Math 265, Homework due 2/23/2020

§8, \#14 Version 1

Theorem 1. If A, B and C are sets, then $(A \vee B)-C=(A-C) \vee(B-C)$.
Proof. In order to prove that these sets are equal, we will show that they are subsets of one another.
First, to prove that $(A \vee B)-C \in(A-C) \vee(B-C)$, we will consider an element $x \in(A \vee B)-C$. Then, we know that $x \in A \vee x \in B$, and that $x \notin C$. This means that, whether x is in A or B, it is definitely not in C, or $(A-C) \vee(B-C)$. Thus, we have proven that $(A \vee B)-C \in(A-C) \vee(B-C)$.
Next, to prove that $(A-C) \vee(B-C) \in(A \vee B)-C$, we will let $y \in(A-C) \vee(B-C)$. Then, we know that y is an element of A and not C, or y is an element of B and not C. Since, in both of these cases, y is not an element of C, we know that y is never an element of C, although y can be an element of A or B. Equivalently, in logical terms, our set can be described as $\{y \mid(y \in A \cup B) \wedge(y \notin C)\}$, or $(A \vee B)-C$.
This proves that $(A \vee B)-C=(A-C) \vee(B-C)$.

§8, \#14 Version 2

Theorem 2. If A, B and C are sets, then $(A \cup B)-C=(A-C) \cup(B-C)$.
Proof. Suppose $x \in(A \cup B)-C$. Thus, $x \in A$ or $x \in B$ by definition of union. Also, $x \notin C$ by definition of set subtraction.
Therefore $x \in A-C$ or $x \in B-C$.
Consequently, $(A-C) \cup(B-C)$.
This implies that $(A \cup B)-C=(A-C) \cup(B-C)$.

§8, \#14 Version 3

Theorem 3. If A, B, and C are sets, then $(A \cup B) \backslash C=(A \backslash C) \cup(B \backslash C)$.
Proof. First, to see $(A \cup B) \backslash C \subseteq(A \backslash C) \cup(B \backslash C)$ let $a \in(A \cup B) \backslash C$. Thus, $a \in A \cup B$ and $a \notin C$. So $a \in A$ or $a \in B$ and $a \notin C$. Then $a \in A$ and $a \notin C$, or $a \in B$ and $a \notin C$. Hence, $a \in A \backslash C$ or $a \in b \backslash C$. Therefore, $a \in(A \backslash C) \cup(B \backslash C)$.

Second, to see $(A \backslash C) \cup(B \backslash C) \subseteq(A \cup B) \backslash C$ let $a \in(A \backslash C) \cup(B \backslash C)$. Then $a \in A \backslash C$ or $a \in B \backslash C$. Furthermore, $a \in A$ and $a \notin C$, or $a \in B$ and $a \notin C$. Thus, $a \in A$ or $a \in B$ and $a \notin C$. Subsequently, $a \in A \cup B$ and $a \notin C$. So $a \in(A \cup B) \backslash C$.

Therefore, $(A \cup B) \backslash C=(A \backslash C) \cup(B \backslash C)$.

§8, \#14 Version 4

Theorem 4. If A, B, C are sets, then $(A \cup B)-C=(A-C) \cup(B-C)$.
Proof. Observe $(A \cup B)-C=\{x:(x \in A \cup B) \wedge(x \notin C)\}$

$$
\begin{gathered}
=\{x:(x \in A) \vee(x \in B) \wedge(x \notin C)\} \\
=\{x:(x \in A) \vee(x \in B) \wedge(x \notin C) \wedge(x \notin C)\} \\
=\{x:(x \in A \wedge x \notin C)\} \cup\{x:(x \in B \wedge x \notin C)\} \\
=(A-C) \cup(B-C)
\end{gathered}
$$

