Instructions. You have 60 minutes. Closed book, closed notes, no calculator. Show all your work in order to receive full credit.

1. Consider the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+3 y^{2}}{3 x^{2}+y^{2}}
$$

Either show it does not exist, or give strong evidence for suspecting it does.
Solution: Setting $x=0$ and letting $y \rightarrow 0$, we have $\lim _{y \rightarrow 0} \frac{3 y^{2}}{y^{2}}=3$. Setting $y=0$ and letting $x \rightarrow 0$, we have $\lim _{x \rightarrow 0} \frac{x^{2}}{3 x^{2}}=\frac{1}{3}$. Since these limits are different, the original multivariable limit does not exist.
2. The following table gives some information about a function $f(x, y)$:

(x, y)	f	f_{x}	f_{y}
$(-1,3)$	3	2	-1
$(0,1)$	-5	-1	3
$(3,4)$	1	4	-2

(a) Use the chain rule to compute $\frac{d g}{d t}(0)$ where:

$$
g(t)=f\left(t^{2}-t+3,2 e^{-3 t}+2\right)
$$

Solution: We have $x(t)=t^{2}-t+3$ and $y(t)=2 e^{-3 t}+2$ so $x(0)=3$ and $y(0)=4$. Therefore, $g(0)=f(3,4)$ and

$$
\frac{d g}{d t}(0)=f_{x}(3,4) \frac{d x}{d t}(0)+f_{y}(3,4) \frac{d y}{d t}(0)=4[2 t-1]_{t=0}-2\left[2(-3) e^{-3 t}\right]_{t=0}=4(-1)-2(-6)=8
$$

(b) Give an equation for the linear (tangent plane) approximation to f at the point $(-1,3)$, and use it to estimate $f(-1.1,3.2)$.
Solution: The linear approximation is:

$$
L(x, y)=f(-1,3)+f_{x}(-1,3)(x+1)+f_{y}(-1,3)(y-3) \quad \Leftrightarrow \quad L(x, y)=3+2(x+1)-(y-3)
$$

So the approximate value of $f(-1.1,3.2)$ is given by:

$$
L(-1.1,3.2)=3+2(-1.1+1)-(3.2-3)=3-0.2-0.2=2.6
$$

3. Evaluate the integral

$$
\int_{0}^{4} \int_{\sqrt{y}}^{2} e^{\left(x^{3}+1\right)} d x d y
$$

fully, by first drawing the region of integration, and then reversing the order of integration.
Solution: The bounds indicate that we have $\sqrt{y} \leq x \leq 2$ and $0 \leq y \leq 4$. The inner bounds being in x, that means that if we drill horizontally left to right, we enter our region on the curve $x=\sqrt{y}$, i.e. $y=x^{2}$, and exit it on the line $x=2$. Furthermore, the shadow of the region onto the y-axis covers $[0,4]$:

So reversing the order of integration, we have:

$$
\begin{aligned}
\int_{0}^{4} \int_{\sqrt{y}}^{2} e^{\left(x^{3}+1\right)} d x d y=\int_{0}^{2} \int_{0}^{x^{2}} e^{\left(x^{3}+1\right)} d y d x & =\int_{0}^{2}[y]_{y=0}^{y=x^{2}} e^{\left(x^{3}+1\right)} d x=\int_{0}^{2} x^{2} e^{\left(x^{3}+1\right)} d x=\left|\begin{array}{c}
u=x^{3}+1 \\
d u=3 x^{2} d x
\end{array}\right| \\
& =\int_{x=0}^{x=2} \frac{e^{u}}{3} d u=\left[\frac{e^{u}}{3}\right]_{x=0}^{x=2}=\left[\frac{e^{\left(x^{3}+1\right)}}{3}\right]_{0}^{2}=\frac{e^{9}-e}{3}
\end{aligned}
$$

4. Find and classify (using the Second Derivatives Test) all critical points of

$$
f(x, y)=x^{2} y-2 x y+y^{2}-3 y+1
$$

Solution: The gradient is

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 2 x y-2 y, x^{2}-2 x+2 y-3\right\rangle
$$

is defined everywhere and when setting it to the zero vector, we get $f_{x}=0=2 y(x-1)$ for:

- either $y=0$ then plugging into $f_{y}=0$ that means $x^{2}-2 x-3=0$ so we get $x=3$ or $x=-1$;
- or $x=1$ then plugging into $f_{y}=0$ that means $1-2+2 y-3=0$ so $y=2$.

Hence we found three critical points: $(3,0),(-1,0),(1,2)$.
To classify them, we use the Second Derivatives Test:

$$
f_{x x}=2 y \quad, \quad f_{y y}=2 \quad, \quad f_{x y}=2 x-2 \quad \Rightarrow \quad d(x, y)=4 y-4(x-1)^{2}
$$

- $d(3,0)=4(0)-4(4)<0$ so saddle point at $(3,0,1)$;
- $d(-1,0)=4(0)-4(4)<0$ so saddle point at $(-1,0,1)$;
- $d(1,2)=4(2)-4(0)>0$ and $f_{x x}=4>0$ so relative minimum at $(1,2)$.

5. Give an equation for the tangent plane to the surface

$$
\frac{x y}{y+z}+e^{-z} \ln (x+2 y)=3
$$

at the point $(3,-1,0)$.

Solution: Let $F(x, y, z)=\frac{x y}{y+z}+e^{-z} \ln (x+2 y)$. Then we find

$$
\begin{aligned}
\nabla F(x, y, z) & =\left\langle\frac{y}{y+z}+\frac{e^{-z}}{x+2 y}, \frac{x(y+z)-x y(1)}{(y+z)^{2}}+\frac{2 e^{-z}}{x+2 y}, \frac{-x y}{(y+z)^{2}}-e^{-z} \ln (x+2 y)\right\rangle \\
& =\left\langle\frac{y}{y+z}+\frac{e^{-z}}{x+2 y}, \frac{x z}{(y+z)^{2}}+\frac{2 e^{-z}}{x+2 y}, \frac{-x y}{(y+z)^{2}}-e^{-z} \ln (x+2 y)\right\rangle \\
\Rightarrow \quad F(3,-1,0) & =\left\langle\frac{-1}{-1+0}+\frac{1}{3-2}, \frac{3(0)}{(-1+0)^{2}}+\frac{2}{3-2}, \frac{-3(-1)}{(-1+0)^{2}}-\ln (3-2)\right\rangle=\langle 2,2,3\rangle
\end{aligned}
$$

The tangent plane is thus given by

$$
2(x-3)+2(y+1)+3(z-0)=0
$$

or

$$
2 x+2 y+3 z=4
$$

6. Use polar coordinates to find the volume of the solid bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and the top half of the sphere $x^{2}+y^{2}+z^{2}=6$.

Solution: If we solve for z in the top half of the sphere, we have $z=\sqrt{6-x^{2}-y^{2}}$ or using polar $z=\sqrt{6-r^{2}}$ and that is our top surface whereas the cone $z=\sqrt{x^{2}+y^{2}}$ i.e. using polar $z=r$ (for $r \geq 0)$ is on the bottom. The base or shadow R in the $x y$-plane is a disk with radius satisfying

$$
\sqrt{6-r^{2}}=r \quad \Longrightarrow \quad 6-r^{2}=r^{2} \quad \Longrightarrow \quad r^{2}=3
$$

So here $r=\sqrt{3}$ and the volume is:

$$
\begin{aligned}
V & =\iint_{R} \sqrt{6-x^{2}-y^{2}}-\sqrt{x^{2}+y^{2}} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}}\left[\sqrt{6-r^{2}}-r\right] r d r d \theta \\
& =\left(\int_{0}^{2 \pi} d \theta\right)\left(\int_{0}^{\sqrt{3}} r \sqrt{6-r^{2}}-r^{2} d r\right) \\
& =[\theta]_{0}^{2 \pi}\left[-\frac{1}{2}\left(\frac{2}{3}\right)\left(6-r^{2}\right)^{\frac{3}{2}}-\frac{r^{3}}{3}\right]_{0}^{\sqrt{3}} \\
& =2 \pi\left[-\frac{1}{3}(3 \sqrt{3})-\frac{3 \sqrt{3}}{3}+\frac{1}{3}(6 \sqrt{6})+0\right] \\
& =4 \pi(\sqrt{6}-\sqrt{3}) .
\end{aligned}
$$

7. A flat triangular plate is bounded by the lines $y=2-2 x, y=2+2 x$ and the x-axis, where x, y are in m. The mass density is given by

$$
\rho(x, y)=y^{2} \mathrm{~kg} / \mathrm{m}^{2} .
$$

From the symmetry of the plate and the density, you can see that the center of mass of the plate must be on the y-axis, so $\bar{x}=0$.
(a) Give an expression involving integrals for \bar{y}, including appropriate limits of integration.

Solution: Setting up the integrals is easier in $d x d y$ since it requires a split in $d y d x$. Drilling horizontally left to right, we always enter the plate on $y=2+2 x$, that is $x=\frac{y}{2}-1$ and we always exit the plate on $y=2-2 x$, that is $x=1-\frac{y}{2}$. The projection of the plate onto the y-axis covers $[0,2]$. So we have:

$$
\bar{y}=\frac{M_{x}}{m}=\frac{\iint_{R} y \rho(x, y) d A}{\iint_{R} \rho(x, y) d A} \Longrightarrow \bar{y}=\frac{\int_{0}^{2} \int_{\frac{y}{2}-1}^{1-\frac{y}{2}} y^{3} d x d y}{\int_{0}^{2} \int_{\frac{y}{2}-1}^{1-\frac{y}{2}} y^{2} d x d y}
$$

(b) The total mass of the plate is $m=\frac{4}{3} \mathrm{~kg}$. Use this to calculate \bar{y}.

Solution:

$$
\begin{aligned}
M_{x} & =\int_{0}^{2} \int_{\frac{y}{2}-1}^{1-\frac{y}{2}} y^{3} d x d y=\int_{0}^{2}\left[x y^{3}\right]_{x=\frac{y}{2}-1}^{x=1-\frac{y}{2}} d y \\
& =\int_{0}^{2}\left(1-\frac{y}{2}-\left(\frac{y}{2}-1\right)\right) y^{3} d y=\int_{0}^{2}(2-y) y^{3} d y \\
& =\left|\begin{array}{cc}
u=2-y & d u=-d y \\
d v=y^{3} d y & v=\frac{y^{4}}{4}
\end{array}\right|=\left[\frac{(2-y) y^{4}}{4}\right]_{0}^{2}-\int_{0}^{2}-\frac{y^{4}}{4} d y \\
& =0-0+\left[\frac{y^{5}}{20}\right]_{0}^{2}=\frac{32}{20}-0=\frac{8}{5} \\
\Rightarrow \quad \bar{y} & =\frac{M_{x}}{m}=\frac{\frac{8}{5}}{\frac{4}{3}}=\frac{8}{5}\left(\frac{3}{4}\right) \Rightarrow \bar{y}=\frac{6}{5} \mathrm{~m}
\end{aligned}
$$

8. Use Lagrange multipliers to find the maximum product of two positive numbers satisfying $x^{2}+y=6$.

Solution: We have that our objective function is the product so $f(x, y)=x y$ and the constraint is $g(x, y)=x^{2}+y=6$. Therefore,

$$
\nabla f=\lambda \nabla g \quad \Longrightarrow \quad\langle y, x\rangle=\lambda\langle 2 x, 1\rangle \quad \Longrightarrow \quad\left\{\begin{array}{l}
y=2 \lambda x \\
x=\lambda
\end{array}\right.
$$

Substituting $\lambda=x$ in the first equation, we get: $y=2 x^{2}$. Now plugging that into the constraint:

$$
x^{2}+2 x^{2}=6 \quad \Rightarrow \quad 3 x^{2}=6 \quad \Rightarrow \quad x^{2}=2
$$

and we have a restriction for positive numbers so $x=\sqrt{2}$ and thus $y=2 x^{2}=4$. This in turns means that the maximum product:

$$
f_{\max }=f(\sqrt{2}, 4)=4 \sqrt{2} .
$$

9. Let $f(x, y)=x^{2} y-x+y^{2}$.

(a) Compute the directional derivative of f when moving in the direction of $-\mathbf{j}$ when you are at the point $(1,-1)$. Interpret your result in terms of change in values of f.
Solution: We have that:
$\nabla f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 2 x y-1, x^{2}+2 y\right\rangle \quad \Longrightarrow \quad \nabla f(1,-1)=\left\langle 2(1)(-1)-1,1^{2}+2(-1)\right\rangle=\langle-3,-1\rangle$.
Note that $\mathbf{- j}$ is already a unit vector so the directional derivative is:

$$
D_{-\mathbf{j}} f(1,-1)=\nabla f(1,-1) \cdot(-\mathbf{j})=\langle-3,-1\rangle \cdot\langle 0,-1\rangle=1 .
$$

Since the directional derivative is positive, values of f will increase in the direction of $-\mathbf{j}$ from $(1,-1)$.
(b) Give the direction and magnitude of maximum decrease of f when at the point $(1,-1)$.

Solution: Direction of maximum decrease will be opposite the gradient and magnitude will be its norm.

$$
\begin{array}{|l|l|}
\hline \text { direction: }\langle 3,1\rangle \quad, \quad \text { magnitude: } \sqrt{10} \\
\hline
\end{array}
$$

(c) Fully set up bounds and integrand for computing the surface area of f over the region $[-1,2] \times[-2,1]$. DO NOT EVALUATE.
Solution:

$$
S A=\iint_{R} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A \Rightarrow S A=\int_{-1}^{2} \int_{-2}^{1} \sqrt{1+(2 x y-1)^{2}+\left(x^{2}+2 y\right)^{2}} d y d x
$$

