Exam 2
Math 202 F01
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1. (12 pts.) A 3-d object is bounded below by z = \/z? + y? and above by z = 6—22—vy2. Its mass density
is given by p(z,y,2) = 2 + y? + z2. Using CYLINDRICAL COORDINATES, set up an appropriate 7 &
integral expression for Z, the z-coordinate of its center of mass. DO NOT evaluate the integrals. g=6>7
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2. (12 pts.) Consider the function f(z,y) = x3 4+ y® — 3xy + 12.
(a) (4 pts.) Show that (0,0) and (1,1) are critical points of f. (They are actually the only critical
points of f, but you need not show that.)
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pply the 2nd derivative test at each of these points, and state your conclusions from it.
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3. (7 pts.) Give an equation for the tangent plane to the surface 22 — 2y% + 22 + yz = 2 at the point

(2,1, -1).
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4. (15 pts.—b pts. each) The temperature at a point (z,y, z) is given by

T(x,y, z) = 200e% ~3" 92"

where T is measured in °C, and z,y, = are measured in meters.

(a) Find the rate of change of the temperature at the point (2,—1,2) in the direction towards the
point (3, —3,3). GIVE UNITS.
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(b) At (2,-1,2), in what direction does 7' increase most rapidly?
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(c) What is the maximum rate of change of T' at (2, —1,2), among all directions?
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5. (12 pts.) Reverse the order of integration in the following integral, and then evaluate it.
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6. (10 pts.) Ohm’s law states that in an electrical circuit the current, I, depends on the voltage, V, and
resistance, R, by

I=V/R.

Suppose at some moment R = 100 ohms, V = 32 volts, dR/dt = 0.03 ohms/s, and dV/dt = —0.01
volts/s. Determine dI/dt at that moment. GIVE UNITS. (Hint: Use the multivariable chain rule. The
unit ‘volt/ohm’ is also called an ‘ampere’.)
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7. (12 pts.) Use the method of Lagrange multipliers to find the point on the sphere z2 + y% + 22 = 70
that minimizes f(z,y,2) = 2z + 6y + 10z.
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8. (12 pts.—3 pts. each) Complete the following. \(x/y’ %> - (_ \TZ—/ -&E/ "bJE

(a) The average value of a function f(z,y) over a 2-dimensional region R is given by the formula:
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(b) In spherical coordinates, dV is: 1<
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(d) The geometric relationship between the level curves of a function z = f(z,y) and the gradient
vectors V f(z,y) is:
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9. (8 pts.—4 pts. each) Suppose = u®+wv, y = u — v® represents a change of coordinates for re-expressing

a double integral in =,y in terms of u,v.
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in terms of u,v. What do the parts of this expression represent geometrically? (DO NOT give a

(b) Give a sentence or two of informal explanation of why

mathematical derivation of the expression.)
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