Math 314 — MATLAB Exercise 2 Name:
Due: Friday, November 7, 2014

The Fourier Basis

In this exercise you will be introduced to a particularly useful basis for the
vector space R™ that is not the standard basis. This basis and variations on
it have many applications in science and technology: the ideas you will be
exposed to are behind such diverse applications as the JPEG format for storing
digital images, the analyses of experimental data collected over time for cyclical
behavior, and some methods of removing noise from signals.

In what follows you will perform some steps to analyze some data that you
should pretend came from an experiment. (Several possible sources of the data
will be given below.) While the source of the data could be almost anything,
the techniques you will use to analyze it will be from linear algebra.

As you work through the numbered items below, write answers to any ques-
tions directly on this handout.

1. After starting MATLAB, use a web browser to access the course web page
http : //www.dms.uaf.edu/jrhodes/M314.html

and next to the 10/22 homework assignment click on the link for the
file fourier.m. Copy and paste the entire contents of this file into the
MATLAB session window. This should create 4 vectors of data for you,
called data7, data256, data256b, and data256c. Verify that they have
been stored with these names by using the command who to see a list of
all stored variables.

We will be interested mostly in data256, but since it has so many entries,
data7 has been provided as a simpler example.

In MATLAB, enter the commands dataN first for N = 7 and then for
N = 256. These are your data vectors and their entries represent measure-
ments taken at either 7 or 256 different times. For instance, the numbers
might be 1) successive measurements of voltage taken by an EKG device
at a number of equally spaced times, 2) the air pressure recorded by a
microphone as a bird chirped, 3) numbers recorded by a seismograph that
track the vibrations of the earth during an earthquake, 4) the price of
some stock on successive days, or 5) a signal that must be sent down a
telephone line to transmit a message.

2. In order to visualize the data, enter plot(dataN) for N = 7 and 256.
MATLAB will plot the points (i,2;), where x; is the ith entry in the
data vector, and then connect these points with straight lines. Be sure
you understand you are not drawing the data vector as an arrow in RV.



Instead, you are thinking of the position within the vector as representing
time, and the entry in that position as representing a function value at
that time.

Sketch the plots produced by MATLAB here:

. The data vector is a vector in R, so regardless of where you think your
data is coming from, it is natural to try to use your understanding of R
to understand the data. In particular, we know RY™ has dimension N,
and any basis will have N elements. The obvious basis is the standard
one. Enter I=eye(NN) to generate a matrix with the standard basis as
columns. Plot the first column by entering plot(I(:,1)), the second by
plot(I(:,2)), etc. Plot all the columns at once with plot (I). (Again, be
sure you understand that you are not drawing the basis vectors as arrows
in RN but visualizing them as if they specified functions of time.)

Sketch the plot that would be produced by es; € R?36 here:

. Write data7 as a linear combination of the standard basis vectors in the
space below. Does this give you any insight? (Be honest!) Would you learn
anything from writing data256 in terms of the standard basis? Explain.

. Now we’ll develop a different basis that will give us more insight into the
data. The idea (originally due to Joseph Fourier in 1822, in a slightly
different form) is to use cosine waves. Since the plot of the data shows



lots of oscillations, this is at least vaguely reasonable.

To produce the cosine waves, we first need to generate a vector sN of N
equally spaced numbers between 0 and 1 (actually, from ﬁ to1l— ﬁ)
For N = 7, enter the following MATLAB commands and explain what
each does.

[0:6]"
(1/7)*[0:6]°
s7=1/(2x7)+(1/7)*[0:6]°

. You have already created s7, so now create s256 in a similar manner.
Write down the MATLAB command you used.

. For each i from 0 to N—1, we will define a vector B¢ by entering a command
like Bi=cos (¢xpi*sN). With N =7, do this first for B0, and then for B1.

Visualize these vectors by entering plot (B0O) and plot(B1). If you think
of your data vector as giving N values of some data function at N succes-
sive times, then B0 corresponds to the constant function whose values are
1, and B1 corresponds to the cosine function (between 0 and w). Sketch
the plots here.

. Still with NV = 7, enter B2=cos(2*pi*s/N) and then plot it also. Then
enter B3=cos (3*pi*s/N) and plot it. Continue on this way until you've
generated the N vectors B0, B1, B2, B3, ...B(/N —1). Each vector Bk, then,
is a vector in R™ but should be thought of as representing part of a cosine
wave. The larger k is, the more oscillations Bk has. k is referred to as the
frequency of Bk.

Why is it that if k is small (say 1,2, or 3), the plot of Bk closely resembles
a cosine wave, but for larger k (close to N), Bk looks more jagged?



9.

10.

11.

For N = 7, you now have the N vectors B0, Bl, B2, ..., B(N — 1) in
RY. but you don’t yet know that they are a basis. Put them into the
columns of a matrix by entering QN=[B0 B1 B2 B3 ... B(N —1)] and
do Gaussian elimination with the rref command to show that they are a
basis. Write the output of the rref command here, and explain why this
shows the vectors are a basis.

For N = 256 you will find it very time consuming to produce QN in the
above way. A shorter way to create QN is to enter

QN= cos(pi * 8256 % [0 :N—1]).

You can then pick off individual columns of QN with commands like
QN (:,1) to get the first column.

Explain how the command QN=cos(pi*s256*[0: N — 1])works to pro-
duce QN correctly.

Verify that the columns of Q256 are a basis for R?%®. Since the output
of rref(Q256) is hard to look at, explain why it is enough to enter the
commands

U=rref (Q256) ;
U(256,256)

and only look at one entry of U.



12.

13.

14.

15.

16.

You can plot all columns of Q256 at once with the command plot(Q256).
However, that is a mess to look at, so instead just plot a few of the columns
of the matrix, say columns 1, 5, 20, and 240. Sketch the plots here.

The Fourier basis is not just a basis, but has an additional nice property.
With N = 7, compute the product Bi’Bj for a few different choice of i
and j. What is Bi”Bj if i # j? What is Bi’Bj if i = 5?

Computing Q77'Q7 is a fast way to compute all the products needed in the
last question at once. Explain why.

Compute Q77Q7 in MATLAB and write it here.

The last computation suggests that the inverse of Q7 is ‘nearly’ Q77. We
will now modify Q7 a bit to make this exactly true. (If we can do this, we
will know the inverse of this matrix without having to do any additional
work — for a large matrix this is a huge savings in effort over computing
the inverse by any general method.)



17.

18.

19.

20.

Note that the diagonal entries of the product Q77Q7 come from computing
BiTBi. If we replace Bi by cBi for some scalar ¢, how will it change the
diagonal entry?

What scalar should each column be multiplied by so that the diagonal
entries in the product Q77Q7 turn out to be 1? (Warning: one column
behaves differently from all the others.)

Why will changing the columns as in the last question not change the
off-diagonal entries of Q77'Q7?

Before going on, make sure you change both the Bks and Q7 as so that
Q77TQ7 = 1. (To multiple all columns of Q7 by a scalar ¢, and save this as
the new Q7, you can enter Q7=c*Q7. To multiple a single column, say the
ith, by c, use Q7(:,i)= c*Q7(:,7).)

Replot a few of the Bks by entering plot (BO), plot(B1), etc. to see how
you’ve changed them. Sketch the plots here, explaining the changes from
what you produced in questions 7 and 8.

Similarly modify Q256 so that Q25672566 = I. Do it. Record here what
you multiplied the columns by to achieve this.



21. We can now see that the columns of our modified QN form a basis for
RY without doing elimination. Since QN has an inverse, how many pivots
must it have? Why does this show the columns form a basis?

22. Now that we’ve developed the tool, we can begin our analysis of the data.
We want to begin by expressing dataN in terms of the Fourier basis given
by the columns of QN. (In other words, we’re redoing what we did in
question 4 but using our new basis.) First explain why doing this requires
that we solve QN ¢ = dataN for c¢. Then explain why we know there will
be one and only one solution to this equation.

23. There are two ways we can get the solution.

One is simply Gaussian elimination using the MATLAB command Q/N\dataN.
Do it, for N = 7 and 256.

24. The other is to take advantage of the fact that we know QN ! = QN7
already. Therefore ¢ = QNTdataN. Enter the appropriate MATLAB
code for this and make sure the solutions agree with what you produced
in the last question.

25. Which of the two methods of finding c requires less work for the computer?
Think about doing the work by hand to decide.

26. The vector c is called the Fourier transform of the vector dataN, and
datalV is called the inverse Fourier transform of c. If we have datalV,
we find ¢ by multiplying by QN7 and if we are told only ¢, we can figure



27.

28.

out datalV simply by multiplying ¢ by QN Thus knowledge of either ¢ or
dataN is equivalent to knowledge of the other.

Enter the command plot(c) to see what the numbers in the transform
vector look like. For both NV = 7 and 256, sketch your plot of the appro-
priate c here.

Now we will see that the Fourier transform of our data can be useful.
We know dataN = QN ¢ = ¢(1)BO+¢(2)B1 +¢(3)B2+--- + ¢(N)B(N —1)
where c¢(k) is the kth entry of c. Now we’ll investigate how this expression
‘builds up’ dataN by looking at partial sums of only the first few terms.
(In what follows, be sure you are using the modified Bk vectors, or the
columns of the modified matrix QN of question 20!)

With ¢ = Q7~'data7, enter plot([data7,c(1)*B0]) to produce a plot
of data7 and ¢(1)B0 on the same graph. Then enter plot([data7,
c(1)*B0+c(2)*B1]), then plot([data7, c(1)*BO+c(2)*Bl+c(3)*B2]),
etc., and explain what you see. As you include more and more of the
Fourier basis vectors, what happens to the graphs? Why?

You can do the work of the last question more easily with the following
MATLAB commands:

ones(1,7)

c*ones(1,7)
triu(c*ones(1,7))
P=Q7*triu(c*ones(1,7))
plot([data7 P])

Explain how these commands work.



29.

30.

31.

With ¢ = Q256 *data256, use the commands

P=Q256*triu(c*ones(1,256))
plot([data256 P])

to produce similar plots. Explain what happens as each additional column
of P is plotted.

If you compare the plots of data256 and ¢(1)B0+c¢(2)B1+- - -+¢(128)B127,
how close are they? (The second vector here is the 128th column of
P, which you can refer to as P(:,128) in MATLAB. The command
plot([data256,P(:,128)]) plots the two.) Does this mean that know-
ing just the first 128 numbers in the vector c is almost as good as knowing
all 256 numbers in the vector data256? Would knowing only the first 128
coordinates of data256 with respect to the standard basis be almost as
good as knowing all 2567 Explain.

Plot data256 and other columns of P, just as you did for the 128th, and
decide which is the first column of P that gives a reasonable approximation
to the data. (This is entirely a subjective decision; there is no right or
wrong answer.) Write out, in terms of the entries of ¢ and the vectors Bk,
exactly what this column of P is. How many entries of the vector ¢ went
into calculating it?



32.

33.

34.

Here are two possible applications of Fourier analysis to think about that
should help you see why it is so useful.

a) Suppose our data represents a message that must be sent down a trans-
mission line. If we are unable to send all 256 numbers in data256 down the
line (due to the excessive time it might take to send so much information),
and only send the first 128 numbers of ¢, but the receiver knows all about
Fourier analysis and tries to reconstruct data256 from this information,
what features of the graph of the function have been lost to the receiver?
Given that only half as many numbers were sent, did we really lose half
of the message?

Such a process is called by engineers a low-pass filter since only the low
frequencies in the data are passed on. This idea underlies one approach
to the important field of data compression.

b) Now suppose our data represents measurements taken in the real world,
as in the interpretations given above in item (1). Real measurements are
subject to random fluctuations that are referred to as noise. In some
settings, these tend to be small fluctuations of brief duration. In other
words, the noise is what shows up in the high frequency components when
we express our data in terms of the Fourier basis. Thus we can remove the
noise by removing these high frequency components. This again is just a
low-pass filter.

Now consider the three data vectors data256, data256b, and data256c.
Sketch the plot of each here.

For each of data256, data256b, and data256c, compute the Fourier trans-
form c and plot it. Sketch the three plots here.

10



35. How do the plots of the Fourier transforms in the last problem relate to
the plots of the data vectors in the problem before that? How is the
jaggedness of the data is reflected in the size of the entries of the Fourier
transform?

The last few questions relate to another use of Fourier analysis, to describe
different types of noise. If the vectors data256, data256b, and data256¢
are imagined to represent samples of pure noise (and not any meaningful
data), the fact that their Fourier transforms look so different tells us some-
thing important about the differences between them. For instance white
noise is defined as noise for which the Fourier transform has entries that
fluctuate equally around zero. Pink noise is defined as noise for which the
magnitude of the fluctuations of the Fourier transform entries gets smaller
as the frequency increases. Would these be white or pink noise?

Final Remarks: The ideas used above are commonly used in a few
variations. Sometimes sines are used either in place of, or in addition
to, cosines. Sometimes complex numbers are also used (which ultimately
makes things easier, though you may not believe that now). There are also
versions of Fourier analysis (including the version introduced by Fourier
himself) that are built not on vectors in RY, but on using the sine and
cosine functions directly in a vector space of functions.

Computationally most of what you did here was quite fast. In fact, the
hardest computation was finding ¢ from datalN, which involved either
Gaussian elimination (requiring approximately N3 /3 steps) or matrix mul-
tiplication QNTdataN (requiring approximately N? steps). If N is large,
and we need to compute many Fourier transforms, this can be too much
work. Fortunately, there is a very clever way to do the calculation of
Fourier transforms in about N(logy N)/2 steps. This algorithm, called
the Fast Fourier Transform, or FFT, was invented in the 1960’s and has
saved a tremendous amount of time and money since then. Although we
will not talk about it in this course, the FFT is the way Fourier transforms
are usually computed in practice.

11



