absolutely sure we have found the true maximum, and will be limited in how
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many taxa we can deal with by the power of our computer and the design of
the software.

When maximum likelihood is used for tree inference, it is typical to assume a
model such as GTR (or an extension of it with rate variation, as will be discussed
in Chapter 10). There are practical reasons for this, since using a common rate
matrix on all edges and not needing to consider a variable root location keeps
the number of parameters lower, making the optimization much more tractable.
Sometimes the common rate matrix and stable base distribution assumptions
of GTR are reasonable on biological grounds as well. If they are, then using a
model with fewer parameters (e.g., HKY) may be desirable instead, since too
general a model risks ‘overfitting’ the data.

To focus on only one issue with always following the typical approach, how-
ever, note that there are data sets for which it is clear the base distribution
is not stable. Standard software implementations of ML include only models
assuming stability, and these may lead to erroneous inference if the assumption
is violated. However, a literature search will turn up special-purpose software
in which researchers have introduced models allowing some types of changing
base distributions.

The important lesson is ML can only be expected to perform well if the
model assumptions are at least approximately correct. If the model used in
data analysis does not give a good rough description of the evolution of the
sequences, using ML for inference does not guarantee any good results.

8.4 Efficient ML Computation

For software to implement ML efficiently for phyologenetics, there are several
problems to ovecome. Suppose we have a fixed set of N taxa, aligned data
sequences for them, and have chosen a model for our analysis. (We’ll imagine
we are using the GTR model here.) We would like to perform the following
steps:

1. Count the number n(i1, . . . in) of occurrences of each pattern of bases in
the aligned sequences, since this will be needed in the likelihood functions
as shown in equation (8.6).

2. Consider all possible trees T that might relate the taxa. (For the GTR
model, we may use unrooted trees, since time-reversibility ensures moving
the location of the root doesn’t affect the probability of observing any
data.)

3. For each such tree T , construct the likelihood function as given in equation
(8.6). (For GTR, this is a function of the root distribution (3 free param-
eters) and the relative rates α, β, γ, δ, ε, η (5 free parameters, since we may
arbitrarily choose one of these to be 1), and all edge lengths {te}e∈ET
(2N-3 free parameters). The Markov matrix on each edge of the tree must
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be computed as Me = eQte in order to use its entries in the computation
of the p(i1, . . . in).

4. For each tree’s likelihood function constructed in step (3), find the maxi-
mum value, and values of all the parameters that produce this maximum.

5. Finally, choose the tree T , and the numerical parameters for it, that had
the largest maximum, and report this as the ML tree. In some cases, we
may get a tie between several trees, though this is quite rare in practice.

Step (1) here is straightforward and can be done quickly.
For step (2), we have the same problem that we had for Maximum Parsi-

mony; if N is large, then the (2N −5)!! trees to be considered is a huge number.
Step (3) looks difficult, since for DNA there are 4N possible patterns, so the

likelihood function looks like it might have a huge number of terms. However,
we do not need to include terms for patterns that don’t appear in the sequences,
since for these n(i1, . . . , in) = 0. The number of different patterns that appear
is generally much smaller than 4N , so this observation can save much work.
However, we need to find a way to compute p(i1, . . . , in) efficiently for those
patterns that do appear.

Step (4) is difficult, but optimization problems of all sorts have been heav-
ily studied by mathematicians and computer scientists, so there are good ap-
proaches that generally perform well.

We will discuss approaches to dealing with step (2) in Chapter 9. Step (4) is
a subject for an entire course in itself. But for step (3), the Felsenstein pruning
algorithm can be used to compute the pattern probabilities efficiently.

But before given Felsenstein’s algorithm, we should ask why we don’t just
compute the pattern probabilities as discussed in Chapter 6? There we saw we
can compute the probability of observing a given pattern by a sum of terms,
one for each possible assignment of states to each internal node of the tree.
The individual terms were products of entries of Markov matrices on each edge,
and an entry of the root distribution vector. Although conceptually clear, the
problem with this approach is that this expression has too many terms. For N
taxa, there are N − 1 internal nodes in a rooted tree, so there would be 4N−1

terms in this sum. Since this is exponential in N , it is quite large as soon as N
is large. The key feature of Felsenstein’s algorithm is that it uses many fewer
operations to compute the same probability — the number of operations is only
linear in N rather than exponential.

Felsenstein’s algorithm for computing p(i1, . . . , in) is formally similar to that
of Sankoff, for computing weighted parsimony scores, and fits within a standard
dynamic programming approach common in computer science. It works with
a rooted tree, proceeding from the leaves toward the root, performing a com-
putation at each node. We suppose we already have a formula for the Markov
matrix Me for each edge of the tree (which would have been found by matrix
exponetiation in the case of the GTR model).
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Figure 8.1: A small tree to illustrate Felsenstein’s pruning algorithm

We begin with a very small example, with only three leaves, as shown in
Figure 8.1. Suppose we are interested in computing P(ATC), the joint probability
of observing A at the first leaf, T at the second, and C at the third, as shown in
the figure.

Using our standard order of A, G, C, T for bases, we assign probability vectors
of c1 = (1, 0, 0, 0), c2 = (0, 0, 0, 1), c3 = (0, 0, 1, 0) to the leaves from left to
right, since with probability 1 the specified base must appear. Now at v we
compute a 4-entry vector cv giving the conditional probability of what appears
at the leaves below it, conditioned on the state at v. For instance, if an A

appeared at v, the first two leaves would have pattern AT with probability

cv(A) = M1(A, A)M2(A, T)

= (M1(A, A) · 1 +M1(A, G) · 0 +M1(A, C) · 0 +M1(A, T) · 0))

((M2(A, A) · 0 +M2(A, G) · 0 +M1(A, C) · 0 +M1(A, T) · 1).

Similarly, if a G appeared at v, the first two leaves would have pattern AT with
probability

cv(G) = M1(G, A)M2(G, T)

= (M1(G, A) · 1 +M1(G, G) · 0 +M1(G, C) · 0 +M1(G, T) · 0))

((M2(G, A) · 0 +M2(G, G) · 0 +M1(G, C) · 0 +M1(G, T) · 1).

The entries cv(C) and cv(T) are given by similar formulas.

Notice that the computation of all entries of cv can be more easily presented
as follows: Compute the vectors

w1 = M1c
T
1

and

w2 = M2c
T
2 .

Then cv is the element-wise product of w1 and w2; that is cv(i) = w1(i)w2(i).
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Now that cv is computed, similar reasoning shows we can compute cρ by
letting

w1 = M4c
T
v

w2 = M3c
T
3 ,

and then computing the element-wise product of these vectors. To check that
the ith entry of cρ is given correctly by this calculation, first note that

w1(i) =

4∑
j=1

M4(i, j)cv(j)

=

4∑
j=1

P(v = j | ρ = i)P(S1 = A, S2 = T | v = j)

= P(S1 = A, S2 = T | ρ = i).

Since w2(i) = P(S3 = C | ρ = i), the entries of cρ are

cρ(i) = P(S1 = A, S2 = T | ρ = i)P(S3 = C | ρ = i)

= P(S1 = A, S2 = T, S3 = C | ρ = i).

Here we use independence of the process on the two edges descending from ρ to
justify the multiplication of the conditional probabilities.

Once we have found cρ, we have the conditional probabilities of observing
the given pattern at the leaves, conditioned on each possible state at the root.
The final step in obtaining the probability of the pattern ATC uses the base
distribution at the root: we simply compute

pρc
T
ρ = pAcρ(A) + pCcρ(C) + pGcρ(G) + pT cρ(T).

For a larger tree, there are of course more steps to this computation, but it
can still be performed quite quickly.

The Felsenstein algorithm also has a simple modification to deal with missing
data. If no information on the base at a leaf is known, then one simply takes
c to be (1, 1, 1, 1). If it was only known that the base was a purine, then one
would set c = (1, 1, 0, 0).

Mathematical Note: The relationship between the Sankoff weighted-parsimony
algorithm and the Felenstein pruning algorithm goes much beyond the way
they both proceed from the leaves toward the root. The entries in vectors at
the leaves in the Sankoff algorithm are the the negative logarithms of those in
the Felsenstein algorithm. The weight matrix of the Sankoff algorithm has as its
analog in the Felsenstein algorithm the Markov matrix associated to an edge.
Then, each addition in the Sankoff algorithm corresponds precisely to a multi-
plication in Felsenstein’s. Each minimization in Sankoff’s corresponds precisely
to a sum in Felsenstein’s. These observations can be summarized by saying
the Sankoff algorithm is a tropicalization of Felsenstein’s. While probabalistic
models in phylogenetics can be studied via the branch of mathematics called
algebraic geometry, parsimony approached fall under tropical geometry.
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8.5 Exercises

1. When finding maxima of the likelihood functions in Examples (1) and (2)
in the text, we ignored issues of whether these occurred at endpoints of the
interval [0,1], or equivalently we ignored showing our unique critical points
were in fact maxima. Correct this shortcoming in our presentation.

2. Show that if in Example (1) we have ‘perfect’ data from N trials, in the
sense that n = Np, and m = N(1 − p), then the maximum likelihood
estimate p̂ recovers the true value of p.

3. Log-likelihoods values are always ≤ 0. Explain why.

4. Show that if in Example (2) we have ‘perfect’ data from N trials, in the
sense that nhh = Np2

1, hht = Np1(1 − p1), nth = N(1 − p1)p2 and ntt =
N(1−p1)(1−p2), then the maximum likelihood estimates p̂1, p̂2 recover the
true values of p1, p2.

5. Check the algebra to obtain formula (8.5), and then give an intuitive (non-
ML) explanation of why it is a reasonable estimator of an allele frequency.

6. Suppose a gene has 3 alleles, A1, A2, A3 and is Hardy-Weinberg equilibrium
in a diploid population. If the allele frequencies are p1, p2, p3 = 1− p1 − p2

respectively, then genotype frequencies should be

p2
1, p

2
2, p

2
3, 2p1p2, 2p1p3, 2p2p3.

Derive formulas for the ML estimates of the allele frequencies from counts
of empirical genotypes.

7. Suppose the Kimura 2-parameter model is used to model describing the
evolution of a sequence S0 to S1 along a single edge. View the entries b and
c of the Markov matrix as the unknown parameters of the model. Guess
reasonable formulas for estimators b̂ and ĉ in terms of the entries of the
frequency array comparing the two sequences. Then find formulas for the
maximum likelihood estimators. Do they agree?

8. Repeat the last exercise for the Kimura 3-parameter model.

9. Repeat the last exercise for the general Markov model.

10. For performing ML with the GTR model, the maximization of the likeli-
hood function must be done only over the values of parameters that are
biologically meaningful. Explicitly give the necessary restrictions on each
of the GTR parameters.

11. For the Kimura 2-parameter rate matrix model, how many variables appear
in the likelihood function for a particular binary tree T relating N taxa?
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12. In Problem 6 of Section 6.5 you were asked to compute probabilities of
observing certain base patterns on a specific 3-taxon tree with Jukes-Cantor
rate Markov matrices on the edges. Redo that problem using the Felsenstein
pruning algorithm.

13. Consider DNA evolution on the rooted tree ((A,B), (C,D)), and suppose
the same Kimura 2-parameter Markov matrix

.8 .1 .05 .05

.1 .8 .05 .05
.05 .05 .8 .1
.05 .05 .1 .8


described base changes on every edge.

a) Use the Felsenstein pruning algorithm to compute the probability of
observing the pattern AGGT .

b) Use the Felsenstein pruning algorithm to compute the probability of
observing the pattern GGAT .

c) Which of the probabilities that you computed is larger? Is that what you
should have expected?

14. At the end of section 8.4 there is a brief mention of how one can handle
missing data in the Felsenstein pruning algorithm. Elaborate on this, by
explaining in detail what conditional probabilities are computed by Mc,
where M is the Markov matrix on the edge above the leaf, and c is the
vector suggested for encoding an unknown purine.
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Chapter 9

Tree Space

As discussed in Chapter 2, as soon as we have more than a handful of taxa
we wish to relate, there are many potential trees to consider. While distance
methods give us a quick way to produce one tree, both parsimony and maxi-
mum likelihood approaches to tree inference require that we consider all trees
in choosing an optimal one to fit data. In practice, this is usually not possible
to do in an acceptable amount of time. Instead, we imagine a ‘space’ of trees,
and move from one to another to using some sort of search procedure, trying to
find the optimal tree according to the chosen criterion.

In this chapter we will focus on binary topological trees only, with no edge
lengths specified. Other notions of tree space, such as for rooted topological
trees, or for either rooted or unrooted metric trees can also be developed. We
emphasize the unrooted topological case here since it is the one the plays a
conceptual role in most current tree inference software.

9.1 What is Tree Space?

Suppose we are interested in relating 4 taxa, by an unrooted tree, using parsi-
mony. Then we know there are only three topological possibilities that are fully
resolved, as shown in Figure 9.1.

It is convenient to think of these three possibilities as the only three points in
a ‘4-taxon, binary, unrooted tree space.’ As we look for the most parsimonious
tree, we might begin at any of the three points and determine its parsimony
score. Then we move to another point, and determine its score. Finally, we
move to the third point, and determine its score. Having visited each point in
tree space, we’ve then completed an exhaustive search, and can be sure which
tree of the three is most parsimonious.

With only 3 points in this tree space, this language of moving between points
in a space may seem artificial; we could just say we need to compute scores for
every tree. However, for 100 taxa, performing an exhaustive search among the
195!! binary, unrooted, topological trees might be too time consuming to do

133
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Figure 9.1: The three points of 4-taxon unrooted binary tree space.

completely. It is then more helpful to imagine a space with 195!! points in it,
each corresponding to a possible tree, and possible methods of moving from one
point to another.

Definition. For any fixed collection X of n taxa, the space of unrooted binary
phylogeneticX-trees is a collection of (2n−5)!! points, each of which corresponds
to a distinct unrooted topological tree. The space of rooted binary phylogenetic
X-trees is a collection of (2n−3)!! points, each of which corresponds to a distinct
rooted topological tree.

But this geometric language of ‘space’ suggests that we should consider some
points to be close to one another, and others to be far apart. For instance, of
the three trees in Figure 9.2, it seems natural that T1 and T2 should be closer to
one another than either is to T3, since even glancing at them shows they have
many features in common. If we were searching for the most parsimonious tree,
and had found that T1 has a low parsimony score, we would also want to check
the score of T2, since it has so much in common, and therefore might also have a
low score. On the other hand, knowing the score of T1 doesn’t help us get even
a rough estimate of the score of T3, since the trees are so different. To make
precise the meaning of the basic intuition that similar trees should have similar
scores requires that we pin down the phrase ‘similar trees’ by giving some notion
of how far apart they are in tree space.

There are a number of different ways we can measure the similarity of trees.
Each of these is called a metric on tree space, and simply gives a way of measur-
ing how far apart we consider two trees to be. Before defining these, however,
we first discuss how we might move around in tree space.
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Figure 9.2: Intuitvely, T1 and T2 are more similar to each other than to T3. A
metric on tree space will provide a means of quantifying similarity.

9.2 Moves in Tree Space

A move in tree space should take us from one tree to another. In other words,
it should begin with a tree, and modify it in a natural way, to produce another
tree. While there are many imaginable complex moves, three simple ones are
used most often.

Since these moves rearrange a given tree by making changes only to certain
parts of it, when we depict these graphically we will group those parts of the
tree that are not affected into larger pieces. Thus the triangles appearing in a
diagram such as Figure 9.3 represent subtrees whose precise structure does not
matter for the move we depict.
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Figure 9.3: NNI moves from one tree to two others.

To create a small change in the tree, the simplest move is called a nearest
neighbor interchange (NNI). To perform an NNI move, we pick a single internal
edge of a tree, and first contract it so that the four edges leading off its endpoints
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now arise from a single vertex, as shown in Figure 9.3. The resulting tree is not
binary, but we can resolve it into a binary tree by pulling a pair of the edges
joining this vertex away from the others, and inserting an edge between the two
pairs.

If the pair of edges we pull away in this process are ones that already met in
the original tree, then we will just obtain the original tree once again. But any
other choice of a pair will give us a different topological tree. Since the 4 edges
can be grouped into two pairs in 3 ways, and one of these choices leads back to
the original tree, there are exactly 2 new trees we can reach by performing an
NNI move on a particular edge.

The simplest examples of NNI moves are already present in Figure 9.1. Start-
ing at any tree, an NNI move on the internal edge of the tree can move us to
either of the other two points in the space. The contraction of the internal edge
leads to all 4 taxa attached by edges to a single central node. Then picking
a pair of taxa and pulling these away from the others can produce any of the
three trees.
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3 41
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Figure 9.4: An alternate view of an NNI move from one tree to another.

Another way of thinking of an NNI move is shown in Figure 9.4. Focusing on
a single internal edge, and the 4 edges that are joined to its ends, we ‘grab’ one
of these 4 edges, and slide its attachment point down the edge toward its other
end. There is no change in the tree topology as we do this, until we reach the
other end. Then we must make a choice of a new edge onto which we slide the
attachment point. (As we do the sliding, we must of course merge the two other
edges meeting at the original attachment point into a single edge, and then split
the edge on which the new attachment point is located into two edges.) Either
of the choices gives a different topology from the original tree, and these are the
two trees the NNI move can create. This explanation fits with the terminology
‘nearest neighbor interchange’, as a subtree has been moved from joining the
rest of the tree at a particular location to one of the closest spots that gives a
different tree topology.

Given an n-taxon unrooted binary tree, there are n − 3 internal edges at
which we can perform an NNI move. A move on an edge can be performed to
reach 2 different trees. It is not hard to see that every NNI move will produce a
different tree, so there are a total of 2(n−3) trees one NNI move away from any
other. This is of course much smaller than the number of trees. It is therefore
reasonable to think of an NNI move as taking a small step in tree space, the
smallest step possible, in fact.

The next move we consider is called a subtree prune and regraft (SPR). It
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proceeds by first picking some edge of the tree, and then detaching it from the
tree at only one end. The detached edge will still have some taxa joined to it
through its other end, forming a subtree that has been ‘pruned’ from the original
tree. We then pick some edge of the other remnant of the tree, and reattach the
subtree to it. (Technically, we must divide the chosen edge into two edges, so
the subtree can be attached at the new node this introduces.) An illustration
is given in Figure 9.5
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Figure 9.5: An SPR move on a tree.

It should be clear from the second description of an NNI move that any NNI
move is also an SPR move; we just choose the regrafting point to be an edge
that is very close by. However, for large trees there are many more possible SPR
moves than NNIs.

To count how many SPRs could be performed on an n-taxon unrooted binary
tree is more involved than counting NNI moves. First, it is helpful to describe
the SPR move slightly differently: Instead of detaching an edge at only one end,
remove the edge, leaving its endpoints in the two resulting trees components.
Then chose one of these endpoints, and one edge in the other component of the
tree, and introduce a new edge that goes between them. But note that this
last choice of an endpoint and an edge in the other component for a regrafting
locations is equivalent to just picking the edge for the regrafting location in
either of the components. After all, once we’ve chosen the regrafting location,
we must use the endpoint in the other component. Thus to specify a particular
way of performing an SPR we really need only pick two edges — the one to
remove/detach, and then another one where the regrafting occurs. Since the
tree has 2n−3 edges, there are 2n−3 choices for the first edge, and then 2n−4
choices for the second, for a total of

(2n− 3)(2n− 4) (9.1)

choices of ordered pairs of edges.



138 CHAPTER 9. TREE SPACE

However, this overcounts the number of trees we can obtain through an SPR.
For instance, if the edge we remove has a vertex in common with the edge where
regrafting occurs, the tree topology does not change. Thus we should not count
pairs of edges that meet. Since each terminal edge meets 2 other edges, and
each internal edge meets 4, there are

2n+ 4(n− 3) = 6(n− 2) (9.2)

such cases.
A second case of overcounting occurs when the two chosen edges do not meet

but have a single edge between them. In this case, the SPR is just an NNI move
on the edge between them. But if we either remove the first edge and regraft
to the second, or remove the second and regraft to the first, we obtain the same
outcome. Thus the order of the two chosen edges does not matter. Since we
have already counted the number of different trees we can reach by NNI moves,
we know there are 2(n− 3) of them. However, our earlier count included

8(n− 3) (9.3)

pairs leading to this case: For each of the n − 3 internal edges of the tree we
might have chosen any of 8 ordered pairs of edges that meet it as the pair
determining the SPR.

Finally, as long as the two edges determining an SPR move are separated
by more than one edge, it is not hard to see that every choices of ordered edges
leads to a distinct tree, different than those obtained by NNIs. Counting such
choices is most easily done by taking the total count for all ordered pairs of
edges in (9.1), and removing the special cases of (9.2) and (9.3). This gives

(2n− 3)(2n− 4)− 6(n− 2)− 8(n− 3) = 4(n− 3)(n− 4) (9.4)

ordered pairs of this type.
The total number of trees we can reach by a single SPR move is thus this

last number, plus the 2(n − 3) reachable by NNIs. We summarize all these
calculations by the following.

Theorem 17. For any n-taxon unrooted binary tree, there are
(i) 2(n− 3) distinct trees one NNI move away, and
(ii) 2(n− 3)(2n− 7) distinct trees one SPR move away.

The important observation from this theorem is that there are relatively few
(approximately 2n) trees close to a given one by NNIs, while there are many
more (approximately 4n2) one move away by SPRs. If n is large this difference
is substantial. Thus if we move through tree space by NNIs, we will have fewer
‘directions’ to move in at any point than if we use SPRs. Using SPRs, we
can take bigger jumps, changing the tree in many more ways. Neither of these
moves is superior to the other; they are just different. If we have already found
a pretty good tree, we might want to use NNIs to take small steps around it,
exploring tree space thoroughly only in its vicinity. On the other hand, if we
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want to wander widely over tree space, looking for any trees that seem good,
any number of SPRs will allow us to move around more widely than the same
number of NNIs.

A third useful type of move is a tree bisection and reconnection (TBR). A
TBR move involves first picking some edge of the tree to remove. Next an edge
is chosen in each of the resulting tree components. Finally, these two edges are
connected by a new edge, as shown in Figure 9.6.
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Figure 9.6: A TBR move on a tree.

Notice that while TBR moves are more general than SPRs, SPRs are special
cases of TBRs. If a TBR is performed in such a way that we choose one of the
edges that met the removed edge for a reconnection point, then the result of
the TBR is the same as that of an SPR. Moreover, it is not too hard to see that
any TBR can be performed by a succession of two SPRs (see exercises).

Counting the precise number of trees one TBR move away from a given
tree is difficult. In fact, the count depends not only on the number of taxa on
the tree, but also the tree topology, so there can be no formula of the sort in
Theorem 17. However, we can estimate the order of this number fairly easily.
To perform a TBR we must first chose an edge to remove, and then choose two
other edges to reconnect, for a total choice of 3 edges. Since the number of
edges grows linearly in n, choosing 3 edges should lead to something growing
at most like n3. Notice how this grows more quickly than the count for either
NNIs or SPRs, as one would expect.
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9.3 Searching Tree space

For either parsimony or maximum likelihood methods of tree inference, we must
search tree space for the best tree using our chosen criterion. For a given tree,
we have already explained how we can efficiently compute either the parsimony
score (via the Fitch-Hartigan or Sankoff algorithms), or the maximum of the
likelihood function over the numerical parameters of the model (using Felsen-
stein’s pruning algorithm, and techniques of numerical optimization). But then
we are faced with the problem that our criterion requires that we compute these
scores for every tree to choose the best one. However, tree space is big, and
in most circumstances an exhaustive search is simply not possible to do in an
acceptable amount of time. Instead, we follow a more heuristic procedure.

A rough outline of a search procedure might be as follows:

1. Pick a type of move, say NNI.

2. Choose a tree as a starting point, and evaluate its score.

3. Consider all trees one move away from our current tree, and compute the
score for each.

4. If no tree is better than the current one, stop.

5. Otherwise, choose the best tree of these, and move to it. Then go back to
step 3.

The strategy here can be visualized in a very natural way. If we imagine
each point in tree space as a point in a plane, then we can represent the tree’s
score as a height above this plane, so that all the scores form something like a
surface over tree space., as cartoonishly depicted in Figure 9.7. Our goal is to
maximize the score (at least for ML), or equivalently to find the highest point
on the surface. We begin at some point on this surface (our initial tree) and look
around at all the places we could reach by taking a single step. We then choose
to go to the one that takes us the highest. In other words, we try to climb up
by always going in the steepest direction. Sooner or later, we will reach the top
of a hill, and will not be able to climb higher.

The problem with this strategy, of course, is that there may be several hills,
of different heights. We may end up climbing to the top of a short hill, reaching
a local maximum. Because our steps are of limited size, we might never be able
to reach a higher hill without first descending. Thus there is no guarantee we
will ever get to the global maximum. Our strategy is essentially a local one,
only considering nearby points in tree space, and doesn’t take a long-distance
view.

We could try to consider more distant trees as well, perhaps by using an
SPR instead of an NNI as our basic move. It will then take us longer to decide
in which direction to move, since there will be more options. Moreover, as long
as there are some trees we don’t consider, we may still miss seeing the highest
hill, and still end up climbing something shorter. So while using bigger steps
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Figure 9.7: Hill climbing on tree space.

makes it less likely that we climb the wrong hill and become trapped at its top,
it doesn’t reduce the risk to zero.

The simplest solutions to this problem is to repeat the search many times,
using different starting points. If the starting points are varied enough, we are
more likely to eventually choose one near the highest hill, and climb to its top.
There will still be no guarantee that we ever find the true optimum, but we
make it more likely that we do so.

There are many variations on this basic search procedure that might result in
reaching at least a local optimum faster. For instance, instead of considering all
trees one move away from the current one before picking a better one, we could
consider them one at a time, and move to a new one whenever we find it. It is
hard to guess whether this would produce a faster search, since we may end up
moving more often to get small improvements in the tree, when we might have
been better off waiting to find the biggest improvement we can. Such a decision
must be made in developing software, and may be based on observing how the
software performs on real data, rather than on theoretical considerations.

But there are other decisions that may be left to the software user. For
instance, should we use only NNI moves, or SPRs, or TBRs in a search? NNIs
are small steps in tree space, so using them is likely to produce a very gradual
improvement in the tree. The more radical moves of SPRs and TBRs are larger
steps in tree space, and have the potential to produce greater improvements in
a single step. However, there are many more of them to consider, so it may
take longer to find a better tree. We might also end up taking too large a step,
and miss the best tree before coming back to it later. One appealing approach
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is to begin using SPRs or TBRs to crudely search with big steps, taking a step
every time we come across a better tree, and then switch to NNIs for a finer
local search around the best trees previously found.

Most importantly, though, one should always be sure the search is performed
repeatedly, from multiple starting points (or with some random component to
the search). This is simply because there may be several locally optimal trees,
and a single search may end at one of these even though it is not globally
optimal. It is tempting of course to begin a search with a tree you believe may
be close to optimal. For instance, since it is quick to perform Neighbor Joining,
an NJ tree might be a natural starting point for a ML search. Certainly such
a tree could be one of your starting points, since it is quite plausible that you
will soon find the optimal tree from it. However, if that is your only starting
tree, you may miss the best. The issue here is not simply one of a mathematical
possibility that doesn’t arise in practice — there are real data sets in which the
likelihood has several local maxima on tree space. A single search can become
trapped in a local maxima and never find the optimal tree.

There are other techniques that can sometimes be useful to prevent ourselves
spending too much time searching areas of tree space that are unlikely to yield
good trees. These are generally adaptations of standard ideas from computer
science, such as branch and bound, which we will not discuss.

9.4 Metrics on Tree Space

It is desirable to have some natural way of quantifying how far apart we consider
two trees to be. That is, we would like to have a metric on tree space. Ideally
this metric would capture whatever informal idea we have of two trees being
similar; a small value would mean two trees ‘look mostly alike’ and a large value
that they are ‘very different.’

Each of the moves we’ve discussed on tree space leads to a way of measuring
the differences between two trees. First, it is not hard to see that any tree on
a set of taxa can be reached from any other tree by some succession of these
moves. Then, if it is possible to move from one tree to another using k moves,
but not using fewer moves, we might say these trees are k apart.

Definition. For a fixed choice, µ ∈ {NNI, SPR, TBR}, of move on tree space
the µ-edit metric measures the distance between trees T and T ′, denoted dµ(T, T ′),
as the minimal value of k ≥ 0 such that there exists a sequence of trees

T = T0, T1, T2, . . . , Tk = T ′

with Ti+1 one µ-move from Ti for each i.

As should be clear, these give very different notions of distance on tree space.
For instance, one of the exercises demonstrates that for any k ≥ 1 there are trees
T and T ′ such that dSPR(T, T ′) = 1, yet dNNI(T, T

′) = k. On the other hand, if
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dNNI(T, T
′) = 1, then dSPR(T, T ′) = dTBR(T, T ′) = 1 as well. More generally,

dNNI(T, T
′) ≥ dSPR(T, T ′) ≥ dTBR(T, T ′),

since any NNI move is an SPR, and any SPR move is a TBR.
It is not clear how to compute any of these distance between trees in an

efficient manner, since the definition suggests we consider all sequences of trees
between the given two. Since in a sequence of minimal length there can be
no repeated trees, there are a finite, though huge, number of possibilities to
consider. It is known that computing the NNI- and TBR-edit distances are NP-
hard problems. There are also interesting results on the the maximal distance
between trees under these metrics, called the diameter of tree space. Under-
standing these diameters is important both for understanding how many steps
might be needed to get from one tree to another, and also for interpreting the
meaning of the distance between two trees in terms of similarity. For instance,
if tree space has a small diameter under a given metric, the metric could only
crudely measure similarity of trees.

A metric on tree space that is easier to compute is the splits metric, also
called the partition metric, symmetric distance, or the Robinson-Foulds metric.
Recall from Chapter 4 that associated to any edge of a tree T is a split of the
taxa on its leaves; by removing the edge, the taxa are partitioned into two sets,
according to the two resulting tree components,

Definition. The splits metric on X-trees measures the distance, dsplits(T, T
′),

between two trees as the number of splits that occur on one tree or the other,
but not both.

This is straightforward to compute, since we can simply list all the splits. Of
course there is no need to include trivial splits corresponding to terminal edges,
since these will appear on any tree. For instance, Figure 9.8 shows two trees
with 4 different splits occurring among them, so these are distance 4 apart.

a

b

c
d

e

f

e

fa

b

c d

T
1

T
2

Figure 9.8: The tree T1 has non-trivial splits {a, b}|{c, d, e, f}, {c, d}|{a, b, e, f}
and {e, f}|{a, b, c, d}. The tree T2 has non-trivial splits {a, b}|{c, d, e, f},
{a, b, c}|{d, e, f} and {a, b, c, e}|{d, f}. After deleting the split these trees have
in common, four remain, so dsplits(T1, T2) = 4.
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While easier to compute, a drawback of the splits metric is that it can be
quite large for two trees that we might consider to be similar in most of their
features. Moving only a single taxon via an SPR move on a terminal edge can
produce a tree that is very far from the original as measured by the splits metric.
The misplacement of a single ‘rogue taxon’ is thus judged to have a huge effect
on a tree. (See Exercise 9.)

Another metric on tree space that can be computed efficiently uses quartets
instead of splits

Definition. The quartet metric onX-trees measures the distance, dquartet(T, T
′),

between two trees as the number of 4-element subsets of X that induce different
quartet trees on T and T ′.

Since a collection of n taxa has
(
n
4

)
= n(n−1)(n−2)(n−3)

24 subsets of 4 taxa,
one could simply list these and check whether the induced quartet trees are the
same, to create a O(n4) algorithm for computing this metric. However, there are
more efficient ways to compute the quartet metric than this obvious approach,
with one method only requiring O(n log n) time.

The quartet distance is not affected as much as the split distance by a single
taxon being moved from one part of the tree to another. This should not be
surprising, since if a single taxon is moved, only those quartets involving that
taxon are affected, so many quartets are left unchanged (See exercise 10.)

9.5 Metrics on Metric Tree Space

For searching through tree space in algorithms, moves from one topological tree
to another are thought of as separate from modifications to edge lengths in a
metric tree. But for measuring how close two metric trees are to one another
it’s desirable to have metrics on tree space that consider both topology and edge
lengths.

One natural way to do this builds on the splits metric. Given n-taxa, there
are 2n−1−1 possible splits, and thus any topological tree can be represented by
a vector of 0s and 1s, of length d = 2n−1 − 1; we simply choose some ordering
of the possible splits and then record a 1 to indicate a split is displayed on the
tree, or a 0 to indicate it is not. The splits metric between topological trees can
then be found by subtracting their corresponding vectors (producing a vector
with 1s and -1s indicating differing splits), taking the absolute value of each
entry, and then adding them up.

In more mathematical language, the splits metric just involves mapping each
tree to vector of 0s and 1s in Rd, and then using the L1 norm to compute
distance:

||v −w|| =
d∑
i=1

|vi − wi|.

This immediately suggests the following metric splits distance: map each
tree into Rd by recording the length of the edge of a tree associated to a split
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in the coordinate corresponding to that split, with a 0 in all other coordinates.
Then use the L1 norm on these vectors to compute distances between metric
trees. A formula for distance between two X-trees is thus

dms(T1, T2) =
∑

splits e

|w1(e)− w2(e)|.

Here we use e to denote a split of X, with wi(e) being the length of the corre-
sponding edge in Ti if the split is displayed on Ti, and wi(e) = 0 if the split is
not displayed on ei.

One can replace the use of the L1 norm here with any other norm on R2. A
very natural choice is to use the Euclidean one, giving

d̃ms(T1, T2) =

 ∑
splits e

(w1(e)− w2(e))

1/2

.

Notice that in the case of topological trees, whether one uses the Euclidean
or L1 norm, the same tree metric is computed, but for metric trees these give
different results.

9.6 Additional Remarks

Although we’ve motivated this look at tree space by the need to search for
optimal trees, the concepts of this chapter are useful for other issues.

SPR moves appear naturally in modeling recombination of genes. Whether
this recombination occurs through sexual reproduction, or by lateral gene trans-
fer across species, the result is essentially that a subtree has been pruned from
one location on a tree, and regrafted elsewhere. Of course there are constraints
on where the regrafting can occur, since recombination can occur only between
organisms alive at the same time. Thus the most proper framework requires we
work with rooted metric trees for this application

Having chosen a metric on tree space also makes it possible to define a
median tree for a collection of trees. This is another form of a consensus tree,
which might be used to as a summary statistic for a collection of trees. Just as
the median of a set of numbers is the one ‘in the middle,’ a median tree Tm is
one that minimizes the total distance to all trees in the collection. That is, for
a collection {T1, T2, . . . , Tk},

Tm = arg min
T

(
k∑
i=1

d(T, Ti)

)
.

9.7 Exercises

1. The text’s explanation of the NNI move claimed that there were exactly 3
ways 4 edges could be grouped into 2 pairs. Explain this.
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2. The text describes an alternate way of thinking of an NNI move, as sliding
one edge down another past a junction of edges. It seems that since we could
pick any of 4 edges to ‘slide’, and for each have a choice of 2 places to slide
it to, there should be 8 possible new trees we could get doing this. Explain
why there are only 2. (You might just consider each of the 8 possibilities,
and group them by their outcomes.)

3. For the 5-taxon tree ((A,B), C, (D,E)), draw all 4 trees that can be ob-
tained from it by a single NNI move.

4. For 5-taxa, give an example of two trees that are 2 NNI moves apart, but
only 1 SPR apart.

5. Generalize the last problem to produce an example of two trees with a large
number of taxa that are n NNI moves apart, but only 1 SPR apart.

6. Check all the the arithmetic leading to part (ii) of Theorem 17.

7. How many 5-taxon unrooted binary trees are there? For any of these trees,
how many trees are 1 SPR away? Draw all the trees that are 2 or more
SPR moves from ((A,B), C, (D,E)).

8. Explain how any TBR move can be performed by a succession of two SPR
moves.

9. Consider the two caterpillar trees with n-taxa,

T1 = (. . . ((A1, A2), A3), A4) . . . , An),

T2 = (. . . ((A1, An), A2), A3), . . . , An−1).

a) Explain how T2 can be obtained from T1 by a single SPR move.

b) What is the splits metric distance between the two trees?

c) For comparison, what is the maximal distance between two n-taxon trees
under the splits metric? What fraction of this is your answer to part (b)?

10. Consider the trees of Exercise 9

a) What is the quartet metric distance between the two trees?

b) For comparison, what is the maximal distance between two n-taxon trees
under the quartet metric? What fraction of this is your answer to part (a)?

11. Suppose a single SPR move is performed on a large tree.

a) Describe which splits of the original tree remain in the result. (Hint:
Think about which edges are associated to the splits that are lost. The
locations of these can be described using geometric language.)

b) Show that if dSPR(T, T ′) = 1 then 2 ≤ dsplits(T, T
′) ≤ 2(diamT − 2),

where diamT , the diameter of T , is the length of the longest path in T .
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12. Prove the µ-edit metric satisfies the requirements to be a metric on tree
space: 1) dµ(T1, T2) ≥ 0, and dµ(T1, T2) = 0 only when T1 = T2, 2)
dµ(T1, T2) = dµ(T2, T1), and 3) dµ(T1, T3) ≤ dµ(T1, T2) + dµ(T2, T3).

13. The presentations of the moves in this chapter can be formalized to use the
more technical language of graph theory. Each modifies the set of vertices
and edges defining a tree in specific ways. Describe these precisely for:

a. NNI

b. SPR

c. TBR

14. Explain why the L1 norm and the square of the Euclidean norm give rise
to the same metric on topological tree space in the construction given in
section 9.5.
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Chapter 10

Rate-variation and Mixture
Models

All the Markov models of DNA mutation introduced thus far assume that every
site in the sequences behaves identically; of course this assumption is far from
justifiable biologically.

For instance, in coding DNA, due to the redundancy of the genetic code,
the third base of many codons can undergo a substitution without any effect
on the protein product. Also, if both coding and non-coding sites are included
in a sequence, it’s reasonable that the non-coding sites might be able to change
more freely, at least if they have no regulatory purpose. Even in coding regions,
it may well be that the functional constraints on different parts of a protein
molecule vary, so that parts of a gene may evolve at a different rate from other
parts. These functional constraints might even change over evolutionary time,
so that the behavior of a site may vary from one part of the tree to another.

In general, then, it is desirable to expand the substitution models developed
so far, in order to incorporate variation among the sites. It is also important that
this be done so that we need not decide in advance which sites behave similarly.
Seldom will we have the detailed knowledge to choose an a priori classification of
sites into different classes. Instead, we use mixture models which posit different
classes of behavior, but leave the proportion of sites assigned to the different
classes as parameters. The class sizes, as well as the parameters determining
the behavior of each class, will then be inferred from the data.

10.1 Invariable Sites Models

The simplest form of a rate-variation models is built on two classes of sites. The
first class of variable sites mutates according to a model, such as the GTR, of
the sort discussed earlier, and the second class of invariable sites undergoes no
mutation at all. When we examine DNA data arising from such a model, if
we observe a substitution at a site, then that site is certainly in the first class.

149
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However, if we do not observe any change we generally cannot tell which class
the site came from. It may have been free to mutate but did not due to the
randomness in the model, or it may have been invariable. Thus the sites that
will be observed as unvarying are a larger set than the invariable ones. As a
result, we will not be able to easily tell which sites were invariable in order to
remove them from data before we analyze it. Instead, we must formalize the
model more carefully.

For concreteness, consider a model with invariable sites in which variable
sites mutate according to the general Markov model, usually called the GM+I
model. We’ll formulate this for characters with κ states, for trees relating n
taxa.

For any fixed rooted tree T relating n taxa, we have the usual parameters
for the variable sites of a root distribution vector pρ and Markov matrices for
each edge {Me}e∈E(T ). In addition we need a class size parameter s, indicating
that with probability s a site is variable, and with probability 1− s it is invari-
able. Finally, for the invariable sites we need another distribution vector pinv
indicating the state distribution for the invariable sites. Thus a binary n-taxon
tree will require

1 + 2(κ− 1) + (2n− 3)κ(κ− 1) (10.1)

parameters, which is only κ more than the GM model.
Note that we could have further assumed the variable and invariable sites

had the same state distribution, so pinv = pρ. With that approach, the only
new parameter introduced over the GM model would have been r, the class size
parameter.

In order to see the relationship between the GM+I model parameters and
the joint distribution describing observations of bases at the leaves of a tree, we
begin by analyzing separately the two classes of sites in the model.

For the GM model, Chapters 6 and 8 described how to produce the entries
of the joint distribution as polynomials in the parameters that are entries of
pρ, {Me}e∈E(T ) . For a tree relating n-taxa, this joint distribution array will
be n-dimensional, of size κ × κ × · · · × κ. So suppose we’ve found this array
P1, where P1(i1, i2, . . . , in) gives the probability that a variable site shows the
pattern (i1, i2, . . . , in) of states at the leaves.

For the invariable sites we could do a similar calculation, using the root dis-
tribution vector pinv and the identity matrix I for all Markov matrices on edges,
since this matrix describes no possibility of substitutions occurring. However,
it should be clear that such a computation would produce an n-dimensional
κ× κ× · · · × κ array P2 such that

P2(i1, i2, . . . , in) =

{
qi1 if i1 = i2 = · · · = in,

0 otherwise.

That is, the joint distribution for this class gives zero probability for any patterns
in which states vary, and probability equal to the state distribution for those
that show no variation.
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The joint distribution for the full GM+I model is then a weighted sum of
the distributions for the two classes,

P = sP1 + (1− s)P2. (10.2)

With 0 ≤ s ≤ 1, the weights s and 1 − s here are simply the relative sizes of
the classes, or equivalently the probabilities that a randomly chosen site is in a
given class. Statistical models such as this, in which several classes are modeled
separately, but then combined so that we allow the class to be determined
randomly, are called mixture models.

There are straightforward variations on this idea using other models in
place of GM. For instance, a general time reversible model with invariable sites
(GTR+I), simply replaces the Markov matrices of the GM model above by the
appropriate exponentials of a rate matrix. The JC+I and K2P+I are defined
similarly.

If we believe a mixture model such as GTR+I describes our data, how should
this affect our methods of inference?

Note that the results of a parsimony analysis are unaffected by invariable
sites as they give uninformative patterns. Thus parsimony is a reasonable
method under the same circumstances as it is for variable sites alone. (However,
most users of parsimony never mention any model, since the method makes no
explicit use of one.)

In contrast, our derivations of distance formulas for the various models all
tacitly assumed no invariable sites are present. If only a small fraction are likely
to be invariable, we may view the distances as approximately valid. Nonetheless,
the use of the model-based distance formulas essentially require that the number
of invariable sites be negligible. If this is not the case, there can be a systematic
bias in the values of inferred distances between taxa. For the Jukes-Cantor
model it is not hard to work out exactly how this effect occurs (see exercises).

In fact, it is relatively easy to prove that even under the model JC+I the
proportion of invariable sights cannot be estimated if we only allow the com-
parison of 2 sequences at a time. That means there can be no way to compute
distances for the model JC+I, unless we already know the proportion of invari-
able sites by some other means. (There are ways to estimate this proportion by
comparing larger numbers of sequences at a time, which have been implemented
in some distance-based software.)

Fortunately, the statistical framework of maximum likelihood handles a
model such as GTR+I with little additional complication. A few additional
numerical parameters must be varied as we search for the maximum of the like-
lihood function on a given tree, but no more substantive changes are needed.
It is in this setting that such models are typically used, since a more accu-
rate model of the true substitution process is hoped to lead to more accurate
inference.
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10.2 Rates-Across-Sites Models

It is now easy to imagine how one might have a finite number of classes of sites,
each modeled by a different choice of GM parameters on a tree, in a more com-
plex mixture than a GM+I model. For each class we produce a joint distribution
array, and then take a weighted sum of these, much as in equation (10.2). The
GM+I model is just a particularly simple form, where the parameters for one
of the two classes allow no mutation. In current practice, though, models with
many fewer parameters than a mixture of GMs are typically used.

The most common multiclass mixture is built on a GTR model, in which all
sites use the same rate matrix, but scaling factors are introduced to slow down
or speed up the process at individual sites.

For a fixed tree T , the parameters will be as follows. We assume a common
GTR rate matrix Q for all edges of the tree, and a root distribution vector that
is a stable base distribution for Q. We have scalar edge lengths {te}e∈E(T ) for
all edges of the tree. If we choose to use m classes of sites, we create m rate
scaling parameters λ1, λ2, . . . , λm, which will serve as factors to speed up or slow
down the substitution process for the different classes. We also need a vector
r = (r1, r2, . . . , rm), with entries adding to 1, giving the relative sizes of the rate
classes.

Now sites in the ith rate class will evolve using the rate matrix λiQ through-
out the tree. Thus the larger the value of λi, the faster substitutions will occur.
For that class, then, on an edge e of the tree we have the Markov matrix
Me,i = eteλiQ. It is now straightforward to compute Pi, the joint distribu-
tion array at the leaves for the ith class, using approaches discussed in earlier
chapters.

The last step is to combine the distributions from the various classes to get
the joint distribution for the mixture model,

P =

m∑
i=1

riPi. (10.3)

To be a bit more sophisticated, one can also imagine a continuous distribu-
tion of rates, given by a density function r(λ), in which case we have

P =

∫
λ

r(λ)Pλ dλ.

Since Pλ is a multidimensional array, the integral here is meant to be performed
entry-wise, so it represents a separate integral for each entry, just as the sum-
mation on equation (10.3) represents a separate sum for each entry.

In current practice, it is common to use a Γ distribution of rates (with mean
1), whose density function is given by the formula

r(λ) =
αα

Γ(α)
λα−1e−αλ.
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This is a flexible distribution, whose precise shape varies according to the value
of α. It is useful for describing quantities that may vary over the positive
numbers, which is the appropriate range for the rate scaling parameters λ.
The shape parameter α of the GTR+Γ model then adds only one additional
parameter to those of the GTR model, yet allows for a better fit to data.
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Figure 10.1: The Γ distribution for α = .3, 1.2, 4.8, in order from top to bottom
at left edge of the graph.

Figure 10.1 shows graphs of the density function rα(λ) for three values of
α. When α < 1, the distribution has a spike at low values, and a long tail at
high ones. This means some sites are nearly invariable, and there is a very wide
spread of rates for the others, with some sites evolving quite quickly. For α > 1,
the distribution has a hump around 1, which becomes taller and narrower as α
is increased. Thus for large α, such a distribution will produce a model little
different from a standard GTR. Thus by varying α from very large to very small
the model may produce behavior ranging from very similar to a straight GTR
model, to one in which sites evolve at a very broad spectrum of rates.

Finally, it is easy and often desirable to add an additional class of invari-
able sites, producing the model designated GTR+Γ+I. When the GTR+Γ and
GTR+Γ+I models are fit to the same data set, the first of these models often
requires a much smaller value of α than the second. This should seem rea-
sonable, as a low value of α enables the model to capture some invariable, or
nearly invariable sites. Explicitly including an invariable class allows the α to
be chosen to better fit the more variable sites.

Although the GTR+Γ and GTR+Γ+I are the models most commonly used
for routine data analysis, it is important to realize that there is no clear biological
justification for the use of a Γ-distribution. There is no mechanistic model of
how substitutions occur that leads to the particular form of Γ, or of any other
distribution. It is simply an arbitrary choice that provides flexibility with the
addition of only one more parameter.
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In fact, it is not really the Γ-distribution, but rather a discretization of it with
a finite number of rate classes, that is used in most software implementations of
maximum likelihood. Typically only a handful of rate classes, say four or five,
are used. If, for instance, there are four classes, then the cutoffs for the lowest
25%, 50%, and 75% of the distribution are determined. Then the means of λ in
each of the resulting four intervals are computed. These four values are then used
as the rate scaling factors λi for four classes each of proportion 0.25. Experience
with data analysis has shown that using more classes seldom leads to much
of an improvement in likelihood scores, and by keeping the number of classes
smaller, computations can be done a bit more quickly. Nonetheless a model
using this approximation might be more appropriately designated GTR+dΓ(4)
to emphasize that it in fact uses a 4-class discretized Γ.

10.3 The Covarion Model

There is another way of introducing a form of rate variation into models, though
its mathematical development is more recent than the rates-across-sites ap-
proach, and it has not been implemented in all commonly used software pack-
ages. The motivation, which arose in a paper of Fitch and Markowitz in 1970, is
biologically quite an attractive one, even though the mathematical formulation
does not capture the full process they described.

Note that in a rates-across-sites model, each site is presumed to have a fixed
rate parameter λ which remains constant throughout the tree. Whatever leads
to some sites mutating at different rates than others are thus imagined to be
unchanging across all lineages throughout the tree.

Particularly if we consider evolution over long time periods, however, we
might expect this to be unreasonable. Perhaps early on some sites are unable
to change because they code for a part of a protein that is essential for the
organism to live. After other parts of the sequence have evolved, however, the
part of the protein those sites code for may no longer be so essential, and so they
become free to vary in a different part of the tree. Fitch and Markowitz called
the codons that were free to vary at a particular time ‘covarions’ as shorthand
for ‘concomitantly variable codons.’

In more recent usage for describing probabilistic substitution models the
term ‘covarion’ has come to refer to models in which characters may undergo
some switching between being free and not free to vary as evolution proceeds
down the tree. More generally, the terminology is used when characters may
undergo a switching of a certain form between any sorts of different classes, such
as different rate classes.

Note that the motivation of Fitch and Markowitz for a covarion model is
essentially an argument against an assumption of independence of the mutation
process at different sites. The reason they give why some sites change from
being invariable to variable is because of changes in other parts of the gene.
However, it is quite unclear how to formulate such a model in a mathematically
tractable way. Thus the mathematical formulation of the covarion model will
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still assume sites behave independently, but will include a switching mechanism
so that sites may change their behavior.

The simplest form of the covarion model, introduced by Tuffley and Steel in
1998 uses only 2 classes, one of which is invariable. For a DNA model, instead
of the usual 4 states A,G,C, T for our characters, we will have 8 states, which
we designate by

Aon, Gon, Con, T on, Aoff, Goff, Con, T off.

The superscript ‘on’ means the site is currently free to vary, while ‘off’ designates
it is currently held invariable.

For the ‘on’ states we assume a instantaneous rate matrix Q of a GTR model,
and let p be its stable base distribution, so pQ = 0. We need two additional
parameters, an instantaneous rate s1 at which ‘on’ states switch to ‘off’ states,
and an instantaneous rate s2 at which ‘off’ states switch to ‘on.’ We construct
an 8× 8 rate matrix

Q̃ =

(
Q− s1I s1I
s2I −s2I

)
,

where I denotes a 4× 4 identity matrix.
With the ordering of bases as listed above, we interpret the entries of Q̃ as

follows. The upper left block Q−s1I describes changes from ‘on’ bases to other
‘on’ bases. It has the same off-diagonal entries as Q, so these represent the usual
rates of substitutions from one base to another, as in a GTR model. The upper
right block, s1I, describes changes from ‘on’ bases to ‘off’ bases. For instance,
Aon switches to Aoff with rate s1. Since this block is diagonal, when an ‘on’ to
‘off’ instantaneous switch occurs, the nucleotide may not change simultaneously.
Note the diagonal entries of the upper left block were adjusted from those of Q
by subtracting off s1I simply because a rate matrix must have rows adding to
0.

The lower left block of Q̃ describes ‘off’ bases switching to ‘on’. Note that
these switches occur with rate s2. Again, when a switch occurs, the base may
not change at that instant. The lower right block should describe base changes
from ‘off’ bases to ‘off’ bases. Since ‘off’ means no such change can occur, the
off-diagonal entries of this block are all zero. The diagonal entries are then
chosen so that the rows of Q̃ add to 0.

We next must choose an 8-element root distribution for the model. Letting

σ1 =
s2

s1 + s2
, σ2 =

s1

s1 + s2
,

and

p̃ = (σ1p, σ2p),

one can check (Exercise 7) that

p̃Q̃ = 0̃, (10.4)
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and thus p̃ is a stable distribution for Q̃. In fact, the rate matrix Q̃ and root
distribution vector p̃ form a time reversible model (Exercise 8).

Now for any tree T , with a root ρ chosen arbitrarily, we have an 8-state
time-reversible model with root distribution vector p̃, rate matrix Q̃, and edge
lengths {te}e∈E(T ), where the Markov matrix Me = exp(teQ̃) is assigned to the
edge e.

There is one remaining feature of the covarion model, however, to be formu-
lated. When we observe sequences, we are not able to distinguish whether a site
is currently ‘on’ or ‘off’. For instance, both states Aon and Aoff are observed
simply as A. (For those familiar with hidden Markov models, the covarion model
is of that sort, with some of the state information unable to be observed.)

To incorporate this into the covarion model we make use of the 8× 4 matrix

H =

(
I
I

)
,

constructed from two stacked identity matrices, which has the effect of hiding
the ‘on/off’ feature of a base. More specifically, since(
p1 p2 p3 p4 p5 p6 p7 p8

)
H =

(
p1 + p5 p2 + p6 p3 + p7 p4 + p8

)
,

H acts on any vector giving a distribution of the 8 states in our chosen order
to give the 4 combined states corresponding to the bases in DNA.

Now for internal edges of the tree we make the Markov matrices be the Me

as described above, while for edges leading to leaves use MeH. (Here we assume
we have located the root of the tree at an internal vertex.) While MeH is not
square, it still has non-negative entries, with rows summing to 1, and so has a
perfectly reasonable stochastic interpretation. With parameters on all edges of
the tree, and a root distribution, we can now calculate the joint distribution at
the leaves in the usual ways discussed in Chapter 8.

The basic example of a covarion model extends naturally to allow for more
classes. For instance, one might formulate a covarion model with 3 rate classes,
‘fast,’ ‘medium,’ and ‘slow.’ If Q is a GTR rate matrix for the fast class, then
for some rate scaling parameters λ1 = 1 > λ2 > λ3 ≥ 0, and some switching
parameters sij ≥ 0, we construct a 12× 12 rate matrix

Q̃ =

λ1Q− (s12 + s13)I s12I s13I
s21I λ2Q− (s21 + s23)I s23I
s31I s32I λ3Q− (s31 + s32)I

 .

While some constraints (which we omit here) must be placed on the sij so that
this leads to a time-reversible model, a stable base distribution can be given.
Finally, the matrix H which performs the hiding of the rate class will consist of
three stacked identity matrices.

Note that because these covarion models have a stable state distribution, the
fraction of sites within a given rate class is constant over the tree. Thus while
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an individual site may change its class, the model assumes that other sites are
also changing classes in a way that keeps the class sizes balanced.

Another feature to note is that if all of the switching parameters in a covarion
model are sij = 0, then the model reduces to a more standard mixture model in
which sites may not change classes. For instance, in the 3-class example above,
setting switching parameters to 0 gives Q̃ a simpler block-diagonal form which
means only in-class base substitutions are possible.

10.4 General Mixture Models

Once the idea of using a mixture model has arisen to capture rate variation
across sites (which includes models with “+I”, “+Γ”, and “+I+Γ”, as well
as the covarion models), there is no reason to not consider more complicated
mixtures. One could imagine several classes of sites, with each class having
essentially unrelated parameters describing its base substitution process.

A simple example would have two classes, each of which evolves according
to the GTR model on the same topological tree, but with possibly unrelated
rate matrices and branch lengths. Parameters for such a model would be the
topological tree, two complete sets of numerical parameters for the GTR model
including rate matrices Q1 and Q2 and edge lengths, and one additional mixing
parameter r that determines the class proportions r, 1−r. The joint distribution
for such a model is simply the weighted sum of the distributions for the two
classes, just as in equation (10.2). In fact, the GTR+I model is a submodel of
this one, in which we have decided ahead of time that the rate matrix Q2 is the
zero matrix, so that characters in it never change. A two-class rates-across-sites
model is also a special case of this one, in which we require that the two rate
matrices be multiples of one another, Q2 = λQ1.

One can easily extend this type of model to have a larger number of classes.
Since each additional class increases the number of parameters, though, the
more classes that are used, the longer sequences will have to be to obtain good
estimates of parameter values. Though models with a large number of classes
are unlikely to ever be used for routine data analysis, there has been a fair
amount of recent interest in exploring their behavior on real data sets. If there
is reason to believe a less standard model is inappropriate, they offer the next
step in modeling complexity.

While the mixtures described so far have all had only one topological tree
among their parameters, one can also consider models where each class has its
own tree parameter. This might be useful, for instance, if either hybridization
or some form of lateral gene transfer had occurred so that different parts of
the sequences had evolved on different trees. Though these models have been
studied theoretically, they have not yet been explored for practical data analysis.

When a complex model is formulated, it is possible that the model has been
made so complex that it is mathematically impossible to use it to validly infer
parameters. More precisely, the parameter values may not be able to be uniquely
identifiable from the theoretical distribution of the model, much less from an
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approximation of it from data. For instance, it might be that two different
tree topologies give rise to exactly the same distribution, so that one could not
decide which of them led to a given data set. While several papers in the last
few years gave alarming indications that mixture models can be problematic in
this way, the most recent theoretical work has shown it should not be a real
worry to a practitioner. In fact, the number of classes that can be safely used
for theoretical good behavior grows with the number of taxa, and for even a
moderate number of taxa is much larger than is likely to be used in practice.

Perhaps the most extreme mixture model is one in which every site is allowed
to behave differently. In the framework of assuming a single tree topology for
all sites, but no more commonality among them, this is usually called the no
common mechanism model. As a statistical model it is not very useful, since the
number of parameters grows with the length of the sequences. As a result longer
sequences do not lead to a better ability to recover parameters using Maximum
Likelihood, since each additional site introduces many new parameters.

No common mechanism models were introduced primarily to gain theoreti-
cal understanding of the interrelationship of different inference methods. Tuffley
and Steel (1997) showed that ML inference using a JC no common mechanism
model chooses the same tree as Parsimony. Unfortunately this was misinter-
preted by some as a justification for Parsimony. Since a no common mechanism
model (which doesn’t require that the sites follow different models, but allows
it) is perhaps closer to the truth than standard ones, they argued this result
showed Parsimony was justified by the standard ML statistical framework. Un-
fortunately they overlooked the point that ML inference itself was not justified
for this model, since the growth in parameters with the number of sites invali-
dated all the mathematical justifications for ML.

10.5 Exercises

1. Explain the count in formula (10.1).

2. Explain the formula in equation (10.2) by thinking of P1 and P2 as giving
conditional probabilities of patterns. (Conditioned on what?)

3. How many parameters are needed for a GTR+I model on a binary n-taxon
tree, assuming we want the invariable sites to have the same distribution as
the stable distribution of variable ones?

4. If data are produced according to by a GTR+I model, but analyzed accord-
ing to a (misspecified) GTR model, one might expect that the edge lengths
of a tree would be estimated to be shorter than they actually were. Why?
Explain informally.

5. Suppose a pattern distributions is produced from a JC+I model, with r the
proportion of variable sites. With substitution rate α = 1 and edge length
te, what is the matrix giving the joint distribution of patterns on a 1-edge
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tree? If the Jukes-Cantor distance (for a model without invariable sites) is
used to infer the edge length, does it give te? If not, is the estimate it gives
larger or smaller than the true value?

6. Show that any joint distribution on a 1-edge tree arising from the JC+I
model exactly matches a joint distribution for the JC model. This means
that from 2-taxon comparisons alone it will not be clear whether one needs
to include invariable sites in a model used to describe a data set.

7. Show equation (10.4) holds.

8. Show the 8× 8 rate matrix Q̃ of the Tuffley-Steel covarion model together
with the root distribution vector p̃ form a time-reversible model.

9. Explain why if Me is an 8 × 8 Markov matrix, and H the 8 × 4 matrix
composed of two stacked identity matrices then MeH will have non-negative
entries, with rows summing to 1. In the context of the Tuffley-Steel covarion
model, give an interpretation of its entries as conditional probabilities. Also
give an interpretation of the entries of H as conditional probabilities.
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Chapter 11

Consistency and Long
Branch Attraction

Parsimony, distance methods, and maximum likelihood provide three ways of
inferring a phylogenetic tree from data. Each has its own strengths, and un-
der some circumstances might be considered the ‘best’ approach to take. For
instance, if there is reason to believe multiple substitutions at a single site are
rare or non-existent, then it is hard to argue against the conceptual framework
of parsimony. If there are many taxa to relate, a distance algorithm may be
the only method that could return a tree in an acceptable amount of time. The
ability of maximum likelihood to utilize models, especially those incorporating
more complex behaviors such as rate variation, offers hope of performing a more
accurate analysis even for more difficult data sets.

However, it is too much to hope that any inference method could give us the
true evolutionary tree underlying any data set we analyze with it. Even with
the highly adaptable framework of maximum likelihood, it is essential that the
model chosen for analysis captures the main features of the true evolutionary
process. A misspecified model can easily lead to erroneous inference. Likewise,
the amount of data we have will impact how well an inference method can
perform even if the model completely captures the data generation process. We
would like to better understand under what circumstances an inference method
is likely to work well, and what circumstances might be problematic for it.

This is, of course, a big task. With few evolutionary histories known beyond
all doubt, we can rarely test inference methods on real data to see how well they
recover known trees and numerical parameter values. At best we can simulate
data (according to some model, perhaps different from the one underlying the
inference method) on some specific trees, and then see how well the method
reconstructs the trees we chose. This still cannot get at the issue of how close our
models are to biological reality, but it does shed light on some of the difficulties
of tree inference. Simulation can also give us a feel for how the length of the
data sequences affects the performance of methods. One would hope that longer
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sequences led to more accurate inference, but that is not necessarily true for all
methods.

In this chapter, we discuss one circumstance that is well-understood to cause
difficulties in phylogenetic inference: the phenomenon of long branch attraction.

Figure 11.1: A metric quartet tree

Consider the metric quartet tree of Figure 11.1. Here two of the pendent
edges, in different cherries, are much longer than the other edges. That such a
tree can be difficult to correctly infer from data is not too surprising. The two
taxa that are the most closely related metrically are not most closely related
topologically. In fact, this was the problem that motivated our introduction of
neighbor joining as an improvement over UPGMA when we discussed distance
methods.

But the neighbor joining algorithm, or even a full maximum likelihood ap-
proach to inference, may still perform poorly for real data from such a tree. Our
goal in this chapter is to be more precise about this issue.

11.1 Statistical Consistency

Suppose we consider some model of the evolution of sequences along a tree,
and some method of inference. To be concrete, we might focus on the Jukes-
Cantor DNA model, and Neighbor-Joining with the Jukes-Cantor distance as
the method of inference. The most basic question we can ask about this pair is
whether we would correctly infer the tree if we analyzed data generated by this
model according to this method.

However, this is not a simple yes-or-no question. With a small amount of
data, we will certainly sometimes infer the wrong tree. For an extreme thought
experiment, imagine data sequences of only a few sites. Then just through ran-
domness, we might find all the sequences were identical. All distances between
sequences would then be 0, and the inferred tree would be just a single vertex,
representing all taxa.

On the other hand, with much more data in the form of very long sequences,
we should expect that on average the observed joint distribution of patterns
will match the theoretical joint distribution predicted by the model fairly well.
Then when we compute distances, we should obtain ones fairly close to the true
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distances determined by the model parameters. Then Neighbor Joining should
work well, and is likely to recover the true tree.

In order to formalize these ideas, we make the following definition.

Definition. A method of inference is said to be statistically consistent for a
particular model if, for any ε > 0, the probability that inferred model parameters
are within ε of the true values approaches 1 as the amount of data approaches
infinity. That is, if the process has parameters s, and ŝ is the inferred value of
the parameters from data produced in n independent trials, then

lim
n→∞

P(||ŝ− s|| < ε) = 1.

Consistency should seem like a very basic requirement for a method of in-
ference to be a good one. If a method is not consistent, then even if you had
access to unlimited amounts of data, you could not reduce your doubts that your
inference was wrong to arbitrarily small values. Note also that consistency of a
method of inference is always in reference to a specific model. Thus it does not
address the very real problem of model misspecification leading to erroneous in-
ference. Consistency deals with an idealized problem, where we know the correct
model, and have as much data as we like. If a method does not work well under
such circumstances, then we should have serious doubts about its performance
in the real world. If it does work well under these idealized circumstances, then
we should next consider the impact of both model misspecification and limited
data.

11.2 Parsimony and Consistency

Suppose we choose to use parsimony on a 4-taxon dataset to infer a tree. For
the 4 taxa a, b, c, d, we have a sequence of characters. In this setting, parsimony
reduces to a simple scheme.

First, there are only a few types of characters that are informative. An
informative character must have for the 4 taxa a, b, c, d, in order, states

xxyy, xyyx, or xyxy,

where x, y denote two distinct states. So letting n1, n2, n3 denote the count of
such characters in a data set.

We wish to compute the parsimony score for this collection of charcters on
the 3 quartet trees

T1 = ab|cd, T2 = ad|bc, T3 = ac|bd, .

For T1, each character xxyy will give a parsimony score of 1, while characters
xyxy and xyyx will produce scores of 2. Taking into account the number of these
characters, we find

ps(T1) = n1 + 2n2 + 2n3 = (2n1 + 2n2 + 2n3)− n1.
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Similarly,

ps(T2) = 2n1 + n2 + 2n3 = (2n1 + 2n2 + 2n3)− n2, (11.1)

ps(T3) = 2n1 + 2n2 + n3 = (2n1 + 2n2 + 2n3)− n3.

To choose the most parsimonious tree(s) Ti, we therefore simply pick the value(s)
of i maximizing ni.

Now suppose our data are generated by a probabilistic model of the sort
in Chapter 6. Then we can compute expected values of the numbers ni, and
see whether parsimony will infer the correct tree. Of course, using expected
values of the ni is essentially the same as imagining we have infinitely long data
sequences that are produced exactly in accord with our model. Although we are
omitting some details (involving limits, and formal treatments of probabilities of
correct inference) needed for a rigorous mathematical treatment, we are dealing
with the issue of consistency.

More precisely, we ask the question: If parsimony is applied to longer and
longer sequences produced exactly according to the model, do the inferred trees
eventually stabilize on the correct one?

The first examples of parameter choices for a Markov model leading to in-
consistency of parsimony are due to Felsenstein, for a 2-state model. Although
the result has been generalized, for simplicity we follow the original argument.

Theorem 18. For a 2-state Markov model on quartet trees, there are param-
eters for which parsimony is an inconsistent inference method.

Proof. For the tree in Figure 11.1, place the root ρ at the internal vertex joined
to a, b, and denote the other internal vertex by v. Consider the two-state Markov
model with parameters

pρ =
(
1/2 1/2

)
,

M(ρ,a) = M(v,d) =

(
1− q q
q 1− q

)
,

M(ρ,b) = M(ρ,v) = M(v,c) =

(
1− p p
p 1− p

)
.

Then the probabilities of the 3 patterns that are informative for parsimony are

p1 = pxxyy = (1− q)2p(1− p)2 + 2q(1− q)p(1− p)2 + q2p3,

p2 = pxyyx = (1− q)2p2(1− p) + 2q(1− q)p2(1− p) + q2(1− p)3, (11.2)

p3 = pxyxy = (1− q)2p3 + 2q(1− q)p(1− p)2 + q2p(1− p)2.

But as the sequence length, N , goes to infinity, we have that the proportion of
time we see pattern i is ni/N → pi. Since parsimony will be consistent only
when n1 > n2, n3, we have consistency only when p1 > p2, p3.
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Now, by straightforward algebra, equations (11.2) imply

p1 − p2 = (1− 2p)(p(1− p)− q2), (11.3)

p1 − p3 = p(1− 2p)(1− 2q).

In these formulas we should only consider values of p, q ∈ (0, 1/2) as biologically
plausible. (See also Exercise 4.) For parameters in this range,

1− 2p > 0, 1− 2q > 0,

so p1 > p3 always holds. In addition, p1 > p2 holds precisely when

p(1− p) > q2.

However, there are values of p, q in the allowed range where this last inequality
does not hold, and so parsimony is inconsistent for such choices.
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Figure 11.2: Parsimony is consistent only for parameters below the curve.

A graph of the (p, q)-parameter space for the model in the proof is given in
Figure 11.2, indicating the regions for which parsimony is a consistent method
of inference. We see that if p is sufficiently small in comparison to q, so the
internal branch of the tree is very short, we have inconsistency of parsimony.

Note that when the parameters fall in the region of inconsistency (sometimes
called the Felsenstein zone), the proof has shown p2 > p1, so the tree parsimony
will infer from perfect data is T2. In other words, the two long branches are
erroneously joined, and we have an instance of long branch attraction.

An extreme interpretation of this theorem and figure is that since parsimony
is sometimes inconsistent, it is not a good method to use. A more moderate view
is that parsimony is in fact consistent over quite a wide range of parameters,
and we now have some idea of what might lead it to behave poorly. Of course
for real data we might not have much idea in advance of how the tree should
look, so that whether the tendency for long branches to attract one another is
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a problem can be difficult to determine. However, if we infer a tree with several
long branches joined to one another, we should consider the possibility.

Of course this theorem does not apply to a 4-state model more appropriate
to DNA. However, similar calculations for a Jukes-Cantor model show the same
phenomenon; for some edge lengths, parsimony will be a consistent method of
inference of a 4-taxon tree topology, but for others it will not.

But the situation can actually be worse than this last statement seems to
indicate. In fact, for a 4-taxon tree it is possible to show that under a κ-state
generalization of the Jukes-Cantor model, for any κ ≥ 2, the set of distributions
of parsimony-informative sites that arises on one tree topology is exactly the
same as on any other tree topology (Allman, Holder, and Rhodes 2010). In
other words, with only 4 taxa the parsimony informative sites alone give no
information whatsoever about the tree topology. Thus when parsimony does
pick the correct tree, it’s essentially just getting lucky. (Note however that
when more taxa are used, the parsimony-informative sites do carry information
on the tree topology.)

But all these results must be interpreted very carefully. For instance, as
Figure 11.2 shows in the 2-state case, parsimony is consistent if all branch
lengths are of equal size, and in many other circumstances as well. Thus we
have identified a possible source of error in inference by parsimony, not a fatal
flaw. The problem, of course, is that it may be hard to know ahead of time
whether we should expect parsimony to be perform well on any given data set.

Also note that the metric tree used in the proof above is not ultrametric;
unless p = q there is no place a root can be located so that all leaves will be
equidistant from it. In fact, for a 4-leaf molecular clock tree, it’s possible to show
parsimony is consistent for simple models. Unfortunately, for larger sets of taxa
parsimony can again be inconsistent even assuming the tree is ultrametric.

11.3 Consistency of Distance Methods

The other methods of inferring trees that we’ve discussed — distance methods
and maximum likelihood — are statistically consistent when paired with certain
models, though some mild restrictions may be needed on parameter values. We
won’t give formal proofs of these facts, but will instead sketch the ideas.

Consider first the computation of distances from data sequences produced
according to a specific model. Then as sequence length grows, it is easy to
show that provided we use a distance formula that is associated with the model
generating the data, we will infer distances that approach the true ones for the
parameter choice. (Thus if our data are generated by a Kimura 2-parameter
model, we may use Kimura 2-, or 3-parameter distances, or the log-det distance,
but not the Jukes-Cantor distance.) This basic fact follows from the continuity
of the distance formulas.

Once we have distances, suppose we use the Neighbor Joining algorithm to
infer a tree. We’ve already claimed in Theorem 16 (and shown in Exercise 24
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of Chapter 5) that Neighbor Joining recovers the correct tree provided we have
exact distances from a binary tree with all positive edge lengths. It’s necessary,
then, to show that from dissimilarities sufficiently close to the exact distances,
we recover the same tree. So what is needed is in essence a statement that the
output of the algorithm is a continuous function of the input dissimilarities, at
least in the neighborhood of exact distances for binary trees with all positive
edge lengths. This is certainly plausible, and in fact can be rigorously proved.
For other distance methods, such as the least-squares approach, consistency can
be established similarly

Note that the requirements that the tree be binary and edge lengths be
positive are the mild restrictions that we indicated were needed beforehand.

An important point in this, however, is that we need to be able infer dis-
tances correctly. If data are generated by a mixture model, but distances are
computed by a simpler model, then there are no guarantees that further pro-
cessing of these incorrect distances will lead to a correct tree. Thus consistency
of any distance method is likely to depend on the consistency of the inference
of pairwise distances between taxa. Since distance formulas exist only for the
most basic models, we will be limited to these if we insist on consistency.

11.4 Consistency of Maximum Likelihood

There are rather general proofs that maximum likelihood is a consistent method
of statistical inference in many settings, and these can be modified for phylo-
genetic models. However, these proofs require that one first establish that the
model has identifiable parameters. In the phylogenetic setting, this means that
any joint distribution of patterns at the leaves of a tree arises from a unique
tree and choice of numerical parameters. If different choices of trees and nu-
merical parameters lead to the same joint distribution of patterns, then even
with large amounts of data they would be indistinguishable, and no method
would be able to consistently infer parameters. Thus a lack of identifiability
for a model would cause any method to be inconsistent. Maximum likelihood
has the fortunate feature that it is generally consistent without any additional
substantive requirements on the model beyond identifiability.

In fact, parameters for the general Markov model are not strictly identifi-
able. For instance, suppose two n-taxon tree topologies are chosen that are
one NNI move apart. For numerical parameters on each, choose the same root
distribution, and the same Markov matrices on all edges not affected by the
NNI move. On the edge that the NNI move collapsed on the first tree, and the
new edge it introduced in the second, let the Markov matrix be the identity.
Then these two trees and parameter choices will produce exactly the same joint
distribution of patterns at the leaves. The reason for this, of course, is that
the choice of the identity as a Markov matrix means no substitutions occur on
the edges affected by the NNI, so both trees produce sequences as if there is an
unresolved polytomy, with 4 edges emerging from a single vertex. The simple
way to rule this problem out is of course to not allow Markov matrices to be
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the identity.
By imposing restrictions of this sort, under the general Markov model the

tree topology is identifiable, by means of the log-det distance and 4-point con-
dition, for instance. For this, it is sufficient to require that the tree be binary
and all Markov matrices have determinant 6= ±1, 0. This rules out not only
the identity matrix for Markov matrices, but also some other possibilities that
are fortunately not relevant biologically. For instance, in a GTR submodel, the
only way a Markov matrix could have determinant 0 is if the edge length were
infinite.

There remain other non-identifiability issues, though. For instance, one can
permute the bases at an internal node of the tree, adjusting the Markov param-
eters on incident edges accordingly by permuting rows or columns, and again
not change the joint distribution (Exercise 7). This gives only finitely many
parameter choices for each joint distribution, though. Moreover we can make a
unique choice from these by imposing biologically reasonable assumptions that
the diagonal entries of all matrices be the largest in their rows.

Even after eliminating these issues, it is not easy to show the parameters
are identifiable. The essential difficulty is that phylogenetic models have hidden
variables, representing the states at internal nodes of the tree, which cannot
be observed. These greatly complicate the form of the model parameterization,
leading to the many-term sum of products we saw in Chapter 6. Moreover,
there are similar models with hidden variables outside of phylogenetics that are
not identifiable.

Currently, maximum likelihood has been proven to be consistent for the
following models, by first showing the models are identifiable. For some of these
models, there are minor technical conditions that must be placed on parameters,
about which we will not be explicit.

• the GM model, and its submodels such as GTR, K2P, JC

• GTR+Γ, and its submodels such as K2P+Γ, JC+Γ

• GTR+Γ+I, except when the GTR component is JC or F81, when two
trees differing by an NNI may give the same distribution

• GM+I, and submodels such as GTR+I, K2P+I, JC+I

• rate-variation and covarion models with c classes, provided c is smaller
than the number of observable states (i.e., c < 4 for DNA models, c < 19
for proteins, etc.)

Much more general mixture models on a single tree topology are also known
to be identifiable for generic choices of parameters, provided the number of
components is less than a bound depending exponentially on the number of taxa.
‘Generic’ here means that if the numerical parameters are chosen at random,
then almost certainly they will be identifiable. Mixtures in which components
have different tree topologies are similarly identifiable, provided the trees all
have two ‘deep splits’ in common. (Rhodes and Sullivant, 2012)
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These theoretical results safely cover all models used routinely for data anal-
ysis, and many that are being explored in less routine investigations. And while
it is likely that even more complex models than these, that have yet to be
proposed, have identifiable parameters, one should not forget that there are
real limits. For instance, under the no-common-mechanism model mentioned in
Chapter 10, the tree topology is not identifiable. Thus while we might find such
a model appealing for its biological realism, it is not useful for data analysis.

11.5 Performance with Misspecified models

While statistical consistency is certainly desirable for an inference method, es-
tablishing it does not lay to rest all concerns we should have. First, a claim
of consistency is a statement about behavior under idealized conditions: If we
use the correct model, and have access to as much data as we like, then we are
likely to draw the right inferences. If, say, we attempt to use maximum likeli-
hood with a Jukes-Cantor model for inference, and the data actually is not fit
well by that model, the consistency results above give us no guarantees. Since
biological data are unlikely to be described perfectly by any simple model, we
certainly have a violation of assumptions in any real-world application. How
that violation of assumptions effects inference results is a question of robustness.
While experience with data analysis generally indicates that the inference of the
tree topology may be fairly robust to variations in choice of models, numerical
parameters inferred under different models often vary more widely.

There are also circumstances that haven been found where an analysis with
a misspecified model leads to errors in tree inference. For instance, Shavit
Grievink, Penny, Hendy, and Holland (2009) simulated data using a covarion
version of the Jukes-Cantor model, in which the proportion of invariable sites
changed over the tree. Though plausible as capturing reasonable biological
behavior, this is not a model that has been implemented for data anlaysis in any
software, nor studied theoretically. When a Bayesian analysis of the simulated
data was performed under the model’s closest implemented covarion cousin,
which did not allow for changing proportions in the covarion classes, serious
errors were made in recovering the tree topology. The extent to which such
processes may be misleading us with analysis of real data is simply not known.

While it can be reassuring to analyze a data set under several models and see
that the inferred parameters of interest are similar, one should never forget that
the models currently available in software are limited. If they do not capture
some key process in the data’s production, they might all give similar results
yet still be misleading.

11.6 Performance on Finite-length Sequences

Even with a correctly specified model used to analyze data, in the real world
sequences are always of finite length, and therefore short in comparison to those
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with which statistical consistency is concerned.
How well various methods perform on sequences of the lengths similar to

experimental data sets has been investigated through simulation. We can choose
a model, tree, and numerical parameters, and simulate data according to these.
Then we can apply the inference method to the simulated data, and see if it
recovers the original tree. (See Exercise 8.) If we use the model which generated
the simulated data to analyze it, then only the effect of sequence length will be
investigated.

One important finding of such simulation is that the long branch attraction
phenomenon seems quite universal, regardless of the method of inference. For
instance, for any fixed sequence length, there is a region of parameter space
much like the upper left corner of Figure 11.2 in which we often infer the wrong
tree. The precise shape and size depends on the method of inference and the
sequence length, but the region is there, even for maximum likelihood. Because
maximum likelihood is consistent, the size of the region must become smaller
if the sequences are made longer. However, in practice we may not be able to
obtain long enough data sequences whose evolution can be modeled well, so the
assurance of statistical consistency may not be helpful.

Several long edges leading from the ends of a short edge, then, are quite
generally problematic. It is wise to keep this is mind when inference produces a
tree with several long edges leading from a common vertex. When such a tree
is inferred, it might be possible to include additional taxa in the data set in
order to create additional bifurcations breaking up the long edges, and with an
expanded data set, we may be able to better infer a tree. However, there may
be no taxa available to break up the long edges, so this problem cannot always
be overcome.

11.7 Exercises

1. Explain the computation of the parsimony scores in equations (11.1) for the
quartet trees.

2. Check the formulas for p1, p2, p3 in equations (11.2) in the proof of Theorem
18.

3. Check the formulas for p1 − p2 and p1 − p3 in equations (11.3) in the proof
of Theorem 18 (using software, or by hand).

4. Show that if the 2-state Markov matrix

M(p) =

(
1− p p
p 1− p

)
is of the form M = eQt for some non-zero rate matrix Q, t > 0, then
p ∈ (0, 1/2). Why is this biologically plausible?

5. For the Markov model in the proof of Theorem 18, explain how Figure
11.2 fits with the intuition that as long as sufficiently few mutations occur,
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parsimony should infer the correct tree. Is this intuition strictly correct?
Show the curve p(1 − p) = q2 has a vertical tangent at (0,0), and explain
why this is relevant.

6. Assuming we use a valid distance formula for our model, explain informally
why UPGMA will be statistically consistent if the underlying tree has all
leaves equidistant from the root, but will not be without this assumption
on the tree.

7. Consider a 3-taxon tree, with root ρ at the central vertex. Suppose for the
general Markov model on this tree we have parameters pρ, M1, M2, M3,
producing a certain joint distribution of states at the leaves. If P is a
permutation matrix and p′ρ = pρP , what Markov matrices M ′1, M ′2, M ′3
will, along with p′ρ, produce the same joint distribution as the original
parameters?

8. Using software, simulate some sequences of length 300 bases according to a
Jukes-Cantor model on the tree in Figure 11.1 using a variety of parameter
choices (p, q) as in the proof of Theorem 18. Then use Neighbor Joining with
the Jukes-Cantor distance to infer a tree. Find parameter choices for which
the method seems to usually give the correct tree, and other parameter
choices for which you usually see long branch attraction.

If you are ambitious, perform many simulations for enough values of (p, q) to
produce an empirical diagram like Figure 11.2, showing when this approach
to this inference problem usually produces the correct tree.
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Chapter 12

Bayesian Inference

While Maximum Likelihood for model-based inference in phylogenetics is com-
mon, the Bayesian framework is also widely used. Like Maximum Likelihood,
it is a general approach, that can be applied in any statistical setting where a
probabilistic model has been formulated. Although Bayesian methods are not
new, computational difficulties often prevented their application for complex
problems until recent decades.

While there are significant philosophical differences between these two frame-
works, their mathematical formulations are not so far apart. Despite a long-
running debate between some of the supporters of each, most practitioners adopt
a more pragmatic approach, accepting both as reasonable.

12.1 Bayes’ theorem and Bayesian inference

As in Chapter 8, our basic problem of statistical inference is the following:
Having formulated a probabilistic model of a process, where the model depends
on some unknown values of parameters, from a data set we wish to infer the
parameter values. In phylogenetics, this typically would mean we have chosen to
use a model, such as GTR, to describe the evolution of a collection of sequences
along a tree, and the data are the observed sequences from the leaves of the tree.
The unknown parameters are all of the numerical parameters of the GTR model
(the stable base composition and the relative rates) as well as the topological
tree and all of its branch lengths. But that is a rather complicated model, so
it’s best to begin with a simpler example. We return to the same one used in
Chapter 8.

Example. Our experiment is the toss of a (possibly unfair) coin. Our model
is simply that the toss will produce heads with probability p and tails with
probability 1 − p. The parameter here is p, which might have any numerical
value from 0 to 1.

With Maximum Likelihood, we sought a single best value of p based on the
data, and ultimately produced the estimate p̂ =(number of heads)/(number of

173
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tosses).
In Bayesian inference we adopt a more elaborate viewpoint that we should

not necessarily give a single estimate for p̂, but rather a range of values, together
with a measure of how much support each has. After all, if we obtained 63 heads
out of 100 it is quite reasonable that p was not 0.63. Perhaps it was 0.60, or
0.58, or even 0.50. As we consider values further from .63, we may feel that
they become less reasonable, but we are not inclined to completely rule them
out.

To capture this more formally, the goal of Bayesian inference is not to infer
a single best choice of parameters to fit data, but rather to associate to each
possible choice of parameter values a probability of those being the ones that
produced the data. This probability measures the support for the parameter
values, with values near 1 indicating strong support, and those near 0 indicating
essentially no support.

The key to obtaining these probabilities is Bayes’ Theorem, which has al-
ready appeared in equation (8.2), though we repeat it more carefully here: For
any two events A and B,

P(A | B)P(B) = P(A and B) = P(B | A)P(A),

so solving for P(A | B) yields

P(A | B) =
P(B | A)P(A)

P(B)
.

If we think of both our data and the value of the parameters p as being
probabilistically determined, then we obtain the special case

P(p | data) =
P(data | p)P(p)

P(data)
. (12.1)

Now the Bayesian perspective requires that we give meanings to the terms on
the right hand side of this equation, in order that we can compute the left hand
side.

We begin with P(p), the probability of a specific parameter value p. In the
likelihood framework, the viewpoint is that there simply is some unknown value
of p, and it doesn’t really make sense to talk about its probability. From a
Bayesian perspective, however, we think of P(p) as capturing the support we
feel a value p has, or equivalently, our belief that it is the true value. Since
P(p) does not depend on the data, in this equation it must represent support
for values of p before we consider the data. It is therefore called the prior
distribution of p, since it captures our a priori beliefs. In contrast P(p | data)
measures support for p after the data has been taken into account. It is called
the posterior distribution of p since it captures our a posteriori beliefs.

Already the broad outline of the Bayesian approach has been given. We
begin an analysis of data by specifying a prior distribution on the parameters,
which indicates our current beliefs in what values are reasonable. Then equation
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(12.1) is used to take into account both the data and our prior beliefs to produce
updated, posterior beliefs.

To do this, though we must examine the other terms in equation (12.1).
In the numerator of the right side, we have P(data | p), which is simply the
likelihood function that formed the basis for Maximum Likelihood inference,
and thus something we know how to compute.

In the denominator, we have P(data). In the likelihood framework this is a
rather nonsensical concept, since after all, we collected the data so if there is a
probability associated to it, it must be 1. From the Bayesian viewpoint, however,
we have prior beliefs about the parameter values, and so we could use them to
compute the probability of obtaining any specific data. More specifically, we
can set

P(data) =
∑
p

P(data | p)P(p),

where the sum is over all possible choices of the parameter values.

Thus our final formula for how we update the prior distribution to obtain
the posterior one is

P(p | data) =
P(data | p)P(p)∑
p P(data | p)P(p)

, (12.2)

Example (1). Returning to the coin toss example, for simplicity let’s suppose we
know the coin that is flipped is weighted in one of 3 ways: p is either 1/4, 1/2,
or 3/4. With no data collected, we might choose for a prior the probabilities
1/3, 1/3, 1/3 that p has each of these values. (Note that while p itself is a
probability, the prior assigns probabilities to each of its possible values, so the
prior, in this case, gives us the probability of a probability.)

Now we collect some data by flipping the coin 3 times, obtaining the sequence
HHT. The likelihood is computed as in Chapter 8 to be

P(HHT | p) = p2(1− p).

We use this, and the prior P(p) to compute the denominator P(data) in equation
(12.2) as

P(HHT) = P(HHT | p = 1/4)P(p = 1/4) + P(HHT | p = 1/2)P(p = 1/2)

+ P(HHT | p = 3/4)P(p = 3/4)

=

(
1

4

)2(
3

4

)(
1

3

)
+

(
1

2

)2(
1

2

)(
1

3

)
+

(
3

4

)2(
1

4

)(
1

3

)
=

3 + 8 + 9

43 · 3
=

20

192
= 0.104166 . . . .

Finally we use equation (12.2) for each of the possible values of p to obtain
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the posterior distribution:

P(p = 1/4 | data) =
P(data | p = 1/4)P(p = 1/4)∑

p P(data | p)P(p)

=

(
1
4

)2 ( 3
4

) (
1
3

)
20
192

=
3

192

192

20
=

3

20
= 0.15

P(p = 1/2 | data) =
P(data | p = 1/2)P(p = 1/2∑

p P(data | p)P(p)

=

(
1
2

)2 ( 1
2

) (
1
3

)
20
192

=
8

192

192

20
=

8

20
= 0.40

P(p = 3/4 | data) =
P(data | p = 3/4)P(p = 3/4)∑

p P(data | p)P(p)

=

(
3
4

)2 ( 1
4

) (
1
3

)
20
192

=
9

192

192

20
=

9

20
= 0.45.

Thus the posterior probabilities of the coin having probability of heads 1/4, 1/2,
and 3/4, are 0.15, 0.40, and 0.45, respectively. Note that these add to 1, as they
must since they specify a probability distribution.

In comparison to the prior, this posterior indicates we have shifted our belief
to one where p is larger. The most probable value of p is 3/4, but there is not
much more support for that than for p = 1/2. On the other hand, the support
for p = 1/4 has decreased significantly to less than half its prior probability.

As should be clear, computing posterior probabilities using equation (12.2)
in even simple examples requires a long computation. In addition to needing
the same likelihood function as was used in Chapter 8, and a prior distribution
on the parameters, the denominator involves a sum of products of these over
all possible parameter values. If in this example we had said the probability
p of heads could have any of the values 0.1, 0.2, 0.3, . . . , 0.9, then there would
have been 9 summands rather than 3. Computing this denominator thus be-
comes a major computational hurdle when there are many possible values of the
parameters.

Example (2). In the coins toss example above, we began by saying there were
only 3 possible values for the parameter p. For a more elaborate example, we
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Figure 12.1: (a) A flat prior for a coin with probability p of heads, and (b) the
posterior after the observation HHT .

could instead say p could have any of the continuum of values between 0 and 1.
Then we must specify the prior distribution by a probability density function,
f(p), defined on this interval. The probability of the parameter lying in a small
interval of size dp around the value p is then P(p) = f(p)dp.

To express complete ignorance of the values of p, we might choose this to be
a constant function f(p) = c. The specific value of c is determined by the need

for the total probability,
∫ 1

0
f(p) dp to be 1, so we use c = 1. (Any probability

density for a continuous parameter must have total area 1 under its graph.) The
formula for the posterior density then becomes

f(p | data) =
P(data | p)f(p)∫ 1

0
P(data | p)f(p) dp

,

so

f(p | HHT) =
p2(1− p) · 1∫ 1

0
p2(1− p) · 1 dp

.

Since ∫ 1

0

p2(1− p) · 1 dp =

∫ 1

0

p2 − p3 dp =
p3

3
− p4

4

∣∣∣∣1
0

=
1

3
− 1

4
=

1

12
,

the posterior density is

f(p | HHT) = 12p2(1− p).

Graphs of the prior and posterior are show in Figure 12.1. Note how there
is a significant shift toward probabilities in the vicinity of 2/3 being the most
probable.

To summarize, and contrast the Bayesian inference approach to the of Max-
imum Likelihood, we list a few key points
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1. Both are model-based methods in which a probabilistic description of the
data generation process is assumed.

2. Both involve computing P(data | p) for parameter values p. In Maxi-
mum Likelihood, this is the Likelihood function we seek to maximize; in
a Bayesian analysis it appears in the process of computing the posterior
distribution.

3. A Bayesian analysis requires specifying a prior distribution of the parame-
ters we seek to infer, which expresses our beliefs in what parameter values
are likely before the data are considered. For Maximum Likelihood we do
not need to express these prior beliefs, and in fact cannot take such prior
beliefs into account.

4. Maximum Likelihood produces a single estimate, called a point estimate,
of the parameters we infer. A Bayesian analysis produces a distribution
of estimates, the posterior distribution, which indicates differing levels of
support for different parameter values.

12.2 Prior Distributions

The requirement that we specify a prior for a Bayesian analysis is a major
difference from what is needed to perform Maximum Likelihood. Depending on
one’s viewpoint and the application, this can be either a positive or negative
feature.

In the majority of phylogenetic analyses, the priors are chosen to express as
much ignorance as possible. Such a prior is often called uninformative, though
it may carry some information, such as the fact that a parameter must lie in a
certain range. For example, the prior depicted in Figure 12.1 indicates that p
lies between 0 and 1, but its “flatness” or uniformity indicates that we have no
further information on its likely value. By choosing uninformative priors, one
hopes that the posterior distribution will indicate signal in the data alone, and
not any assumptions that a different prior might express.

For a few of the parameters in a phylogenetic model, creating an uninfor-
mative prior is easy. For instance if an model allowing some invariable sites is
used, then the proportion of invariable sites can be given such a uniform prior
across the range 0 to 1, just as in the coin toss example.

For the base distribution, an uninformative prior is not much more compli-
cated. Since p = (pA, pG, pC , pT ) with pA + pG + pC + pT = 1, we can use
the uniform distribution which assigns to each choice of p the same value, 1
divided by the volume of the region in space with x, y, z ≥ 0, x + y + z ≤ 1.
Since this is a bounded region, its volume is finite. This is a special case of
the Dirichlet distribution, which has several parameters (or, as they are often
called, hyperparameters since these are parameters of the prior and not of the
phylogenetic model) that can be varied to range from the uniform distribution
to ones increasingly concentrated at any point. (See Exercise 5.) The Dirichlet



12.3. MCMC METHODS 179

distribution can thus be used to provide as informative a prior as is desired. A
similar uninformative prior can be used for substitution rates, since they can be
normalized to sum to 1, by adopting an appropriate time scale.

Priors for edge lengths are more problematic, since lengths can range over all
non-negative real numbers. Since this set is unbounded, a uniform distribution is
not possible as a valid prior, since a constant function on an unbounded interval
would not have area 1 under its graph. One possibility is to use a uniform
distribution on a large interval from 0 up to a value believed to safely exceed
any plausible edge length. However, Yang and Rannala (2005) have, through
a mixture of theoretical analysis and simulation studies, shown this can lead
to posteriors that are concentrated on longer edge lengths, and thus perhaps
bias results in a way that was not intended. An alternative is to use a prior
that decays exponentially with branch length. Although that concentrates more
probability on short edge lengths, that may actually be a better representation
of what we might consider to be uninformative than a flat distribution.

Finally, for the tree topology the simplest approach is that we make all
binary topologies have the same probability. Since there are only finitely many
possibilities, this gives a valid prior.

These choices of priors have all been made in the hopes of expressing little
to no information that will be used in the Bayesian analysis. Whether they fully
succeed is a difficult issue. For instance, do we really believe all binary trees
are really equally likely? What about the prior for branch lengths where there
seems to be no obvious way to even say what truly uninformative would mean?
This dependence on priors when we may have no objective way of choosing them
is the reason some feel discomfort with Bayesian methods in general.

From a more pragmatic perspective though, we can make reasonable choices
of priors, and then examine the resulting posterior distribution. If the analysis
gives posteriors that are very different from the priors, then we can be fairly con-
fident that the data have overwhelmed whatever information we inadvertently
put into the priors.

12.3 MCMC Methods

In phylogenetics, as in many other modern applications of Bayesian inference,
the computation of the posterior distribution from equation (12.2) is not done
directly. Attempting to evaluate the denominator in that formula would be
computationally intractable, since it requires summing terms for every possible
choice of parameters. The tree topology parameter alone has an enormous
number of possible values if the number of taxa is at all large, and then there
are many numerical parameters as well.

Instead a different computationally-intensive process, called a Markov chain
Monte Carlo (MCMC) method, is followed that rather than giving exact val-
ues of the posterior distribution attempts to give a sample chosen from that
distribution. We say ‘attempts’ here, since the process that is followed will,
provided it runs long enough, provably converge to a process that gives such a
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sample. Thus the process is first run for a ‘burn in’ period of many iterations,
in order to get from its starting point to a point more typical of the asymp-
totic behavior. There are no useful theoretical results on how long the burn-in
period must run before it gives a sample that approximates one from the true
distribution, but there are heuristic guides or diagnostics that are provided by
software developers. The sample produced during burn in are then ignored, and
as the process continues to run a new large sample is collected. Provided it is
large enough, this new sample should closely approximate the true distribution
of the posterior.

The name ‘Markov chain Monte Carlo’ signifies the two main ideas behind
this process. The reference to the casinos of Monte Carlo indicates that it a
random process is followed, and so only by taking a large sample can we be
reasonably confident that we have a good approximation to the posterior. The
Markov chain refers to the more theoretical underpinnings of the process, in
which there is a collection of states, and conditional probabilities indicating
how we move from state to state.

In the phylogenetics applications, the Metropolis-Hastings algorithm is the
MCMC method usually used. The states for the process are a choice of param-
eters, i.e. a tree together with specifications of all other numerical parameters.
We start at one such state, and then move to a new one by a certain probabilistic
rule. An overview of the slightly simpler Metropolis procedure is the following:

1. Create some probabilistic proposal process that given any state p1 picks
a new state p2 with probability given by some function P(p2 | p1). The
only requirements on this process is that P(p2 | p1) = P(p1 | p2), so that
the probability of jumping from one state to another is symmetric, and
that the probability of proposing any state from any other (perhaps by a
succession of proposals) is non-zero.

2. Choose some starting state p0.

3. Repeat the following steps:

(a) If the current state is pn, propose a new state p according to the
proposal process.

(b) Compute the acceptance ratio

α =
P(p | data)

P(pn | data)
.

(c) If α ≥ 1, accept the proposal and make the current state pn+1 = p,
and return to step 3a.

(d) If α < 1, then flip a coin that is weighted to give H with probability
α, and T with probability 1− α.

(e) If the coin gives H, then accept the proposal by making the current
state pn+1 = p. If the coin gives T , then reject the proposal by
making the current state pn+1 = pn.
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(f) Return to step 3a.

Informally, the acceptance of a proposed state is done in such a way that
we will always accept one that has higher probability in the posterior than our
current state. However, we will also accept ones that are less probable, but not
always. Thus it is plausible that the process could tend toward sampling from
the posterior. This in fact can be proved.

Actually, the formula for α above makes it appear that we must already
know the posterior to use the algorithm. In fact, the key point is that we do
not need to know it, since the posterior only appears in a ratio. While the
denominator in the formula (12.2) for the posterior is what is intractable to
compute, it cancels out in the formula for α:

α =
P(p | data)

P(pn | data)
=

P(data | p)P(p)∑
p P(data | p)P(p)

P(data | pn)P(pn)∑
p P(data | p)P(p)

=
P(data | p)P(p)

P(data | pn)P(pn)
.

Thus computing the acceptance ratio depends only on being able to compute
the likelihood function, and the prior.

Notice that almost any proposal function can be used with the same the-
oretical guarantee of eventually approximating the posterior distribution. The
Hastings modification of the algorithm even allows a non-symmetric proposal.
In practice, however, the design of a good proposal process can have a large effect
on how the algorithm performs. For instance, considering only tree topologies,
we could imagine proposal processes that only used NNI moves, or instead took
larger steps through tree space. If the posterior turns out to be highly con-
centrated on a single topological tree, then using NNI moves alone may work
well after the burn-in period has passed, but might result in a longer burn-in as
small steps are taken from the starting tree to get to the one with high posterior
probability. On the other hand, if large steps are taken, we should expect that
one we are past burn-in that most proposed trees will be rejected, resulting in
a longer run time to build up a good sample.

12.4 Summarizing Posterior Distributions

A great strength of Bayesian inference is that it yields a distribution of estimates
rather than a single one. In simple circumstances, such as the coin toss example
in section 12.1, the posterior can be communicated by a graph, as in Figure
12.1. If the area under this graph is closely concentrated above a small interval
on the horizontal axis, then a glance indicates there is strong support for the
parameter value being in that interval. If the area is more spread out, then we
quickly see there are a large range of reasonable parameter values, and the data
were not able to give us a tight conclusion.

In the phylogenetic setting, however, where a parameter choice may mean a
metric tree together with a base distribution, a rate matrix, and possibly several
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other numerical parameters, things are a little more complicated. Rather than
a single parameter which could be placed on a single axis, we have a rather large
number of parameters. Moreover, the tree topology is also a parameter, and
there is no natural way to depict that on an axis in a graph.

When faced with difficulties in presenting the full posterior distribution, one
alternative is to report the single choice of parameters (assuming there is only
one) that maximizes the posterior. This maximum a posteriori (MAP) estimate
is the most probable choice of parameters given the data and prior. Reporting
only it, however, throws away most of the information in the posterior distribu-
tion. Most importantly, we lose an indication of the spread of the distribution
across other parameter values.

For a distribution of phylogenetic trees, a reasonable approach is to report
the MAP tree topology, but then further indicate the support for each split
in the unrooted tree case, or for each clade if the tree is rooted, in the full
distribution. Each tree topology has a associated posterior probability (obtained
by restricting the distribution to trees of the given topology and then integrating
over all numerical parameter values). The probability of a split or clade is then
the sum of the probabilities of the topological trees displaying that split or
clade. Thus a probability of 1 indicates the split or clade appears in every tree
that appears with non-zero probability in the posterior, while lower probabilities
indicate appearance in a lower proportion of the trees. Thus each edge of the
reported tree can be assigned the probability of the associated split, indicating
its support across the full posterior distribution.

Instead of the MAP tree, one could instead use a consensus tree for the splits
or clades. Here the posterior probabilities of each possible split or clade in the
full distribution would be used to determine which splits or clades make the
cutoffs for building the consensus tree. A strict consensus thus includes only
those with probability 1 in the full distribution, while a majority-rule consensus
uses all those with probabilities strictly greater than 0.5.

Of course one hopes that a Bayesian phylogenetic analysis will lead to very
strong support for a single tree. If the MAP tree topology has probability 1,
then the posterior is entirely concentrated on a single tree, and any sort of a
consensus tree will have the same topology. Even if the MAP tree topology only
has probability slight larger than .5, the majority rule consensus tree will agree
with it.

To give metric information and other numerical parameters for the reported
tree there are also several possibilities. On the MAP tree topology one could
simply report MAP edge lengths, by either fixing the MAP topology and then
choosing the collection of edge lengths that simultaneously maximize the re-
stricted posterior distribution, or alternatively, for each edge integrate the re-
stricted distribution over all other numerical parameters and then report edge
lengths maximizing this marginal distribution. For a consensus tree one can
report averages (weighted by the probabilities of the posterior distribution) of
edge lengths across the different trees displaying the associated split or clade.
If the posterior is highly concentrated, there should be very little difference in
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these approaches.

Of course not every analysis leads to a highly concentrated posterior dis-
tribution. In such a case rather than depending on some simple summaries, it
is wise to look carefully at the more detailed distribution, which software will
typically make available for examination.

12.5 Exercises

1. a) In example (1) of the computation of the posterior distribution in section
12.1, the data were taken to be HHT . Redo the calculation using the same
uniform prior on 1/4, 1/2, 3/4, but assuming the data are a sequence of 300
coin tosses, with 200 heads and 100 tails. Compare the posterior distribution
you obtain to the one in the example. Are they the same? If not, explain
why any differences you see are reasonable.

b) Repeat part (a), but for example (2), with a uniform prior on the interval
0 ≤ p ≤ 1.

2. Suppose a prior is such that for some specific parameter value p0, P(p =
p0) = 0. From equation (12.2) explain why P(p = p0 | data), the posterior
probability that p = p0 will also be 0. (Thus in a Bayesian framework, if
something is viewed as impossible, then no amount of data will change that
view.)

3. Suppose a prior is such that for some specific parameter value p0, P(p =
p0) = 1. From equation (12.2) explain why P(p = p0 | data), the posterior
probability that p = p0 will also be 1. (Thus in a Bayesian framework, if
something is viewed as definite, then no amount of data will change that
view.)

4. In the continuous-parameter Example(2) of Section 12.1, the posterior is
shown to be P(p | HHT) = 12p2(1− p).
a) For what values of p is this posterior 0? Why is this reasonable for these
data?

b) Calculate the MAP estimate of p. How does it compare to the ML
estimate of p? (Note: this relationship depended on the specific choice of
prior that was used.)

5. The Dirichlet distribution for (x1, x2, . . . , xk) with x1 + x2 + · · · + xk = 1,
xi ≥ 0, is specified by the probability density function

f(x1, x2, . . . , xk;α1, . . . , αk) =
1

B(α)

k∏
i=1

xαi−1
i ,

where α = (α1, . . . , αk) is a vector of parameters and

B(α) =

∏k
i=1 Γ(αi)

Γ(
∑k
i=1 αi)
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is a normalizing constant so that the total probability is 1.

a) Show that if α1 = · · · = αk = 1 this is a uniform distribution, and thus
when k = 4 gives the uninformative prior for base distributions.

b) To better understand the distribution for other values of α, consider
k = 3. Produce 3-dimensional plots of the unnormalized version of the
distribution, f(x1, x2, x3) = xα1−1

1 xα2−1
2 (1− x1− x2)α3−1, for α = (1, 1, 1),

(10, 10, 10), (100, 100, 100). Roughly give the location of the peak, and
explain how the concentration of probability for the Dirichlet distribution
changes for these values of α. (Note: the only relevant portion of the graph
is where x1 + x2 ≤ 1.)

c) Produce 3-dimensional plots of the unnormalized version of the distri-
bution, f(x1, x2, x3) = xα1−1

1 xα2−1
2 (1 − x1 − x2)α3−1, for α = (1, 2, 3),

(10, 20, 30), (100, 200, 300). Roughly give the location of the peak, and
explain how the concentration of probability for the Dirichlet distribution
changes for these values of α.

d) Analytically determine the location of the maximum of f(x1, x2, . . . , xk;α)
by finding the maximum of its logarithm. (In taking derivatives, you will
need to let xk = 1− x1 − · · · − xk−1 and treat the logarithm as a function
of x1, x2, . . . , xk−1 alone.)

6. Suppose you collect a data set D1 and using a prior P(p) you compute the
posterior distribution P(p | D1) according to equation (12.2). You then
collect a second data set D2, and using P(p | D1) as a prior for it, you
compute a second posterior distribution. Under the assumption that D1

and D2 are independent regardless of the value of p, show that this two-
step analysis gives exactly the same posterior as would a single-step one to
find P(p | D1 and D2).



Chapter 13

Gene trees and species trees

After twelve chapters discussing trees, models, and methods of inference, its time
(or past time) to bring up the issue of exactly what the trees we are inferring
represent.

When DNA or other sequences are collected, they come from individuals of
a taxon, and not the taxon as a whole. Moreover, the sequence is not the entire
genome of the individual, but more typically the sequence of one gene. Thus the
trees we find should represent the evolutionary relationships of these individual
genes or loci, and are better called gene trees. For reasons we will discuss in
more detail in this chapter, these trees need not represent the evolutionary
relationships of the full taxa, or even of the full individual. It is possible that
they represent the relationships of the taxa on a species tree, and under some
circumstances it is even likely. However, it is also quite likely that the gene trees
and species trees will be in conflict.

The chapter develops the framework for modeling a primary source of conflict
between gene trees and species trees, incomplete lineage sorting. While the
distinction between gene trees and species trees has been understood from the
early days of phylogenetics, only recently have serious attempts been undertaken
to develop statistical tools to deal with it directly. For many years, inferred gene
trees were simply accepted as likely proxies for species trees, with more careful
scientists acknowledging this distinction. As it has become cheaper and easier
to sequence many genes in a collection of taxa, it has become less easy to ignore
the discordance of gene trees among each other.

The model used to capture incomplete lineage sorting is the multispecies
coalescent. It modifies Kingman’s basic coalescent model of population genetics
so that several populations are linked to form a tree. Although this modeling
framework is now fairly well established, it is not yet clear what methods of
species tree inference inspired by it will ultimately prove most useful. Thus
any enthusiasm or criticism we offer of particular approaches should be taken
lightly; more progress can be expected in the next few years.

185
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13.1 Gene Lineages in Populations

The primary reason we should not expect gene trees to always match species
trees is shown in Figure 13.1. Here a tree with wide pipe-like branches repre-
sents the history of the species in their descent from a common ancestor, where
the width of a branch is meant to convey that a species is actually a population
of individuals of some size. The thin trees within it represent a gene tree, of the
sort we might construct by standard phylogenetic methods, that relates some
particular sample of sequences collected from individuals in those populations.
Because of the many individuals present in the species at any time (represented
by the width of the species tree branches), it is possible that several gene lin-
eages may exist within a branch, without merging together. This then makes it
possible for the lineages to eventually merge in some earlier population on the
species tree in a way that gives a gene tree topology that differs from the species
tree topology. Multiple gene lineages persisting in this way, not merging within
a single branch of the species tree, is referred to as incomplete lineage sorting.

a b c d e

Figure 13.1: Gene trees may differ from species trees, since species trees are built
from populations, and multiple gene lineages may persist through a species tree
population (edge) and then merge with other lineages in a way that conflicts with
the species tree topology. Here the species tree has topology (((a, b), c), (d, e)),
while the gene tree might have topology ((A, (B,C)), (D,E)), or several others,
depending on how the lineages coalesce “above the root” of the species tree.

To model this phenomenon, we first step back from considering a full species
tree, and instead consider the simpler situation of gene lineages in a single
population.

The Wright-Fisher model imagines that there are some number N of in-
dividuals in the population at all times, with time tracked in discrete steps,
corresponding to generations. In case of a haploid or diploid organism, there
are thus either N or 2N copies of a specific gene present at each time step. We
depict these as in Figure 13.2, with each row representing a generation, and
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each dot representing a gene.
To create gene lineages, we begin at generation 0 (the present) and imagine

each gene picks a parent gene uniformly at random from the previous generation.
Thus from a gene in the current population at the bottom of the figure we can
draw a random lineage, back one generation at a time, through the ancestral
generations. (There are some obvious idealizations in this model: By picking
parents at random, we assume the population is panmictic, we ignore sex and
the grouping of two genes in one diploid organism, and we assume neutrality
under selection.) An example of a simulation from this process is shown in
Figure 13.2.

1 2 3 4 5 6 7 8
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16

Figure 13.2: A simulation from the Wright-Fisher model, with 8 genes. A gene
lineage is produced by a current gene (at bottom) choosing a random parent in
the previous generation, which then chooses its parent, etc.

Figure 13.2 is too much of a tangle to interpret easily. However, by appro-
priate sorting of genes in each generation to prevent lineages from crossing, and
suppressing lineages with no descendants in generation 0, we obtain the more
understandable Figure 13.3. Working backwards in time, we see that gene lin-
eages merge, or coalesce with some regularity. At each generation, there may be
coalescent events which reduce the number of lineages coming from the extant
genes. After moving enough generations into the past, all the lineages from the
extant genes will have merged into a single one.
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Viewing Figure 13.3 in the other direction, from the past to the present, we
see many genes will have no progeny in the present. Indeed, if going backwards
in time all lineages from the present have merged into a single one, then all
genes not on that lineage will have no current progeny.
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Figure 13.3: A Wright-Fisher simulation, after sorting of genes to untangle
lineages, and retaining only lineages with extant descendants.

It is relatively easy to compute a few probabilities associated to this model.
In the haploid case with N genes per generation, the probability that any two
will choose the same parent, and thus have their lineages coalesce immediately,
is 1/N . This is because no matter what parent the first gene chooses, the
second must choose the same one of the N possibilities to produce an immediate
coalescence.

The probability that two lineages do not coalesce in the parental generation
is therefore 1 − 1/N . The same reasoning as before then gives the probability
they will coalesce in the previous generation is 1/N . Extending this reasoning
shows that, using C2 = n to mean the event that two specific extant lineages
coalesce n generations before the present,
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P(C2 = 1) =
1

N

P(C2 = 2) =

(
1− 1

N

)
1

N

P(C2 = 3) =

(
1− 1

N

)2
1

N

...

P(C2 = n) =

(
1− 1

N

)n−1
1

N

The probability of coalescence by generation n is thus

P(C2 ≤ n) =

n∑
i=1

P(C2 = i) =
1

N

n∑
i=1

(
1− 1

N

)i−1

= 1−
(

1− 1

N

)n
(13.1)

As the number of generations n grows to infinity, we see the probability of
coalescence approaches 1.

We can also compute the expected number of generations to coalescence of
two specific lineages:

∞∑
n=1

nP(C2 = n) =
1

N

∞∑
n=1

n

(
1− 1

N

)n−1

= N (13.2)

This is plausible, as the larger the population size, the longer it should be before
coalescence occurs, on average.

If we are interested in more than 2 lineages coalescing, things become more
complicated. For instance for 3 lineages, there are likely to be two coalescent
events needed for 3 lineages to merge down to 1 (though with low probability all
three merge at once). We would have to consider the two generations in which
these events occurred, and the expected final coalescence time would involve a
double summation. Although quantities such as this can be worked out exactly,
the formulas become rather complicated.

13.2 The Coalescent Model

Kingman’s coalescent model can be viewed as a continuous-time approximation
of the Wright-Fisher model (and also of other discrete models of population
genetics, including the Moran model.) Rather than fully develop it from the
Wright-Fisher model, we will instead simply define it. At an informal level the
connection between them should seem reasonable. (See [Wak09] for an excellent
full treatment.)

The model describes the coalescence of lineages as we move backwards in
time within a single population. Time will be denoted by u, from the present
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with u = 0 into the past with u > 0, and is measured in coalescent units. We
will relate coalescent units to more familiar quantities later, but for now they
are simply some measure of time. The entire model is this:

Given pairs of lineages at any fixed time, the rate at which pairs
coalesce into single lineages is constant, and equal to 1. Simultaneous
coalescence of more than two lineages does not occur. Coalescence
of different pairs is independent, and identically distributed.

Two small points are in order here. First, by rate we mean something very
similar to what was meant in the discussion of the GTR model of base substi-
tution. A rate of a continuous-time probabilistic process determines, through
some calculation, a probability at any time, and so we will be able to compute
probabilities of coalescences from it. Second, to make this rate 1 we simply
rescale time units in a way that is convenient, just as we were able to freely
rescale time with the GTR. As we will see, the resulting rescaled time measured
in coalescent units need not be proportional to real time, except perhaps for
very short periods.

Consider two lineages which are distinct at time 0, and u > 0, let h(u) denote
the probability that the two lineages are distinct at time u (that is, the two did
not coalesce between time 0 and time u). Then the model tells us

d

du
h(u) = −1 · h(u),

where the negative sign is due to the fact that h(u) should decrease.1 Since we
additionally know h(0) = 1, we find

h(u) = e−u.

Thus if P(u) denotes the probability the two lineages did coalesce between time
u0 and u, we have

P(u) = 1− e−u.

This is the analogue of equation (13.1) of the Wright-Fisher model, and graphing
the two formulas shows they display quite similar behavior.

We can also compute the expected time to coalescence of two lineages, to
obtain an analog of equation (13.2). Since the probability of coalescence in a
short time interval is P(u+ ∆u)− P(u) ≈ P ′(u)∆u, the expected time is∫ ∞

0

uP ′(u)du =

∫ ∞
0

ue−u du = 1. (13.3)

That this expected time to coalescence does not depend on the size of the
population should seem surprising. However, as defined here the coalescent

1More formally, we are assuming coalescent events occur as a Poisson process, a standard
probabalistic model for events that occur rarely, but with equal chance in any small interval
of a fixed size.
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model ignores the population size — it is never even referred to in the definition
of the model. We have simply defined our time scale so the rate of coalescence
is one

In fact the population size does matter, but it is taken care of by the defi-
nition of coalescent units. To see why this is reasonable, return to the Wright-
Fisher model. Imagine that the population size changed as we move backwards
in time, forming a bottleneck, as in Figure 13.4. If the large population below the∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Figure 13.4: A bottleneck in the Wright-Fisher model, with population size
N1 = 10 except for m2 = 9 generations with population N1 = 4. The bottleneck
causes faster coalescence of lineages, producing similar behavior to a longer time
span with no bottleneck.

bottleneck is N1, coalescence of pairs of lineages occurs with probability 1/N1

in each generation. When lineages enter the bottleneck, the same formula ap-
plies, but with a smaller population size N2, the probability is now larger, 1/N2.
Thus coalescence becomes more likely to occur. This means that if we had no
access to the generational time scale, and could only query whether coalescence
had occurred, the bottleneck of a relatively small number of generations of size
N2 would be indistinguishable from a larger number of generations where the
population had remained constant at size N1.

Reasoning roughly with the Wright-Fisher model, since the expected number
of generations until two lineages coalesce is equal to the population size, N2

generations in the small population has the same impact on coalescence as
N1 generations in the large one. If we introduce a new time scale for each
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population, where we use

∆u =
∆t

Ni

in a population of size Ni, where ∆t is a number of generations, then N1 gener-
ations in the large population and N2 generations in the small population both
yield ∆u = 1 Thus scaling time inversely by population size enables us to treat
the coalescence of lineages as proceeding at a constant rate.

For the discrete Wright-Fisher model, this change of time scales only approx-
imately creates a uniform rate; after all, we do not have fractional generation
time. However, in the coalescent model this becomes the definition of a coales-
cent unit. Since the coalescent is a continuous-time model, we can define units
in term of ‘infinitesimal’ increments:

du =
1

N(t)
dt. (13.4)

If the population size N(t) = N is constant, then equation (13.4) integrates to
give

u =
t

N
.

With this assumption, we can thus convert the expected coalescent time of 1
coalescent unit in equation (13.3) to N generations, which is exactly in accord
with the Wright-Fisher result. However, equation (13.4) is more general, and
allows changing population sizes to lead to non-linear relationships between u
and t.

Since coalescent units are used as the time scale in formulating the model,
the population size is doesn’t explicitly appear in any calculations. However,
the population does have an effect whenever we relate coalescent models to true
time. A large population at some time means the coalescent clock ‘runs slow’
with respect to true time, so it takes more true time for coalescent events to
occur. A small population means the coalescent clock ‘runs fast’ with respect to
true time, so coalescent events occur more rapidly. More generally, as population
size changes, the coalescent clock may be constantly changing its speed with
respect to true time.

There is, of course, a price to pay for this relationship. It will be impossible
to separate out the individual contributions of time and population size from
their combined effect, unless we are willing to make some strong assumptions.
While we might wish this was just an artifact of this model that we could do
away with in some way, by thinking about the Wright-Fisher model it should
become clear it would be a feature of any reasonable model we might formulate.

To demonstrate another calculation with the standard coalescent model,
consider the expected time to coalescence of n lineages down to one. For all n
lineages to coalesce, first 2 must coalesce so only n− 1 lineages remain. Then 2
of these must coalesce so only n− 2 remain, and so on, until the last 2 coalesce.

When all n lineages are present at time u0 = 0, there are many pairs that
might coalesce. It is thus reasonable that the first coalescent event will occur
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sooner than if only two lineages were present. For a more precise calculation
of the expected time of coalescence from n to n − 1 lineages, recall that the
coalescence of different pairs is i.i.d., so the overall rate of coalescence is increased
by a factor of the number of pairs,

(
n
2

)
= n(n− 1)/2. Thus with k(u) being the

probability that k lineages remain distinct at time u > 0, we have

d

du
k(u) = −n(n− 1)

2
k(u),

with k(0) = 1. Thus

k(u) = e−(n(n−1)
2 )u.

Proceeding similarly to the calculation of the expected coalescent time for 2
lineages, we find that the expected time for n lineages to coalesce to n − 1 is
(see Exercise 6)

n(n− 1)

2

∫ ∞
0

ue−(n(n−1)
2 )u du =

2

n(n− 1)
. (13.5)

Thus while the expected time for 2 lineages to coalesce to 1 is 1 unit, the time
for 3 to coalesce to 2 is only 1/3 unit, the time for 4 to coalesce to 3 is 1/6 unit,
etc. Adding these, we obtain the expected time for n lineages to coalesce to 1 is

n∑
i=2

2

i(i− 1)
= 2

n∑
i=2

(
1

i− 1
− 1

i

)
= 2

((
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

n− 1
− 1

n

))
= 2

(
1− 1

n

)
As n approaches ∞, this grows, but the limit of the expected time until all
lineages coalesce is 2, which is only twice that of when n = 2.

These calculations indicate that in a typical coalescent tree formed by a large
number of lineages coalescing we should expect to see a lot of coalescence near
the leaves of the tree, and longer edge lengths near the root. Roughly half the
tree will have only two lineages which coalesce at the root, one third will have
3 lineages, etc. These characteristics are depicted in the tree shown in Figure
13.5.

Note that for a sexually reproducing diploid organism, each individual has
two copies of most genes. Both the Wright-Fisher model, and the standard
coalescent model ignore the fact that 2 gene lineages reside in each individual,
and that individuals have sexes. However, since these copies come from different
parents, their lineages are distinct, and in a panmictic population should have
histories that are independent of one another.

If two different unlinked genes are considered in such an organism, even if
they are sampled from the same individuals, there should also be little rela-
tionship between the gene trees for the two. Since the number of ancestors
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Figure 13.5: A typical tree produced by the coalescent process in a single pop-
ulation. Edge lengths are measured in coalescent units with the time during
which there are k lineages being, on average, 2/((k)(k − 1)).

n generations in the past grows exponentially by the formula 2n (provided, of
course, the population is sufficiently large), going back even a few generations,
the lineages of different genes are likely to pass through different individuals.
Once this happens, under a panmictic assumption coalescence with different
lineages should then be independent between the two genes. If genes are linked,
then there lineages will not be independent and a more complicated model is
needed to capture how lineages coalesce.

Finally the version of the coalescent presented here is not appropriate for
all organisms. In some species of fish, for instance, the number of offspring of
a successful breeder can be quite large. In that case, then a model must allow
simultaneous coalescence of more than 2 lineages at a time. Such modifications
result in a model called the Λ-coalescent.

13.3 Coalescent Gene Tree Probabilities

Suppose we sample the same gene in several individuals within a population
and assume the coalescent model describes the probabilistic way their lineages
coalesce. If the coalescent process is continued until all the lineages have become
one, then a rooted gene tree is formed. Each possible gene tree can arise with
some probability, which can be computed. In this section, we demonstrate how
this can be done in the simplest situation — the gene samples are taken from a
single population, which persists back in time ‘forever’. (In essence, we assume a
species tree with only a single taxon.) Gene tree probabilities can be computed
for either topological gene trees or metric gene trees, so we give examples of
both.
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3-sample trees

First we consider sampling 3 extant lineages, which we will denote by A1, A2, A3,
at u = 0.

If we are only concerned with gene tree topologies, then we observe that the
rooted gene tree which relates them is determined by the first pair of lineages
to coalesce. Since the coalescence of pairs is i.i.d., this first coalescence involves
A1, A2 or A1, A3, or A2, A3 with equal probability 1/3. Thus each of the 3 gene
trees ((A1, A2), A3), ((A1, A3), A2), and ((A2, A3), A1) arises with probability
1/3.

For a metric gene tree probability, note that distances will be given in
coalescent units, and the tree must be ultrametric. Consider the gene tree
((A1:u1, A2:u1):u2, A3:u3), where u3 = u1 + u2. This is formed by

(a) 3 lineages and no coalescent events for a time interval of length u1,

(b) a coalescent event of 3 lineages to 2 at time u1, with the specific lineages
A1, A2 coalescing,

(c) 2 lineages and no coalescent event for a time interval of length u2,

(d) a coalescent event of 2 lineages to 1 at time u3 = u2 + u1.

Now from previous calculations (a) has probability e−3u1 , and (c) has probability
e−u2 . Both (b) and (d) require probabilities of coalescence at an instant, which
is simply the rate of coalescence times du. Thus (d) has probability du3 = du2,
while (b) involves both the probability of a coalescence, 3du1, and an additional
factor of 1/3 that the lineages involved in the coalescence are A1, A2. The total
probability is thus

P(u1, u2) = e−(3u1+u2)du1du2,

so the probability density function is

f(u1, u2) = e−(3u1+u2). (13.6)

When this is integrated over 0 ≤ u1, u2 ≤ ∞, it gives a different computation
of the probability 1/3 of the topological tree ((A1, A2), A3). (See Exercise 7.)

Larger trees

If 4 extant genes A1, A2, A3, A4 are sampled at u = 0, the computing proba-
bilities of topological trees is a little more complicated. A caterpillar gene tree
like (((A1, A2), A3), A4) can only be formed by a specific sequence of coalescent
events. That the first lineages to merge are A1, A2 has probability 1/

(
4
2

)
= 1/6.

Once there are only 3 lineages, that the A1A2 lineage merges with the A3 lin-
eage next has probability 1/

(
3
2

)
= 1/3. Then that the A1A1A3 lineage merges

with A4 has probability 1. Thus the probability of this, or any of the other
caterpillar gene trees is (1/6)(1/3) = 1/18.
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A balanced tree like ((A1, A2), (A3, A4)) can be formed by either of two
sequences of coalescent events: A1A2 may merge first, followed by A3A4, or
vice versa. Each of these has probability 1/18 since they are determined by a
specific sequence of coalescent events. Thus the total probability of this, or any
other balanced gene tree is 2(1/18) = 1/9.

This last calculation shows a significant feature of the coalescent model in
a single population. Topological gene trees that show more ‘balance’ tend to
have higher probability than those that are less balanced, because they can be
achieved by more distinct orderings of coalescent events. In fact, it is not hard to
generalize the calculation of topological gene tree probabilities from 4-samples
to more. Define a ranked gene tree as a rooted binary leaf-labelled topological
tree with an ordering to the internal nodes (from the leaves to the root) such
that the ranking of any node is greater than all its descendants. Then under
the coalescent all ranked gene trees are equally probable. Since there are

R(n) =

n∏
k=2

(
k

2

)
=
n!(n− 1)!

2n−1
(13.7)

ranked gene trees (see Exercise 10), the probability of any gene tree is simply
the number of rankings it may be given divided by R(n).2

For a metric gene tree, the edge lengths determine an ordering to the coales-
cent events. For instance, the gene tree ((A1:u1, A2:u1):u3, (A3:u2, A4:u2):u4) is
formed by coalescent events occurring at times u1, u2, and u1 + u3 = u2 + u4.
If u1 < u2, then the first cherry formed was (A1, A2), while if u2 < u1 it was
(A3, A4). For either case, computing the probability is very similar to the 3-
sample case above (see Exercise 12). Unlike the topological tree case, there is
no extra care that needs to be taken, since only oner ranking can arise for a
metric tree.

13.4 The Multispecies Coalescent Model

The multispecies coalescent extends the basic coalescent model of the last section
to a species tree of populations.

In terms of true time, we can picture the species tree as an ultrametric tree,
with each branch represented by a pipe as in Figure 13.1. However, since we
will be measuring time in coalescent units, which are only related to true time
through inverse scaling by the population size, the species tree need not be
ultrametric in these units. Moreover, using coalescent units means we have in
some sense standardized the widths of the pipes to all be the same, so that
standard Newick notation can be used to specify a species tree.

2The probabilities obtained for rooted topological trees here is the same as is produced by
the Yule model, a model of branching that proceeds from the root toward the leaves, and is
often taken as the simplest probabilistic speciation model. One could argue that it is the most
natural distribution of rooted trees in biological contexts, and is perhaps a better choice of a
“non-informative” prior for a Bayesian tree inference.
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The multispecies coalescent model is simply the standard coalescent model
on each edge of the species tree ‘glued’ together. But now, since species tree
edges have finite length, we may have several gene lineages in a population
an edge represents that fail to coalesce within that edge. When they reach
the ancestral end of the edge, one or more additional lineages will enter from
another branch of the species tree. If we are computing probabilities of metric
gene trees, then we specify precisely where each coalescent event occurs, and
though the bookkeeping can be rather cumbersome, we merely have to combine
various probabilities of lineages coalescing, or not coalescing, in a single edge
of a specific length, in ways very similar to the single population coalescent.
For topological gene trees, the work is similar, but we first need to compute
probabilities than if k lineages ‘enter’ an edge of length x, that 0 ≤ ` < k
coalescent events will occur on that edge. (A future version of these notes will
derive that....)

3-sample trees

We begin with a simple, yet very important example, of a 3-taxon species tree
((a:y, b:z):x, c:w), where we sample one gene from each taxon. We will denote
the sampled genes by A,B,C, using uppercase letters corresponding to the
taxon names. Before we consider a specific gene tree, note that y, z, w will
have no effect on the probability of observing any topological gene tree. This is
because under the one-sample-per-taxon scheme, as shown in Figure 13.6, there
will be only one lineage in each of the pendant species tree branches, and so no
opportunity for coalescence in these populations.

a b c

x

Figure 13.6: With one gene sampled per taxon, no coalescence can occur in pen-
dant populations on the species tree, so the lengths of those edges are irrelevant
to the probability of observing any topological gene tree. For the species tree
((a:y, b:z):x, c:w), only x will appear in probability formulas.

There are 3 possible topological gene trees: ((A,B), C), ((A,C), B), and
((B,C), A). To compute the probabilities of observing them, it is easiest to
begin with ((A,C), B). The only way this gene tree can be formed is if the A
and B lineages enter the population with length x and then reach the root of the
tree before merging. That results in 3 lineages being present at the root, and
then the A and C lineages must coalesce in the population ancestral to the root.
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For the previous section we know the probability of two lineages not coalescing
in x coalescent units is e−x. The probability that the correct 2 lineages of the
3 then coalesce first is 1/3. Thus

P( ((A,C), B)) =
1

3
e−x.

The same reasoning shows

P( ((B,C), A)) =
1

3
e−x.

Since the probabilities of the 3 topological gene trees must add to 1, this also
means

P( ((A,B), C)) = 1− 2

3
e−x.

Notice that if x = 0, so the species tree has a polytomy at the root, all of these
become 1/3, as is reasonable. If x =∞, on the other hand, the A and B lineages
must coalesce in the infinitely long branch, and so we find P( ((A,B), C)) = 1,
with the other gene trees having probability 0. But for 0 < x <∞, we have

0 < P( ((A,C), B)) = P( ((B,C), A)) < P( ((A,B), C)).

Thus in this case the most probable gene tree has the same topology as the
species tree, while the two discordant gene trees have smaller probabilities.

This leads to a simple method of species tree inference in the 3-taxon, 1-
sample-per-taxon case: after inferring many gene trees by standard phylogenetic
methods, simply tally the number of gene trees with each topology. Then accept
the most frequent one as the species tree topology. But we can actually infer
even more. After estimating 2

3e
−x as the proportion of gene trees that are

discordant with the inferred species tree, we can solve for an estimate of x.
Thus the gene tree distribution not only contains information on the topology
of the true species tree, but also on the lengths of its edges.

The simplicity of the 3-taxon case, though, is misleading. For n-taxa, the
most probable gene tree need not match the topology of the species tree. This
fact means the natural intuition that whatever gene tree is inferred the most
often should be reflect the specie tree can be misleading.

If we instead needed to compute the probability of a metric gene tree (with
edge lengths in coalescent units) we proceed more similarly to the example
discussed in the previous section. But now the edge lengths in the gene tree
determine in which populations on the species tree the various coalescent events
occurred. For example, for the species tree ((a:y, b:z):x, c:w)to calculate the gene
tree probability P(((A:u1, B:u2):u3, C:u4)), we must separate the cases where
A and B coalesce in the species tree branch of length x, and when they coalesce
in the population ancestral to the root of the species tree. Moreover, for the
gene tree to have non-zero probability, we must have

u1 > y, u2 > z, u4 > w, u1−y = u2−z, u1+u3 > y+x, u1+u3−y−x = u4−w.
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Assuming these conditions are met

P(((A:u1, B:u2):u3, C, :u4)) = P(u1, u3)

=

{
e−(u1−y)−(u1+u3−x−y), if u1 < y + x,

e−x−3(u1−x−y)−u3 , if u1 > y + x.
(13.8)

The formulas depend only on u1 and u3 since those values determine u2 and u4

by the restrictions above.

Larger trees

To illustrate how probabilities are computed for larger trees, we give only one
(partial) example. For the species tree is (((a:u1, b:u2):u3, c:u4):u5, d:u6), con-
sider the topological gene tree (((A,B), C), D) which has the same topology as
the species tree. Since there is only one ranking of the coalescent events forming
this gene tree, there are relatively few ways it could form. They are:

1. (A,B) coalesces in the branch of length u3, ((A,B), C) coalesce in the
branch of length u5, and (((A,B), C), D) coalesces in the population an-
cestral to the root of the species tree.

2. (A,B) coalesces in the branch of length u3, and then both ((A,B), C)
and (((A,B), C), D) coalesce in the population ancestral to the root of
the species tree.

3. (A,B) and ((A,B), C) coalesce in the branch of length u5, and (((A,B), C), D)
coalesce in the population ancestral to the root of the species tree.

4. (A,B) coalesces in the branch of length u5, and then both ((A,B), C)
and (((A,B), C), D) coalesce in the population ancestral to the root of
the species tree.

5. All coalescent events occur in the population ancestral to the root of the
species tree.

Since for scenario 1 there are never more than 2 lineages in any population,
and we have seen that the probability that 2 lineages coalesce within an edge of
length x is 1− e−x, the probability is easy to compute as

(1− e−u3)(1− e−u5).

Note that the coalescent event in the population ancestral to the species tree
root is sure to occur, and so contributes a factor of 1 to the probability.

The probability for scenario 2 is not much harder. It is

(1− e−u3)(e−u5)(1/3).

the first two factors are the probability there is a coalescence in the edge of
length u3, and that there is not one in the edge of length u5. Since 3 lineages
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are present at the species tree root, the factor of 1/3 is the probability that the
correct pair of the three possible ones coalesces next.

The remaining scenario probabilities can be worked out similarly (see Exer-
cise 14 ), and the sum of the five of them gives the probability of the topological
gene tree.

While not all scenarios leading to a topological gene tree are equally prob-
able, the more scenarios there are, the larger the total probability can be. In
particular, if a gene tree has several rankings, then that produces more scenar-
ios, and tends to result in a higher probability for such gene trees than one might
expect. In fact it is possible that the gene tree with the greatest probability has
a different topology than the species tree, or that several gene tree topologies
are more probable than the one matching the species tree. Although this phe-
nomenon of anomalous gene trees has been studied extensively by Degnan and
Rosenberg, here we give only a simple argument to illustrate it.

First consider a ‘star’ species tree relating 4 taxa a, b, c, d, with 4 pendant
edges emerging from the root. Probabilities of topological gene trees are then
easy to see, since all coalescent events occur ancestral to the species tree root.
That means our earlier analysis of four lineages samples from a single population
applies, so that each of the 12 possible caterpillar trees has probability 1/18,
and the 3 balanced trees have probability 2/18 due to their two rankings. Now
if we instead consider any binary 4-taxon species tree, and make all internal
edges very short, the probabilities of the gene trees will not be very different
(since the probabilities are continuous functions of the internal edge lengths,
and as these approach 0 we move to the star tree). Since there is such a gap
between the probabilities of the caterpillar and balanced gene trees in the star
species tree case, we will still have a balanced tree as the most probable for
the binary species tree. In particular, for a 4-taxon caterpillar species tree with
sufficiently short internal edges, the most probable topological gene tree will
still be balanced, and thus not match the species tree.

A more detailed analysis, in which exact probabilities of topological gene
trees as functions of species tree edge lengths are computed, can show exactly
what edge lengths allow for anomalous gene trees, and exactly which gene tree
is most probable.

The examples above indicate how the multispecies coalescent model can
be used to understand gene tree distributions. But as with most phylogenetic
computations, when there are more than a few taxa calculations are best handled
by software. But before turning to the use we might make of these probabilities,
we summarize by listing some key points concerning the model:

• Given a metric rooted species tree, with edge lengths in coalescent units,
it is possible (but painful) to compute the probabilities of either metric or
topological gene trees.

• The distribution of gene trees, whether metric or topological, that arises
from the multispecies coalescent model carries information about the species
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tree topology and edge lengths. Thus using many gene trees to estimate
this distribution should allow us to infer the species tree. The discordance
of gene trees that might otherwise be viewed as problematic is actually a
source of meaningful information.

• The probabilities of metric gene trees are for gene trees with edge lengths
in coalescent units. If we wish to relate these to gene trees inferred by
standard phylogenetic methods, whose edge lengths are typically measured
in amount of substitutions, we must make further assumptions.

• Species trees need not be ultrametric in coalescent units. Indeed, if the
population sizes vary over the species tree, then typically it will not be
ultrametric in these units. By working in these units we can allow very
general changes in population sizes over time. If we wish to relate co-
alescent units to true time, we must make further assumptions, such as
that the population size is constant over the entire tree, or that we have
a specific description of the way the population size changes.

• The most probable topological gene tree need not match the species tree
topology. If there are more than 3 taxa, and internal edges of the species
tree might be short, picking the most frequent gene tree topology inferred
from many genes is not a reliable way of inferring the species tree. Hoping
that the species tree topology will be ‘obvious’ to the naked eye from
considering many genes is simply naive.

13.5 Inferring Species Trees

A variety of ways of inferring species trees, either from a collection of gene trees
or from a collection of sequence alignments, have been proposed and imple-
mented in software in the past few years. However, these data analysis methods
are still undergoing development, and using them is not yet routine. The scien-
tific community does not yet have enough experience with them to understand
fully their strengths and weaknesses, or under what circumstances they are likely
to perform well or poorly. The collection [KK10] offers a number of articles on
both theory and practice with some of these methods.

There are several different ways one could classify currently proposed meth-
ods. Some are based explicitly on the coalescent model, and have been proved
to be statistically consistent. Others ignore the coalescent, and use some sort
of heuristic approach to ‘averaging’ over different genes. One could also group
them by whether they use metric gene trees, or only their topologies. Alter-
nately, they could be classified by whether they attempt maximum likelihood,
Bayesian analyses, parsimony, or other combinatorial approach to determining
a species tree. Some use a combined model of sequence evolution and the multi-
species coalescent, as opposed to performing inference as a two-step process by
first inferring gene trees and then using these as ‘data’ to infer a species tree.
Since any such classification scheme would emphasize one feature as being more
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important than another, we will instead simply list methods in no particular
order.

We describe some of these methods only in the case where we sample one
gene lineage from each taxon, so that if we are studying n taxa, each gene tree
will have n leaves. There are extensions of most of these methods to cases of
multiple samples of each gene lineage per taxon, including allowing different
number of samples for each gene. Provided the sampling in each taxon is done
well, data collected with multiple samples has potential for improved inference
(at least in the case where pendant species tree branches are relatively short).

Concatenation of sequences.

Given sequences for a number of different genes, an early approach that remains
in widespread use is to concatenate sequences from all the genes, and treat the
combined sequence as if it was one giant gene in order to perform a standard
ML or Bayesian phylogenetic analysis. Software returns an inferred tree (or
distribution of trees), which is then proclaimed to be the inferred species tree.
Bootstrap support is often high, since the sequences are quite long, so this
resampling technique showed little variability.

Though this method still has its advocates, there is no theoretical reason
one should expect it to be reliable if incomplete lineage sorting is an important
factor in why gene trees vary. By concatenating genes and analyzing them as
one long sequence, even if a partitioned analysis allows for different numerical
parameters for each gene, one is forcing the analysis to use a single tree topology.
But the fact that there are likely to be different gene tree topologies is exactly
what we are hoping to overcome! In other words, we are using a model that we
know is seriously incorrect as the basis of our analysis. Moreover, we have in no
way used our understanding of how incomplete lineage sorting occurs to inform
the way we analyze the data. Finally, it has been proved by Steel and Roch that
concatenation is not a statistically consistent method of inference of a species
tree under the multispecies coalescent. However, if one is convinced ahead of
time that all edges in the (unknown) species tree are long, then incomplete
lineage sorting may be negligible, and this approach is better justified.

Maximum Likelihood and Bayesian analyses

At the other extreme from concatenation is to use both a model of gene tree
formation by the multispecies coalescent together with a standard phylogenetic
model of sequence evolution of the sort discussed earlier in these notes. Then
either Maximum Likelihood or a Bayesian framework can be adopted for a well-
justified statistical framework, using the models in succession , or combined.

We first sketch the ML approach used in the software STEM (Kubatko, et
al. (2009)). Given many gene sequences, one first infers metric gene trees by
using ML and standard phylogenetic models. One then must convert the branch
lengths on the gene trees from units of total substitutions to coalescent units.
Assuming a common mutation rate of µ on all edges of all gene trees, one can
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divide by µ to obtain true times. Then assuming a constant population size N
for all populations on the species tree, one can divide by 2N (for diploid organ-
isms) to convert to coalescent units. Note however that these assumptions imply
all gene trees should be ultrametric, so they must either be ‘adjusted’ somehow,
or inferred with that as a constraint. With this done, it is now straightforward
(though a substantial amount of work) to implement a standard ML analysis
under the coalescent model, with a new tree search for the species tree. There
are some generalizations one can make, for instance allowing independent rescal-
ings of the various gene trees to account for the fact that they may evolve at
different rates.

Bayesian approaches are similar, and have been implemented in software
by two different groups, in Mr. Bayes/BEST (Hulsenbeck, et al. Liu, et al.),
and in *BEAST (Heled, et al.) It is a bit easier to program an analysis using
a combined model of both the coalsecent for formation of gene trees and a
substitution model for evolution of sequences. Letting Di denote DNA sequence
data for the ith of k genes, G a metric rooted gene tree, and S the species tree,
the posterior is computed in the usual way from a prior on metric species trees
and the likelihood function

P(D|S) =

k∏
i=1

∑
G

P(Di|G)P(G|S). (13.9)

Just as for ML, the issue of converting time scales on gene trees from substitu-
tions to coalescent units arises, and is dealt with similarly.

Note that there is, as yet, no ML software that implements a combined model
of the coalescent and the substitution process, in which a likelihood function
for the species tree given the sequence data are used. STEM uses a two-step
inference procedure instead, which means that while there is some statistical
error in the inferred gene trees, they are treated as if they were ‘data’ in the
coalescent model analysis. The Bayesian analyses, though, do not have this
issue.

Though in principal using Maximum Likelihood and Bayesian approaches to
infer species trees is attractive, current implementations have their shortcom-
ings. A worrisome issue is the conversion of time scales on gene trees, which is
done by making assumptions over all gene trees of a fixed mutation rate (i.e.,
a molecular clock) and over the species tree of a fixed population size. If these
are approximately valid they may not cause problems, but if they are violated
strongly it is unclear what the impact is. There have been reports of Bayesian
analyses not converging to a stable posterior for some data sets, though the
reasons for this are not clear. Liu now warns that if the gene trees appear to be
strongly non-ultrametric, BEST may not perform well.

In addition, the amount of computation for the Bayesian approaches is large
enough, that there are practical limits on sizes of data sets, both in the number
of taxa, and in the number of genes. While future generations of programs are
likely to be more efficient, it is unlikely that will be sufficient to really increase
limits substantially.
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Pseudolikelihood

A pseudolikelihood method follows the same approach as ML, but replaces
the true Likelihood function by something simpler. Liu et al. (2010) de-
fined a pseudolikelihood function for the species tree given a collection of gene
trees by considering all the topological rooted triples displayed on the gene
trees. For instance, a gene tree ((a, b), (c, d)) displays the four rooted triples
((a, b), c),((a, b), d),((c, d), a),((c, d), b). After counting how often each rooted
triple occurs on the gene trees, one computes the probability of each rooted
triple given a species tree. Treating the rooted triples as independent, the pseu-
dolikelihood is simply the product of these probabilities, each raised to the
count. This is a considerably simpler function than the true likelihood func-
tion, so that software can run much faster. Of course, the rooted triples are not
independent, so the standard guarantees that ML behaves well do not apply.
However, simulation evidence is that this works well, and it can deal with much
larger datasets than the true Likelihood approach. The software implementing
this is MP-EST.

Minimizing deep coalescence.

This method is in spirit very similar to the use of parsimony for inferring a
gene tree. It is based in a reasonable assumption that while incomplete lineage
sorting can occur, we are unlikely to see extreme examples of it. Thus if we have
a collection of gene trees (previously inferred from sequence data, and assumed
correct), we should choose as the ‘best’ species tree the one which, if all the
gene trees had arisen on it, would have coalescences of lineages as close to the
most recent common ancestral species as possible.

Conceptually, the method can be performed as follows. We consider each
possible species tree T , and for each of the given gene trees g we compute a
score sg(T ) that measures the minimal number of ‘deep coalescences’ that are
necessary for g to have arisen on T . We add these scores for all gene trees, to
obtain a score for T :

s(T ) =
∑
g

sg(T ).

We then choose the tree(s) T that has the minimal value s(T ).
The score sg(T ) is defined as shown in Figure 13.7. First, consider any

internal node v in the gene tree, and let Xv denote its leaf descendants. Then
v represents a coalescent event that could only have occurred on the species
tree above (temporally before) the most recent common ancestor of Xv on the
species tree. We therefore assume it occurred in the population just above the
MRCA, and locate it along that edge of the species tree. Doing this for every
node of g gives us a map of the gene tree to the species tree, and allows us to talk
about the number of gene tree lineages entering (at the child end) and leaving
(at the parent end) every edge. If the gene tree had the same topology as the
species tree, there would be two lineages entering each species tree edge, and
1 lineage leaving. For a highly discordant gene tree, these counts will typically
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be larger. We define the number of excess lineages for an edge of the species
tree as 1 less than the number leaving the edge. Then sg(T ) is the sum over
all edges of T of the number of excess lineages. Thus for a gene tree matching
the species tree we have sg(T ) = 0, and discordant gene trees will have higher
scores.

Figure 13.7: To compute the score sg(T ) for a gene tree g on left and a species
tree T on right, the nodes of g are first mapped to the lowest population edges
on T on which they could have arisen. Then sg(T ) is the sum over all edges
of T of the number of ‘excess’ lineages in g exiting them at the ancestral end.
(FIGURE from Than-Nakleh 2009)

Notice parsimony ideas have appeared twice in this method, once for assum-
ing coalescences occur ‘as soon as possible’ on the species tree, and once for
choosing the species tree with the lowest overall number of excess lineages.

Like parsimony for phylogenetic inference, this method is both reasonable
and likely to work well under some circumstances. Moreover, Than and Nakleh
have reformulated the optimization problem in ways that can be solved by tech-
niques of either integer or dynamic programming, giving fast performance in
practice. Unfortunately, and also like parsimony, it is known that minimiz-
ing deep coalescence is not a statistically consistent inference method for some
species trees.

Finally, we note that this method uses only topological information on gene
trees, and thus avoids attempting to relate time scales on the gene trees to those
on the species tree. It also does not make any direct use of the coalescent model.

Consensus methods

If we have already inferred a collection of gene trees from sequence data, we
can also simply combine them with a standard consensus method. While at
first this might seem like just a combinatorial way to overcome the gene tree
differences, and not one that has much to do with the coalescent, in fact this
approach has some provably good properties under the coalescent model.

For a theoretical distribution of rooted gene trees, define the probability of
a clade to be the sum of the probabilities of all gene trees displaying that clade.
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The following theorem of Allman, Degnan, and Rhodes (2011) is the key to
understanding how consensus methods behave for inferring species trees.

Theorem 19. Under the coalescent model on a binary species tree, any clade
on a gene tree with probability greater than 1/3 is also a clade on the species
tree.

The 1/3 cut-off in this theorem can not be reduced; for any lower number,
examples can be constructed of clades with greater probabilities that are not on
the species tree.

Now from a collection of gene trees one can estimate the probability of a
clade by the proportion of the gene trees displaying it. If one builds a consensus
tree from the clades with estimated probability greater than 1/3, then provided
one has a large enough sample of gene trees, the only clades used will be ones
on the species tree. As a result, the inferred tree may not be fully resolved,
but any clades it shows will reflect species tree clades. Since the strict and
majority-rule consensus trees will only use a subset of these clades, they may be
less well resolved, but will also only reflect true species tree clades. While for
an arbitrary collection of clades one cannot be sure those with frequency ≤ 1/2
will be compatible, this result implies that if the trees come from the coalescent,
all clades with frequency > 1/3 will be compatible, provided enough gene trees
are given.

A more recent theorem of Allman, Ané, Rhodes and Warnow (2011, unpub-
lished) establishes a similar result for splits on unrooted gene trees: Any gene
tree split with probability greater than 1/3 is a split on the unrooted species
tree. Thus constructing a consensus tree using gene tree splits of frequency
> 1/3 will, for a large enough sample of gene trees, infer a tree that may not
be fully resolved but whose splits will reflect ones on the species tree.

Greedy consensus, using either gene tree splits or clades, is however not
statistically consistent, as has been shown by Degnan, Degiorgio, Bryant, and
Rosenberg (2009). Accepting any splits or clades with frequency below 1/3 will
not necessarily give the correct species tree, even with an infinite sample of gene
trees.

Another approach, called R∗ consensus (Degnan, et al. (2009), is justified
by the result proved in section 13.4 that for any 3 taxa, the most probable
gene tree matches the species tree. Given a collection of gene trees, one could
consider every subset of 3 taxa, and the 3-taxon gene trees they induce. By
counting the ocurances of each of the 3 possibilities, one can infer the 3-taxon
tree induced on the species tree as the most frequent one. For 3-taxon trees,
as we have seen, this is a consistent way of picking the species tree. Once one
has obtained all these 3-taxon induced trees, one can then build the species tree
displaying them all. In practice, one may find some of these are incompatible,
so decisions must be made as to how that is to be handled. (We will not give
details here.) Unlike the previous consensus methods mentioned, this method
will, provided we have enough gene trees, result in a fully-resolved species tree.
Moreover, it is statistically consistent.
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A similar approach replaces rooted triples from rooted gene trees with quar-
tets on unrooted gene trees. The most frequent gene tree quartet topology does
consistently infer the species tree quartet topology, so one can then search for a
species tree displaying most such quartets. With some elaborations, this is the
approach taken in the ASTRAL software of the Warnow group.

STAR and NJst

There are also methods proposed by Liu and collaborators, that infer species
trees not by the standard consensus approach, but by a process that in spirit
extends them. These are both very fast, since they are built on distance methods
of tree inference, and have been shown to have good performance in simulations,

The first of these, called STAR (Liu et al., 2009) proceeds as follows to
obtain a species tree from a collection of rooted topological gene trees. First,
assign a length of 1 to all internal branches of all the gene trees. Then make
pendant edges have whatever length is necessary so all leaves are distance n
from the root, where n is the number of taxa. Now that the gene trees have all
been made into ultrametric trees, compute a distance matrix for each, giving
distances between the leaves. Next, average these gene tree distance matrices
over all the gene trees (i.e., average each of the corresponding entries). From
this average distance matrix, build a tree using your favorite distance method,
such as Neighbor Joining. Finally discard the metric information on this tree
and report it as the topology of the species tree.

Though at first this seems like a rather Rube Goldbergian way to infer a
species tree, it is not as ridiculous as it may sound. Though its introduction
was accompanied only by a proof of a 4-taxon special case, it turns out that this
is a statistically consistent way to infer species trees assuming the multispecies
coalescent. Moreover, simulations showed it can work reasonably well even
when provided with only a small number of gene trees. A rigorous proof of
consistency given by Allman, Degnan, and Rhodes (2013).

A similar proposal of Liu, et al. (2011) uses unrooted topological gene trees
to infer an unrooted topological species tree. For this method, originally called
NJst, all gene tree branches, internal and pendant, are assigned a length of 1,
distance matrices for each are then calculated and averaged, and an unrooted
tree is chosen to fit this average, for instance by Neighbor Joining. A proof of
the statistical consistency of this has not yet been published is in the works. It
has also been implemented efficiently in software called ASTRID (Vachaspati
and Warnow, 2015), and shown in simulations to work well for very large data
sets, with thousands of taxa and genes.

GLASS, STEAC

TO BE WRITTEN
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Concordance factors

Although it is not based on the coalescent model, or any model of why gene trees
might differ, a useful software tool for summarizing and understanding gene tree
discordance in a Bayesian setting is BUCKy (Larget, et al. (2010)). It performs
a technique called Bayesian concordance analysis (Ané, et al. (2007)) to take
posterior distributions for many gene trees, and combine them into what can be
interpreted as support for various clades. The lack of a model underlying this
tool means that even if the coalescent process is not the source of the gene tree
discordance, for instance, if horizontal gene transfer or hybridization occurs, one
may still use it to gain some insights.

As a final comment, we note that most of these methods implicitly assume
the genes being analyzed are unlinked. This is necessary so that each gene tree
can be viewed as an independent trial of the coalescent process. If for instance,
one wished to use mitochondrial genes in mammals, this assumption would be
strongly violated due to maternal inheritance. For nuclear autosomal genes, one
should also take some care not to use genes too closely located on a chromosome.

13.6 Exercises

1. Show the finite series in equation (13.1) has the stated value.

2. Show the series in equation (13.2) has the stated value. You will need to use
the formula for the sum of the geometric series

∑∞
n=0 r

n, and differentiate
with respect to r.

3. The Wright-Fisher model behind the simulation in Figure 13.3 leads to an
expected time to coalescence of any two lineages of 8 generations. Compute
the average of the coalescent times for the

(
8
2

)
= 28 pairs of lineages in the

simulation, and compare.

4. Show the integral in equation (13.3) has the give value.

5. Suppose a population is exponentially growing, so N(t) = N0e
−αt with

α > 0 where t is measured backwards from the present. Use equation (13.4)
to give a formula relating coalescent units and true time.

6. Complete the derivation of the formula in equation (13.5).

7. By computing a double integral of the probability density in equation (13.6),
recover that the probability of the topological gene tree ((A1, A2), A3) is 1/3.

8. Under the single population coalescent model, the probabilities of all 4-
sample gene trees are computed in the text. How many such trees are
there? How many of these are caterpillars? How many are balanced? Show
the computed probabilities add up to 1.
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9. Describe all possible orderings of coalescent events that could have led to
each of the gene trees

a) ((((A,B), C), D), E)

b) (((A,B), C), (D,E))

10. Explain the formula for the number of ranked gene trees in equation (13.7)
by considering the formation of a tree by starting with n lineages and choos-
ing pairs to coalesce according to the ranking.

11. If n genes A1, . . . , An are sampled from a single population, under the coa-
lescent model compute

a) the probability that the gene tree relating them is the specific caterpillar
((. . . ((A1, A2), A3), . . . , An−1), An).

b) the probability that the gene tree relating them is any caterpillar tree.

12. Suppose lineages A1, A2, A3, A4 are sampled in a single population. Under
the coalescent model, the probability density for a metric gene tree relat-
ing them will depend only on the 3 times at which the coalescent events
occurred.

(a) Find the probability density for ((A1:u1, A2:u1):u3, (A3:u2, A4:u2):u4)
when u1 < u2.

(b) Find the probability density for the same tree when u2 < u1.

13. Check that the formulae in equation (13.8) are correct. If not, give correct
ones, and inform the authors.

14. In Section 13.4, five scenarios were considered in the text in which the topo-
logical gene tree (((A,B), C), D) is formed under the multispecies coalescent
model on (((a:u1, b:u2):u3, c:u4):u5, d:u6), and the probabilities were com-
puted for two of them. Compute the probabilities of the three remaining
ones, and add them to obtain the probability of (((A,B), C), D).

Note: Scenarios 3 and 4, which involves coalescence of 3 lineages to either
1 or 2 in a single branch of length u5, are the most involved to compute.
For instance, for scenario 3, let x be the time of the coalescent event, You
will need to explain why the integral∫ u5

0

e−3x(1− e−(u5−x))dx

arises, and evaluate it.
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Chapter 14

Notation

R = all real numbers
R≥0 = all positive numbers, and zero
Z≥0 = all integers = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
Z≥0 = all positive integers, and zero = {0, 1, 2, 3, . . . }
|A| = the number of elements in the set A

211
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Chapter 15

Selected Solutions

Chapter 2

8.

(2n− 5)!! = 1 · 3 · 5 · · · (2n− 5) =
1 · 2 · 3 · 4 · · · (2n− 6) · (2n− 5)

2 · 4 · · · (2n− 6)

=
(2n− 5)!

(2n−3)1 · 2 · · · (n− 3)
=

(2n− 5)!

(2n−3)(n− 3)!

10. Proof. Let T = (V,E) be a tree. For the sake of obtaining a contradiction,
suppose for some distinct v1, v2 ∈ V there is more than one path from v1

to v2.

From all possible pairs of such vertices, and all possible pairs of such
paths between them, choose paths which have the smallest sum of lengths.
Denote these paths u1, u2, . . . , un and w1, w2, . . . , wm, with v1 = u1 = w1

and v2 = u2 = w2.

Consider the sequence of adjacent vertices v1 = u1, u2, . . . , un = v2 =
wm, wm−1, . . . , w1 = v1. This cannot be a cycle, since T is a tree. Thus it
either has a repeated vertex other than v1, or it has length 2.

If the sequence had a repeated vertex, then since there is no repeated ui
and no repeated wj , it must be that for some i < n,j < m we have ui = wj .
But then either u1, u2, . . . , ui and w1, w2, . . . , wj , or ui, ui+1, . . . , un and
wj , wj+1, . . . , wm would be a pair of distinct paths between two vertices
of shorter total length than our chosen ones. This would contradict the
minimality of our chosen paths’ length. Thus there can be no repeated
vertices.

Therefore the length of the sequence must be 2, which implies n = m = 1.
But then the two chosen paths were the same. This is also a contradiction.
Thus there cannot exist a pair of paths with the same endpoints.

213
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12. Proof. Let T be a metric tree with all positive edge lengths, and v1, v2, v3 ∈
V (T ).

Suppose v3 lies on the unique path between v1 and v2. Then this path
has the form

v1 = u1, u2, u3, . . . , ui = v3, ui+1, . . . , un = v2.

This implies u1, u2, . . . , ui is the unique path from v1 to v3, and ui, ui+1, . . . , un
is the unique path from v3 to v2. Thus

d(v1, v2) =
∑

e on the path
from v1 to v2

w(e)

=
∑

e on the path
from v1 to v3

w(e) +
∑

e on the path
from v3 to v2

w(e)

= d(v1, v3) + d(v3, v2).

Conversely, suppose

d(v1, v2) = d(v1, v3) + d(v3, v2). (15.1)

Let v1 = u1, u2, . . . , un = v3 and v3 = w1, w2, . . . , wm = v2 be the unique
paths from v1 to v3 and v3 to v2, respectively. Let ui = wj be the earliest
vertex in the first path which also appears in the second. (Since un = w1

there must be such a vertex.) Then v1 = u1, u2, . . . , ui = wj , wj+1, . . . , wm
has no repetitions, and so must be the unique path from v1 to v2. But then
in equation (15.1), all edge weights summed in the left hand side appear
on the right as well, but the right has additional terms 2w(e) for all edges
in the path from ui to v3. Since w(e) > 0 for all e, the equality can only
hold if there are no edges in the path from ui to v3. Thus ui = v3, and
we see v3 lies on the path from v1 to v2.

That this may be false if one allows 0 lengths of edges is seen most easily on
an unrooted 3-leaf tree, with v1, v2, v3 the leaves. If the edge containing v3

has length 0, then, regardless of the other lengths, d(v1, v2) = d(v1, v3) +
d(v3, v2) even though v3 is not on the path from v1 to v2.

14. a. Note that if a, b ≥ 0, then max(a, b) ≤ a + b. Applying this with
a = d(v1, v2) and b = d(v2, v3) gives the claim.

b. Let v1, v2, v3 be three leaves on an ultrametric tree, the vertex u their
most recent common ancestor, and ρ the root of the tree. Then since
d(ρ, v1) = d(ρ, v2) = d(ρ, v3) and u lies on the path between ρ and vi for
i = 1, 2, 3, we see d(u, v1) = d(u, v2) = d(u, v3). Thus by restricting to the
subtree composed only of those edges between u and the vi, we need only
consider the case of a 3-taxon ultrametric tree.



215

But for a 3-taxon ultrametric tree, with pendent branch lengths a, a, b, the
interleaf distances are 2a, 2b, 2b. Plugging these into the strong triangle
inequality, in all orderings, we check that the inequality holds.

c. A three-leaf unrooted tree with edge lengths 2, 2, and 1 gives distances
between the leaves of 3, 3, and 4, but 4 6≤ max(3, 3).

d. Suppose the three leaf-to-leaf tree metric distances are a ≤ b ≤ c.
Applying the strong triangle inequality we see c ≤ max(a, b) = b. Thus
the leaf-to-leaf distances are a ≤ b < c.

e. By (d), the three leaf-to-leaf tree metric distances are a ≤ b = c. These
distances then determine the edge lengths of the tree as a/2, a/2, b− a/2.
Since b− a/2 ≥ a/2, a root can be placed on the longest edge to yield an
ultrametric tree. Specifically, the root should be b/2 from all leaves.

17. 2n−2

18. (2n− 3)2n−2

Chapter 3

6. Suppose the character takes on state s1 on two taxa a, b and a differ-
ent state s2 on taxa c, d. (It may take on these states at other taxa
as well.) Then consider the two trees T1 = (((a, b), (c, d)), t) and T2 =
(((a, c), (b, d)), t) where t denotes Newick notation for any fixed tree on
the other taxa. Then applying the Fitch-Hartigan algorithm to both trees,
when we arrive at the most recent common ancestor of a, b, c, d we have
a score of 1 for T1 and 2 for T2, but both give the set of states {s1, s2}.
Since this set is the same for both, and the tree t is the same, the rest
of Fitch-Hartigan will result in identical contributions to the score. Thus
the scores for T1 and T2 will differ.

7. a. We only need to rule out the possibility of χ̃(ρ) being different from
both χ̃(v1) and χ̃(v2). But if that were the case, then by redefining χ̃(ρ)
to have the same value as χ̃(v1) we could reduce the count of edges on
which there was a state change by 1. That contradicts the minimality of
χ̃.

b. In case (1), if neither of the χ̃i is minimal, we could redefine χ̃ on each
of the subtrees T1 and T2 so the count of edges in those subtrees on which
there were state changes would go down by at least 1 + 1 = 2. While this
might introduce 2 additional changes on the edges descending from ρ, by
next changing the state at ρ to match one of its children, we can be sure
the increase is by at most 1. The net change would then be a decrease of
1, which contradicts the minimality of χ̃.

One example is the tree on the right of Figure 3.9. A smaller one is the
tree ((a, b), (c, d)) with character

χ(a) = A, χ(b) = A, χ(c) = C, χ(d) = T,
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extended to state A at all internal nodes.

16. If the weight matrix W is symmetric, the score will be independent of the
root. Moving the root from one vertex to an adjacent one only changes
the direction of one edge. If the states at these vertices are i and j, the
score of a character extension will change by replacing the weight wij with
wji. If W is symmetric, these are the same.

18. An example is:

a: AAAAA

b: AAACC

c: GGGAA

d: GGGCC

as can be verified by computing weighted and unweighted scores on each
of the 3 possible trees. Informally, in unweighted parsimony the first 3
sites overwhelm the last 2, leading to the tree ((a, b), (c, d)). With a 1:2
transition:transversion weight, the last 2 sites count more, and overwhelm
the first 3, leading to the tree ((a, c), (b, d)).

21. If this inequality did not hold, then we would view a 2-step change of states
i → j → k as less costly than a 1-step change i → k. This violates the
entire spirit of parsimony, since we would be saying we prefer to imagine
hidden changes occurred when we have no direct observation of them.

Chapter 4

2. If the n taxa are x1, x2, . . . , xn then in specifying a split X0|X1 we can
always assume that xn ∈ X0. Each of the other n− 1 taxa may be placed
in either X0 or X1, so we have 2n−1 options. However, this overcounts by
1, since if we place all of them in X0 then X1 would be empty, and we
would not have specified a split.

3. For some taxon set X, consider a trivial split X0|X1 and any other split
X ′0|X ′1. Then one of the Xi is a singleton set, say X0 = {a}. Since X ′0|X ′1
is a split, a is an element of one of the split sets and not an element of the
other. If X ′i is the one that a is not in, then X0 ∩X ′i = ∅. Thus the splits
are compatible.

4. That there is at least one pair with Yi ∩Y ′j = ∅ follows from the definition
of compatibility. To see there cannot be two such pairs, suppose there
were. After possibly relabeling, we may suppose the first is Y0 ∩ Y ′0 = ∅.
If Y0 ∩ Y ′1 = ∅ as well, then ∅ = (Y0 ∩ Y ′0) ∪ (Y0 ∩ Y ′1) = Y0 ∩ (Y ′0 ∪ Y ′1) =
Y0 ∩ Y = Y0, which contradicts that Y0 is non-empty. Similarly one sees
that Y1 ∩ Y ′0 = ∅ is impossible.
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Finally, if Y1∩Y ′1 = ∅, then we note that this implies Y ′1 ⊆ Y0 (see Exercise
5 for details), while Y0 ∩ Y ′0 = ∅ implies Y0 ⊆ Y ′1 . Thus Y0 = Y ′1 and the
two splits are the same.

5. Suppose the splits Y0|Y1 and Y ′0 |Y ′1 are compatible. After relabeling the
split sets if necessary, we may suppose Y0 ∩ Y ′0 = ∅. But then

Y0 = Y0 ∩ Y = Y0 ∩ (Y ′0 ∪ Y ′1) = (Y0 ∩ Y ′0) ∪ (Y0 ∩ Y ′1) = (Y0 ∩ Y ′1),

so Y0 ⊆ Y ′1 .

Conversely, if Y0 ⊆ Y ′1 , then since Y ′0 is disjoint from Y ′1 , we must have
Y0 ∩ Y ′0 = ∅.
That Yi ⊆ Yj if, and only if, Y1−i ⊇ Y1−j results from the fact that taking
complements in Y reverses set inclusions.

7. We proceed by induction on the number of splits in the collection. the
base case of one split is obvious, as there is one edge in the tree, and the
labels from the split sets must be on its two ends.

Now assume the result for collections of n splits, and suppose we have
n+ 1. Suppose there are two trees displaying exactly this collection. Pick
one split, and in each tree “contract” the edge corresponding to it. The
resulting trees display the same n splits and hence are isomorphic. In fact,
they must agree with the tree we would get from Tree Popping with the
remaining n splits. Thus what we must show is that there is only one
way the chosen split can be reintroduced onto this tree. Color the taxa
according to the split sets.

Consider any vertex that could be replaced with an edge to introduce
the split. If that vertex were removed, each of the resulting connected
components would have to have only taxa of a single color on it (why?). If
there is more than one such component of a single color, we conclude that
this vertex is on the minimal spanning tree for that color. If there is only
one component of a color there are two possibilities: Either the removed
vertex also had that color, and hence was on the minimal spanning tree
of that color, or the edge leading into that component already gave us the
split, which is a contradiction. Thus the vertex must be on the intersection
of the minimal spanning trees, and we already know this vertex is unique.

Finally, if we “expand” this vertex to an edge to introduce the split, all
components of one color must be attached at one end, and all of the other
color at the other end. Thus the expansion is unique.

13. Suppose X ′0|X ′1 is a trivial split, with, say X ′0 = {ai}. If for each choice
of aj , ak ∈ X ′1 the quartet aian|ajak is in Q(T ), then we join an to the
pendent edge leading to ai, to form a new cherry.
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Chapter 5

6. a. To justify an attempt to construct a tree from dissimilarities, we assume
there is a metric tree which has distances between leaves matching the
dissimilarities, at least approximately. But distances between nodes in a
metric tree are defined so they are additive, so the dissimilarity should be
as well.

b. The simplest example is a sequence with only 1 site, say S0:A, S1:G,
S2:C. Then the Hamming distance between any pair of taxa would be 1,
but 1 + 1 6= 1. For a more extreme example, take S2:A, and then observe
1 + 1 6= 0.

c. Note that the non-additivity in part (b) is caused by repeated sub-
stitutions at the site. If the sequences are chosen so there is only one
substitution per site, then the Hamming distance would be additive. If
mutations are sufficiently rare, then repeated substitutions at a site will be
even more rare, and the Hamming distance will be approximately additive.

9. An n-taxon unrooted binary tree has 2n − 3 edges and there are
(
n
2

)
=

n(n− 1)/2 pairs of taxa. Thus we have a system of n(n− 1)/2 equations
in 2n− 3 unknowns. Note that

n(n− 1)

2
> 2n− 3

is equivalent to
n2 − 5n+ 6 > 0.

Since n2 − 5n + 6 = (n − 2)(n − 3), we will have more equations than
unknowns for all n ≥ 4.

12. Solution 1: The argument is by induction, with the bases case of n = 3, 4
clear. Any n-taxon tree can be obtained from an (n − 1)-taxon tree by
subdividing an edge, and attaching an additional pendent edge at the node
that was introduced. The (n − 1)-taxon tree has at least 2 cherries. If
the new edge is not attached at any edge in these cherries, there will still
be at least 2 cherries. If the new edge is attached in one of the cherries,
it destroys that cherry, but creates a new one. Thus there will still be
at least 2 cherries. (Note: A more thorough proof would explain why
inserting a new taxon cannot destroy more than 1 existing cherry, except
in the n = 3 case.)

Solution 2: A binary n-taxon tree has at n − 2 internal nodes. Since
each taxon is joined by an edge to an internal vertex, by the pigeonhole
principle there are either at least 3 joined to the same internal vertex, or
at least 2 cherries. For a binary tree, the first case can only happen when
n = 3, in which case it is clear there are 3 > 2 cherries.

14. The four-point condition states that for any x, y, z, w ∈ X,

δ(x, y) + δ(z, w) ≤ max{δ(x, z) + δ(y, w), δ(x,w) + δ(y, z)}.
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If z = w this becomes

δ(x, y) ≤ max{δ(x, z) + δ(y, z), δ(x, z) + δ(y, z)}.

Since the two expressions in the maximum are the same, this is just

δ(x, y) ≤ δ(x, z) + δ(z, y).

16. To show the claim, it’s enough to show the following: For any three real
numbers A,B,C,

A ≤ max(B,C)
B ≤ max(A,C)
C ≤ max(A,B)

 if, and only if the two largest of A,B,C are equal.

Suppose the 3 inequalities hold and we order A ≤ B ≤ C, renaming them if
necessary. Then C ≤ max(A,B) implies C ≤ B hence C = B. Conversely,
if the two largest of A,B,C are equal, then the three inequalities hold since
the maximum in all cases will give the largest value.

18. With 3 taxa, the three-point formulas determine the unique edge lengths
to fit any dissimilarities to a tree. Since the four-point condition holds, by
Exercise 14, so does the triangle inequality. In particular, δbc ≤ δab + δac,
so

0 ≤ δab + δac − δbc
2

.

This show one edge length is non-negative. The same argument with the
taxa interchanged shows the other edge lengths are non-negative.

19. Suppose, without loss of generality that the 4-point condition holds with

δab + δcd ≤ δac + δbd = δad + δbc.

Then by the discussion of the four-point condition in the text, the only
possible unrooted topology for the tree is ((a, b), (c, d)). We can then easily
see that the central edge must have length

u =
δac + δbd − δab − δcd

2
≥ 0.

If x, y, z, w denote the edge lengths of pendent edges to taxa a, b, c, d,
then by the 3-point formulas and Exercise 16, they must be given by the
non-negative numbers

x =
δab + δac − δbc

2
≥ 0,

y =
δab + δbc − δac

2
≥ 0,

z =
δac + δcd − δad

2
≥ 0,

w =
δad + δcd − δac

2
≥ 0.
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Note that there are alternate formulas we could have given for u, x, y, z, w,
and it is not yet clear that these in fact fit the dissimilarities. Thus we
must check that six equations hold. Here we only check the one for the
path from b to d:

y + u+ w =
δab + δbc − δac

2
+
δac + δbd − δab − δcd

2
+
δad + δcd − δac

2

=
δbc + δbd + δad − δac

2
.

But by the equality of the four-point condition we can replace δbc + δad
with δbd + δac, and then see

y + u+ w = δbd.

Checking the other 5 equations is similar, with several requiring the use
of the same four-point equality.

21. a) Note that

d(Si, v) =
d(Si, Sj) + d(Si,G)− d(Sj,G)

2
,

where G is the set of all taxa except Si, Sj. But

d(Si,G) =
1

N − 2

∑
k 6=i,j

d(Si, Sk) =
Ri − d(Si, Sj)

N − 2
,

and similarly

d(Sj,G) =
1

N − 2

∑
k 6=i,j

d(Sj, Sk) =
Ri − d(Sj, Si)

N − 2
.

Substituting these last two expressions into the first yields the first two
formulas. The third formula follows from the first two. b) This is just one
of the 3-point formulas.

Chapter 6

6. a) If x denotes the state at the root, and y the state at the other internal
node, then of the 16 terms there is 1 (x = G, y = G) that is (.25)(.9)4,
3 (x = A, C, T, y = G) that are (.24)(.9)2(.1/3)2, 6 (x = G, y = A, C, T
and x = y = A, C, T) that are (.24)(.9)(.1/3)3, and 6 (all others) that are
(.24)(.1/3)4. The sum is 0.16475185185.

b) Of the 16 terms there are 2 (x = G, T, y = G) that are (.25)(.9)3(.1/3),
3 (x = y = T and x = A, C, y = G) that is (.25)(.9)2(.1/3)2, 4 (x = T, y =
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A, y = C and x = y = C, G) that are (.24)(.9)(.1/3)3, and 7 (all others) that
are (.24)(.1/3)4. The sum is 0.012858950617284.

c) Of the 16 terms there is 1 (x = G, y = G) that is (.25)(.9)3(.1/3), 2 (x =
G, T, y = T) that is (.25)(.9)2(.1/3)2, 4 (x = A, T, y = C and x = C, T, y = A)
that are (.25)(.1/3)4, and 9 (all others) that are (.24)(.9)1(.1/3)3. The
sum is 0.006601234567901.

10. Since the rooted tree has n− 1 internal vertices, and 2n− 2 edges, there
are 4n−1 terms, each of which is a product of 2n− 1 parameters.

17. To show eQtu = u, note that Qu = 0, so

eQtu = (I +Qt+
1

2
Q2t2 +

1

3!
Q3t3 +

1

4!
Q4t4 + . . . )u

= Iu + tQu +
1

2
t2Q2u +

1

3!
t3Q3u +

1

4!
t4Q4u + . . .

= u + 0 + 0 + 0 + . . .

= u

27. Let u denote a column vector of 1s. Then using equation (6.12) we have

pM = uT diag(p)M = uTMT diag(p) = (Mu)T diag(p) = uT diag(p) = p.

30. b) If the entries of Q are qij , then

−Tr(diag(p)Q) = −
4∑
i=1

piqii.

Since −qii is the rate at which state i changes into a different state, is just
a weighted average of the rates of change of the various states, weighted
by the frequency at which those states occur. Alternately, since the pi are
probabilities, it is the expected value of the rate of change of a randomly
chosen state.

If this value is c, replacing Q by 1
cQ rescales so it will be 1.

Chapter 8

6. Using the notation nij for data counts of individuals of genotype AiAj ,
the log-likelihood function is

ln(L(p1, p2)) = n11 ln(p2
1) + n22 ln(p2

2) + n33 ln((1− p1 − p2)2) + n12 ln(p1p2)

+ n13 ln(p1(1− p1 − p2)) + n23 ln(p2(1− p1 − p2))

= (2n11 + n12 + n13) ln p1 + (2n22 + n12 + n23) ln p2

+ (2n33 + n13 + n23) ln(1− p2 − p2).
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Setting the partial derivatives with respect to p1 and p2 to be 0 yields

0 =
2n11 + n12 + n13

p1
− 2n33 + n13 + n23

1− p2 − p2
,

0 =
2n22 + n12 + n23

p2
− 2n33 + n13 + n23

1− p2 − p2
.

Letting a = 2n11 + n12 + n13, b = 2n22+n12+n23, and c = 2n33 + n13 + n23,
this means

a

p1
=

c

1− p1 − p2
=

b

p2
,

so p2 = b
ap1. Substituting this expression for p2 into a(1− p1 − p2) = cp1

gives

a− ap1 − bp1 = cp1,

so

p̂1 =
a

a+ b+ c
=

2n11 + n12 + n13

2n
,

where n is the total number of individuals sampled.

Similarly,

p̂2 =
2n22 + n12 + n23

2n
, p̂3 =

2n33 + n13 + n23

2n
.

7. Let nij be the count of sites with base i in S0 and base j in S1, and n the
total number of sites. Let

nT = # of transition sites = n12 + n21 + n34 + n43,

nR = # of transversion sites = n13 + n14 + n23 + n24 + n31 + n32 + n41 + n42,

nC = # of constant sites = n− nT − nR.

Then reasonable formulas for estimators, which we will show are in fact
the ML estimators, are

b̂ =
nT
n
, ĉ =

nR
2n
.

The log-likelihood function is

ln(L(b, c)) = nT ln(b/4) + nR ln(c/4) + nC ln((1− b− 2c)/4).

Setting the partial derivatives with respect to p1 and p2 to be 0 yields

0 =
nT
b
− nC

1− b− 2c
,

0 =
nR
c
− 2nC

1− b− 2c
.
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Thus
nT
b

=
nC

1− b− 2c
=
nR
2c
,

so c = nR
2nT

b. Substituting this expression for c into nT (1− b− 2c) = nCb
gives

nT − nT b− nRb = nCb,

so

b̂ =
nT

nT + nR + nC
=
nT
n
.

The formula for ĉ follows from c = nR
2nT

b.

11. There are 2N − 2 parameters. Of these, N − 3 are edge lengths, and 1 is
for the rate matrix Q. (Although the K2P model has two rate parameters
in Q, one of these can be arbitrarily set to 1, since the effect of this is just
to rescale edge lengths by a constant factor.)

Chapter 9

10. a) If a subset of 4 taxa includes An, then the two trees induce different
quartet trees. If a subset does not include An, they induce the same
quartet tree. Therefore the distance is the number of subsets of 4 taxa
that contain An. That is is the same as the number of ways we can pick

3 taxa from A1, A2, . . . An−1, which is
(
n−1

3

)
= (n−1)(n−2)(n−3)

1·2·3 .

b) There are
(
n
4

)
= n(n−1)(n−2)(n−3)

1·2·3·4 . subsets of 4 taxa, so the proportion
of them counted in part (a) is 4

n .

Chapter12

5. (b) For (10, 10, 10) and (100, 100, 100) peaks are at (1/3, 1/3), with the
second distribution being more tightly concentrated around the peak.

(c) The distributions have peaks at (0, 1/3), (9/57, 19/57), and (99/597, 199/597),
all of which are approximately (1/6, 2/6), and become increasingly con-
centrated around those values.

(d) Following the given suggestion, from setting partial derivatives to 0
we find the maximum occurs where

αi − 1

xi
− αk − 1

1−
∑k−1
i=1 xi

= 0

for i = 1, 2, . . . , k − 1, or

xi =
1−

∑k−1
i=1 xi

αk − 1
(αi − 1) =

xk
αk − 1

(αi − 1).
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Equivalently

(x1, x2, . . . , xk) = s(α1 − 1, α2 − 1, . . . , αk − 1),

with s = xk/(αk − 1). But since
∑k
i=1 xi = 1, we also see that

s

k∑
i=1

(αi − 1) = 1

so

s = 1/

k∑
i=1

(αi − 1).

Thus

xi =
αi − 1∑k

i=1(αi − 1)
.

Chapter 13

3. There are 5 ·3 = 15 pairs with coalescent time 10, 1 ·4 = 4 pairs with time
6, 2 · 1 = 2 pairs with time 5, 2 · 2 = 4 pairs with time 4, and 3 pairs with
time 1. The average coalescent time is then

15 · 10 + 4 · 6 + 2 · 5 + 4 · 4 + 3 · 1
28

=
203

28
= 7.25.

This is reasonably close to 8, espcially considering we have a relatively
small sample of non-independent coalescent times.

Note that what is calculated here is not the same as the average of the
times of the 7 coalescent events, which is only 4.

11. a) The probability that A1 and A2 are the first to coalesce is 1/
(
n
2

)
. The

probability that this lineage and A3 are the next to coalesce is 1/
(
n−2

2

)
.

Continuing in this way the probability of the specific caterpillar is

1(
n
2

) 1(
n−1

2

) 1(
n−2

2

) · · · 1(
2
2

) =
2n−1

n!(n− 1)!
.

b) Which specific caterpillar is formed depends on ordering the taxa so
the first two coalesce first, then that ineage coalesces with the 3rd, etc.
Since the n taxa can be ordered in n! ways, but the order of the first pair
does not matter, there are n!/2 caterpillars. Multiplying this times the
answer in (a) yields 2n−2/(n− 1)!.
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