Math 314 Exam 2 Name : Solutions
April 10, 2013

Show all your work.

1. (16 pts.) Let
$$A = \begin{pmatrix} 1 & -1 \\ -2 & 0 \end{pmatrix}$$
.

(a) (6 pts.) Find the eigenvalues of A.

$$|A-NI| = |I-N-1| = (I-N)(-N) - 2 = n^2 - N - 2 = (N-2)(N+1) = 0$$

So $N = 2, -1$

(b) (6 pts.) For each eigenvalue, determine an eigenvector.

$$\frac{N=2}{A-2I} = \begin{pmatrix} -1 & -1 \\ -2 & -2 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix} \xrightarrow{-x-y=0} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\frac{7}{2} \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\frac{N=-1}{A+I} = \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix} \xrightarrow{2x-y=0} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{2}y \\ y \end{pmatrix} = y \begin{pmatrix} \frac{1}{2}y \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{1}{2}y \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{2}y \\ y \end{pmatrix} = y \begin{pmatrix} \frac{1}{2}y \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{1}{2}y \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{2}y \\ y \end{pmatrix} = y \begin{pmatrix} \frac{1}{2}y \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{1}{2}y \\ 1 \end{pmatrix}$$

(c) (4 pts.) Give matrices Λ and S for a diagonalization $A = S\Lambda S^{-1}$.

2. (11 pts.) In \mathbb{R}^4 , a subspace V has basis (1,2,-1,1), (2,0,1,1). Find a basis for V^{\perp} .

3. (15 pts.) The vectors

$$\mathbf{v}_1 = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 2\\0\\2\\0 \end{pmatrix}$$

span a 3-d subspace of \mathbb{R}^4 . Find an orthonormal basis for that subspace.

$$W_{1} = V_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$W_{2} = V_{2} - proj_{V_{2}} V_{2} = V_{2} - \frac{W_{1} \cdot V_{2}}{W_{1} \cdot W_{1}} W_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$W_{3} = V_{3} - proj_{W_{1}} V_{3} - proj_{W_{2}} V_{3} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

4. (15 pts.—5 pts. each) Suppose you wanted to fit a straight line y = mx + b to the (x, y) data points

$$(-1,2), (0,1), (1,-2), (2,-2).$$

(a) Give, in matrix form, a system of 4 equations in 2 unknowns that you would *like* to solve to find this line, even though this system has no solution.

$$m(-1) + b = 2$$

 $m(0) + b = 1$
 $m(1) + b = -2$
 $m(2) + b = -2$

$$\begin{pmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -2 \\ -2 \end{pmatrix}$$

(b) Give, in matrix form, a system of 2 equations in 2 unknown that you could solve to find the least-squares best fit line. (Do NOT solve them.)

$$\begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -2 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} -8 \\ -1 \end{pmatrix}$$

(c) The idea behind what is being done here is that if Ax = b has no solution due to suspected errors in b, then we should replace b with a different vector so the system becomes solvable. This vector is found by projecting b onto what?

Onto the column space of A

5. (12 pts.) Suppose

(a) (3 pts.) Give a basis for the rowspace of A.

(2,1,1,-1,2), (0,0,1,1,1)

He proof rows of U

(b) (3 pts.) Give a basis for the column space of A.

(2,4,2,-2), (1,3,-2,0). He prost columns of A

(c) (3 pts.) What is the dimension of the nullspace of A?

(d) (3 pts.) What is the dimension of the left nullspace of A?

6. (10 pts.) Calculate the determinant

$$\begin{vmatrix} 1 & 1 & 2 & 1 \\ 1 & 1 & 3 & 3 \\ 2 & 1 & -1 & 1 \\ 1 & 1 & 2 & 4 \end{vmatrix} = \begin{vmatrix} 11 & 2 & 1 \\ 1 & 1 & 2 & 4 \\ 0 & 0 & 1 & 2 \\ 2 & 1 & -1 & 1 \\ 1 & 1 & 2 & 4 \end{vmatrix} = \begin{vmatrix} 11 & 2 & 1 \\ 0 & 0 & 1 & 2 \\ 2 & 1 & -1 & 1 \\ 1 & 1 & 2 & 4 \end{vmatrix} = \begin{vmatrix} 11 & 2 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & -1 & -5 & -1 \\ 0 & 0 & 0 & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 2 & 1 \\ 0 & -1 & -5 & -1 \\ 0 & 0 & 0 & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 2 & 1 \\ 0 & -1 & -5 & -1 \\ 0 & 0 & 0 & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 2 & 1 \\ 0 & -1 & -5 & -1 \\ 0 & 0 & 0 & 3 \end{vmatrix}$$
$$= - (1)(-1)(1)(3) = 3$$

7. (21 pts.—3 pts. each) Fill in the blanks:

- (a) If the columns of an $m \times r$ matrix A are independent, then a matrix to project \mathbb{R}^m onto the column space of A can be found using the formula $A(A^{7}A)^{-1}A^{7}$
- (b) If the 'big formula' for the determinant of a 5×5 matrix were written out, it would be a sum of 5! = 120 terms, each of which is ± 1 times a product of _____ entries of the matrix.
- (c) The inverse of an orthogonal matrix Q is most easily computed by $\underline{Q}^{-1} = Q^{-7}$
- (d) If a 3×3 matrix A has eigenvalues 3, 1, -2, then the eigenvalues of A^3 are 3, 1, -2 or 27, 1, -8
- (e) If $\det B = -13$, then $\det B^T = -13$.
- (f) If P is a 5×5 matrix that projects vectors in \mathbb{R}^5 onto a 3-dimensional subspace W, then the 5 eigenvalues of P will be 1,1,1,0,0
- (g) If |A| = 2/5, then $|A^{-1}| = 5/2$.