1. Differentiate the following.
a. $F(r)=\frac{5}{r^{3}}$
b. $y=3 e^{x}+\frac{4}{\sqrt[3]{x}}$
c. $G(q)=\left(1+q^{-1}\right)^{2}$
d. $g(x)=(x+5 \sqrt{x}) e^{x}$
e. $y=\frac{\sqrt{x}}{2+x}$
f. $f(x)=\frac{a x+b}{c x+d}$
2. Find the first and second derivatives of the function.

$$
G(r)=\sqrt{r}-\sqrt[3]{r}
$$

3. Find an equation of the tangent line to the graph of $y=x^{2}+2 e^{x}$ at $(0,2)$.
4. The equation of motion of a particle is $s=t^{4}-2 t^{3}+t^{2}-t$, where s is in meters and t is in seconds.
(a) Find the velocity and acceleration as functions of t.
(b) Find the acceleration at time 1 s .
5. A quantity p of fabric, measured in yards, is sold at a price $f(p)$ (dollars) which depends on the quantity. The total revenue from a sale of p yards of fabric is $R(p)=p f(p)$.
(a) What does it mean to say that $f(20)=100$ and that $f^{\prime}(20)=-0.5$?
(b) Assuming the values in part (a), find $R^{\prime}(20)$ and interpret your answer.
