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1. (15 pts.—5 pts. each) A plane is given by the equation 3z — 2y + 5z = 1.
(a) Give an equation for the parallel plane through the point (3,1,2).
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(b) Give a parameterization of the line thro : at is
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(c) What is the angle between this plane and the zz-coordinate plane?
(Your answer may involve an inverse trigonometric function.)
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2. (14 pts.—7 pts. each) Due to gravity, an object that weighs 5 N slides OMJ(; Since G

down a straight frictionless ramp from the point (0,0,10) m to the point f robl. dd
(0,30,0) m. S/-Qc;(y-f(“ qcAe

(a) How much work was done by gravity? (Include appropriate units in o obfuse q"‘)[*
your answer.)
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(b) Give a vector describing a force along the ramp that would have
prevented the obJect from movi \_g
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3. (20 pts.—5 pts. each)Roughly sketch the following surfaces in 3-d, given by
equations in various coordinate systems. Include the z-,y-, and z-axes in
each sketch.

(a) o= 3
() 6=3
(c) y*—z= ] Solic
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4. (14 pts.) An object moves through space with acceleration vector a(t) =
(t,msin(mt), —2) m/sec®. At time ¢ = 0, its velocity is v(0) = (0,0, 4).

(a) (7 pts.) Find the object’s velocity v(t), as a function of time.
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(3 pts.) What is the object’s speed at time t = 1?

V=< % /() ‘f—2>=<2"/ 2,2>

[{{7(1)[/2 \/'{';-;-f,.sc J_

(c) (4 pts.) Give an integral for the total distance the object travels
between time ¢ = 0 and t = 4. (Do not evaluate the integral, but
leave it in a form where only single-variable calculus is needed to
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5. (11 pts.) Find the distance between the point (2,3,0) and the plane
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6. (12 pts.—6 pts. each) Consider the 3 vectors

a:<171707
b=(21,1),
c¢={(1,0,5).

(a) Compute b X ¢, and state the geometric meaning of what you have
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(b) Compute a- (b x ¢) and state the geometric meaning of what you
have computed.
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7. (14 pts.) Consider the parameterized path r(t) = Inti+ (t +2)j.

(a) (6 pts.) Compute the unit tangent vector T(t).
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