Math 314 Exam 1 Name :______ February 29, 2008

1. Let

$$A = \begin{pmatrix} 1 & -2 & 0 & 2 \\ -1 & 2 & -1 & -1 \\ 2 & -4 & -1 & 5 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}.$$

(a) (10 pts.) Find all solutions to $A\mathbf{x} = \mathbf{b}$. Show all your work.

(b) (3 pts.) Give all solutions to $A\mathbf{x} = \mathbf{0}$.

2. (10 pts.) Use elimination to find the inverse of $\begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & -1 \\ 1 & 0 & 0 \end{pmatrix}$, or show it doesn't exist. Show all your work.

3. (6 pts.) If
$$FG = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$$
 and $G = \begin{pmatrix} -3 & 11 \\ -1 & 4 \end{pmatrix}$, what is F ?

4. (10 pts.) The LU factorization of B is

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Use this factorization to solve $B\mathbf{x} = \mathbf{d}$ for $\mathbf{d} = (3, 1, 0)$. (No credit will be given for solving the system by any other method.)

5. (3 pts.) If a matrix C has an LU factorization with

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -3 & 1 \end{pmatrix},$$

describe all the elementary steps, in order, of the Gaussian elimination process performed on C.

6. (7 pts.) Are the 3 vectors (1, -2, 1, 0), (2, 1, -3, 5), and (-2, 1, 1, -3) linearly independent? Show your work.

- 7. (15 pts. 3 pts. each) Suppose A is a $m \times n$ matrix with r pivots. Explain the relationships between r and m and/or n in each case below. (Sample answer: r = m, because ...). You do not need to point out that $r \leq m$ and $r \leq n$.
 - (a) $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions for some \mathbf{b} .
 - (b) $A\mathbf{x} = \mathbf{b}$ has no solutions for some **b**, but for the **b** for which $A\mathbf{x} = \mathbf{b}$ can be solved, there is only one solution.
 - (c) The only solution to the homogeneous equation associated to A is the trivial one. (The homogeneous equation means $A\mathbf{x} = \mathbf{0}$.)
 - (d) The columns of A are dependent.
 - (e) The solutions to $A\mathbf{x} = \mathbf{b}$ form a 2-dimensional plane.
- 8. (12 pts. 3 pts. each) Give matrices with the following properties:
 - (a) A 4×4 matrix E, so that E will add twice the 3rd row of A to the bottom row of A when we compute EA.
 - (b) A 3×3 matrix P, so that P will interchange the top and bottom rows of A when we compute PA
 - (c) A 2 × 2 matrix R, so that the linear transformation associated to R reflects points in the plane \mathbb{R}^2 about the line y = -x. (This question is not appropriate (yet) for Spring 2013)
 - (d) E^{-1} , P^{-1} , and R^{-1} .

- 9. (18 pts. 3 pts. each) Are these statements True or False? Indicate T/F and explain briefly. (No points will be awarded unless an explanation is attempted.)
 - (a) The span of any two vectors in \mathbb{R}^3 forms a plane.
 - (b) A system of m linear equations in n unknowns can have exactly 2 solutions.
 - (c) If A is a square singular matrix, then $A\mathbf{x} = \mathbf{b}$ cannot have any solutions.
 - (d) If m < n, then n vectors in \mathbb{R}^m must be linearly dependent.
 - (e) If A is $n \times n$ and non-singular, then the columns of A span \mathbb{R}^n .
 - (f) If $A\mathbf{x} = \mathbf{b}$ has exactly one solution for a particular $\mathbf{b} \in \mathbb{R}^m$, then $A\mathbf{x} = \mathbf{c}$ has exactly one solution for all $\mathbf{c} \in \mathbb{R}^m$.
- 10. (6 pts.) Suppose a linear transformation $T : \mathbb{R}^5 \to \mathbb{R}^5$ is one-to-one. Must T also be onto? Explain. (Hint: What can you say about the matrix A such that $T = T_A$?) (This question is not appropriate (yet) for Spring 2013)