Math 314 Name : go /u"‘/ous
Final Exam May 7, 2008

Show all your work. If you are told to use a particular method, you can get full credit for the problem
ONLY if you use the specified method; other methods will receive partial or no credit.
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1. Let A= <4 3).

(a) (9 pts.) Give an invertible matrix S and a diagonal matrix A such that A = SAS—!.
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(b) (3 pts.) Give invertible matrices T and U and diagonal matrices L and M such that 4190 = TLT~!

and A"l =UMUL.
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2. (8 pts.) Use Gaussian elimination to calculate the inverse of A = (
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(a) (8 pts.) Find all solutions to Ax = b.
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(b) (4 pts.) Give an LU factorization of A. (Your work in part (a) should make this easy.)
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(c) (2 pts.) Give a basis for the nullspace of A.
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(d) (2 pts.) Give a basis for the columnspace of A.
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4. (9 pts. — 3 pts. each) Give definitions of the italicized terms:

(a) the dimension of a vector space [ 6 honber o'p vechvs ia f%’ Lq $. s
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5. Let vi = (1,2,0,-1), vo = (2,2,-1,0) and v3 = (0,1,—4,2) and V = Span{vy,va,v3}.

(a) (6 pts.) Find an orthogonal basis for V. (You may find an orthonormal basis if you wish, but you

need not.) Rt
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(b) (3 pts.) Find the projection of (1,1,1,1) onto V. (You may leave your answer as a linear
combination of vectors, without simplifying.)
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6. (8 pts. — 2 pts. each) Suppose you are given b vectors in R* that span a space of dimension c.

(a) Say as much as you can about the relationships between a, b and c. (For example, an incorrect

answer might be a = b < ¢)
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(b) What is the dimension of the orthogonal complement of the span of the vectors?
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(c) If the given vectors are independent, what more can you say about a, b, and c?

bz=c=a

(d) If the given vectors span R® (but are not necessarily independent), what more can you say about
a, b, and c?
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7. (6 pts. — 2 pts. each) We'd like to find the equation of a straight line y = mx + b through the data
points (—1,2), (0,1), and (2, —3). Unfortunately, these points are not on a line.

(a) In matrix form, write a system of equations (that has no solution) that you’d like to solve to find
m and b.

(b) Give a system of equations that you could solve to find the least-squares best-fit line for the three

data points. 2
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(c) Use the formula for the inverse of a 2 x 2 matrix to find the solution of the system in part (b). If
you didn’t get part (b), solve (? zl,)> <TZ) = (;) instead.
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8. (10 pts. — 5 pts. each) The set of all 2 x 2 matrices with real number entries forms a vector space M.

(a) Consider the set of all 2 x 2 matrices which have a 1 in the upper right corner. Is this a subspace
of M? Justify your answer.
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(b) Consider the set of all 2 x 2 matrices which have a 0 in the upper right corner. Is this a subspace
of M? Justify your answer.
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9. In R4, let W be the set of vectors (z,y, z, w) that satisfy the equations

z—3y+2z+w=0,
z—3y+z+2w=0

(a) (3 pts.) Explain why W is a subspace of R*.
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(b) (3 pts.) Find a basis for W.
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(c) (2 pts.) Find a basis for W+.
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(d) (1 pt.) What is the dimension of W7 Z_

10. (14 pts. — 2 pts. each) Complete the following.

(a) If an n x n matrix has a non-zero determinant, then its columnspace is . ..
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(b) The main conceptual idea behind least-squares solutions to a system Ax = b is that if there is no

solution to the original system we should... d} ,0/‘ _QJ Q ov\','r C) (’45



(c) In order for a matrix equation Ax = b (where A is m x n) to have a solut‘ign regardless of what
b is, we need the rank of A to be _m__, so the columnspace of A is

(d) In order for a matrix equation Ax = b (where A is m x n) to have at most one solution we need
the rank of A to be _ I, so the nullspace of A is )

(e) In order to solve Ax = b, it is generally a really stupid idea to find A=l since ... s $S
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(f) The determinant of a square matrix is related to its eigenvalues by ...
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(g) The best way to calculate a determinant for a large matrix is ... Lf 5—&,, $S1Gen 9/,.,,,\“{,;_‘



