Math 314 Name : ‘g; /° 4’.0"‘J
Exam 2 April 10, 2013

Show all your work.
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1. (16 pts.) Let A = <_2 0 )
(a) (6 pts.) Find the eigenvalues of A.
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(b) (6 pts.) For each eigenvalue, determine an eigenvector.
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(c) (4 pts.) Give matrices A and S for a diagonalization A = SAS~1.
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2. (11 pts.) In R*, a subspace V has basis (1,2,—1,1), (2,0,1,1). Find a basis for VL.
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3. (15 pts.) The vectors
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span a 3-d subspace of R*. Find an orthonormal basis for that subspace.
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4. (15 pts.—5 pts. each) Suppose you wanted to fit a straight line y = ma + b to the (z, y) data points

(—172)7 (O= 1)7 (1,—2), (2,—2).

(a) Give, in matrix form, a system of 4 equations in 2 unknowns that you would like to solve to find
this line, even though this system has no solution.
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(b) Give, in matrix form, a system of 2 equations in 2 unknown that you could solve to find the
least-squares best fit line. (Do NOT solve them.)
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(¢) The idea behind wira bemng done here is that if Ax = b has no solution due to suspected errors
in b, then we should replace b with a different vector so the system becomes solvable. This vector

is found by projecting b onto what? 0 '['o m
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5. (12 pts.) Suppose
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(a) (3 pts,)-Give a basis for the rowspace of A. ez
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(b) (3 pts.) Give a basis for th

(c) (3 pts.) What is the dimension of the nullspace of A@—_———/
(d) (3 pts.) What is the dimension of the left nullspace of A? @

6. (10 pts.) Calculate the determinant
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7. (21 pts.—3 pts. each) Fill in the blanks:

(a) If the columns of an m x r matrix A are independent, then a matrlx to project R™ onto the
column space of A can be found using the formula A 7/4) ,4

(b) If the ‘big formula’ for the determinant of a 5 x 5 matrix were written out, it would be a sum of
5 =12 O terms, each of which is &1 times a product of .G entries of the matrix.
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(c) The inverse of an orthogonal matrix @ is most easily computed by Q = QT

. : . 3,3 3 "
(d) If a 3 x 3 matrix A has eigenvalues 3,1, —2, then the eigenvalues of 4 are 3 , ! (—;Z)/ oV 27, ’) &
(e) If det B = —13, then det BT = _— [/ & .

(f) If P is a 5 x 5 matrix that projects vectors in R® onto a 3-dimensional subspace W, then the 5

eigenvalues of P will be _/ 4 i O/ o

(g) If |A| = 2/5, then |[A~!| = _$/2



