
Math 314 – MATLAB Exercise 3 Name:
Due: Friday, December 12, 2014

Population models and eigenvectors

In this exercise you will be investigating a type of structured population model
called a Leslie model. The ‘structure’ of the model refers to the fact that rather
then treating a population as one big group, it breaks it up into a number of
different subgroups by age, or stage of development. Then the impact of the
passage of time on each subgroup may depend on the sizes of other groups.
We use only linear equations to model how the population changes, so that
everything can be formulated in terms of matrices.

Although this exercise focuses on biological examples, similar types of matrix
models arise in other fields as well. The biological context is simply a clear one in
which to explore how eigenvectors and eigenvalues are the key to understanding
such models.

1. Consider a species whose members fall into two groups: immature and
adult. Let xn denote the number of immature individuals at time n, and
let yn denote the number of adults at time n. A reasonable model for how
the population changes over time could be given by equations like

xn+1 =
1

8
xn + 6yn, yn+1 =

1

5
xn.

These mean that at each time step, for every living adult we get six new
immatures, while only a fifth of the immature individuals become adults.
An eighth of the immature individuals remain immature, and no adults
survive. In matrix notation(

x
y

)
n+1

=

(
1
8 6
1
5 0

)(
x
y

)
n

.

Suppose we begin with (x, y)0 = (10, 10). (This means we have 10 in-
dividuals in each age group, or perhaps, using more realistic units, 10
thousand.) Enter the above the matrix in MATLAB as A, and the initial
vector as x. The MATLAB command x=A*x can be entered repeatedly to
track the population over many time steps. What appears to be happen-
ing? Do the number of individuals in each group get bigger or smaller?
Do they oscillate?

1



2. To investigate the situation graphically, try entering:

x=[10 10]’

xx=x

Then repeatedly (say 25 times or so, using the ↑ key) enter:

x=A*x, xx=[xx x]

Make sure you understand what this last command is doing before you go
on.

Finally, plot the rows of xx by entering:

plot(xx’)

Sketch your plot here, labeling the lines that represent immatures and
adults.

3. Repeat item (2) with the same matrix A, but with several different choices
of an initial vector (say (19, 1), (1, 19), and a few others). Sketch at least
2 of the resulting graphs here.
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4. Qualitatively, describe the common features of the way the populations in
the last two questions change over time. Do you see population growth or
decay? Do the populations oscillate or not? If there are oscillations, do
they grow in size or decay?

5. Compute the eigenvectors and eigenvalues of A by entering [S,D]=eig(A).
The columns of S are the eigenvectors of A, with the diagonal entries of D
being the eigenvalues. You should make sure, by entering the appropriate
MATLAB commands to see that AS=SD. Record S and D here.

6. Repeat item (3) using as your initial vector first one of the eigenvectors
of A, and then the other. (Don’t worry about the fact that negative
numbers of individuals don’t make sense biologically – we’re just trying
to understand the model now.) To begin, x=S(:,1) will pick off the first
column of S, and x=S(:,2) picks off the second. Sketch graphs for both
initial vectors here.
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7. How do the behaviors you see in the graphs from the last question relate
to the fact that you are using eigenvectors as your initial vectors? How is
the corresponding eigenvalue reflected in the graph? Explain

8. Suppose A had eigenvalue λ, and you produced a graph like in question
(6) using the corresponding eigenvector. Sketch what you would expect
the graph to look like for each of the following possible values of λ. Be
sure you think about the equation Anv = λnv as you draw your graphs.

λ = 1.3

λ = .7

λ = −0.7

λ = −1.3
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9. Return to the initial vector (x, y)0 = (10, 10). The two eigenvectors of A
given in question (5) form a basis for R2, so you can express (x, y)0 as a
linear combination of the two eigenvectors. Use MATLAB to do so, and
write your expression here.

10. For (x, y)0 = (10, 10), use your answer to the last question to give a
formula for the size of the population at all times of the form

xt = c1λ
t
1v1 + c2λ

t
2v2.

Record your formula here.

11. How does the expression you gave in question (10) explain the graph you
sketched in question (2) in relation to the graphs in question (6)? How
does the fact that any initial vector can be expressed in terms of the
eigenvectors explain the how all your graphs in question (3) looked?

12. Why would biologists be most interested in knowing the largest eigenvalue
of a Leslie matrix? How do expressions like the one you found in (10)
show this number is important for the long-term behavior of most initial
populations? Why is it reasonable to call it the intrinsic growth rate of the
population? Why is it important to know whether it is bigger or smaller
than 1?
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13. Suppose A turned out to have eigenvalues λ1 = 0.7 and λ2 = −0.2. For
almost all initial populations, how would you expect the population to
behave over time. Explain in a way that makes clear the effect of both
eigenvalues. Sketch a graph of the population sizes with the right quali-
tative features.

14. The eigenvector corresponding to the largest eigenvalue of A is called the
stable age distribution for the model. To see why, with λ1 the intrinsic
growth rate, rewrite your answer to question (10) in the form

1

λt1
xt = c1v1 + c2

(
λ2
λ1

)t

v2.

Record it here.

Note |λ2/λ1| < 1. This equation should be interpreted as follows: If we
account for the main growth trend of the population by dividing by λt1,
then the rescaled population will tend to the vector v1, the stable age
distribution.

15. Compute the ratio of immatures to adults in v1, and record it here.

Then, for a few different choices of x0, compute the ratios of immatures to
adults in xt for some large t. Are they close to the same ratio computed
for v1, as the last question indicates they should be?
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16. Now that you understand the principles involved in analyzing a Leslie
model, let’s vary the model. Consider(

x
y

)
n+1

=

(
0 6
1
5

1
4

)(
x
y

)
n

.

Now we’re allowing 1
4 of the adults at each time step to survive to the

next time step, but no immatures remain immature. Track this model
graphically with a few different initial vectors, drawing a representative
sketch here.

17. What is the intrinsic growth rate for the model of the last problem?

What is the stable age distribution?

How are both eigenvalues of the matrix reflected in the graph you sketched?

18. For each of the following matrices, use MATLAB to compute eigenvectors
and eigenvalues. For each, record 1) the intrinsic growth rate and the
other eigenvalue, and 2) the stable age distribution. Also without using
MATLAB to do a population simulation, sketch a likely graph of the way
such a population would behave over time.(

0 6
1
6 0

)

(
0 6
1
7 0

)
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(
0 6
1
6

1
4

)

(
0 6
1
12

1
4

)

19. It turns out that for 2 × 2 matrix population models, both eigenvalues
are always real. For larger matrices, they may be complex. Although this
exercise will not carefully develop all background on complex numbers,
it is still instructive to work through one example to see how the ideas
you’ve worked with in the real case carry over to the complex situation.

Consider a species with three age groups: immature, youth, and adult.
Denoting the number of individuals in each by xn, yn, and zn, the species
might be modeled by

xn+1 =

xy
z


n+1

=

0 0 6
1
4 0 0
0 1

2
1
4

xy
z


n

= Bxn.

Explain why this might be a reasonable model. In particular, explain the
biological meaning of each of the non-zero entries of the matrix B.
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20. Picking a few different initial vectors x0, produce plots like those in ques-
tion (3). Sketch one for x0 = (10, 10, 10) here.

21. Compute eigenvectors and eigenvalues of the matrix B. Record them here.

22. To compare the sizes of complex numbers, we compare their absolute
values, where |a + bi| =

√
a2 + b2. Compute the absolute values of the 3

eigenvalues of B, and record them here. Which eigenvalue is the intrinsic
growth rate? What is the stable age distribution?

(It’s possible to show that these sorts of population models always have a
real number as their intrinsic growth rate.)

23. Complex eigenvalues always produce oscillations in population models –
though much more complex oscillations than the ones produced by neg-
ative eigenvalues that you’ve seen earlier. Whether the oscillations grow
or decay depends on whether the absolute value of the eigenvalue is > 1
or < 1. Does your work in the last question suggest the oscillations for
this model will grow or decay? Is this consistent with what you saw in
question 20?
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24. Even if they involve complex numbers, eigenvectors still give a way to sep-
arate out different types of behavior in a model. As an example, suppose
we begin with an initial vector (x, y, z)0 = (10, 10, 10). Using complex
numbers as coefficients, you can write it as a linear combination

(10, 10, 10) = c1v1 + c2v2 + c3v3

of the three eigenvectors of B. Use MATLAB to find the ci and record
the linear combination here.

25. Now one of your eigenvectors (say v1) is real and so is the scalar that
appears next to it (c1). Since the whole sum is real, then c2v2 + c3v3

must be real as well, even though the v2,v3, c2, c3 individually are not.

Try using c2v2+c3v3 as your initial vector and see what happens over time.
(If you call that vector x, type x=real(x) to throw away the very small
imaginary part which appears only due to numerical round-off errors.)
Draw a sketch of the ‘population’ over time.

26. Produce a graph of the population if it is initially given by the stable age
distribution, and sketch it here. How does this graph and the one from
the last problem relate to the one in question 20?
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