Instructions. You have 60 minutes. Closed book, closed notes, and no calculators allowed. Show all your work in order to receive full credit.

1. Consider points $A(4,-3,2)$ and $B(2,1, c)$ and vectors $\mathbf{u}=\langle 1,-2,3\rangle$ and $\mathbf{v}=\langle-1,-1,2\rangle$.
(a) Find the vector projection of \mathbf{u} along \mathbf{v}.

Solution:

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{v}} \mathbf{u} & =\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}=\frac{\langle 1,-2,3\rangle \cdot\langle-1,-1,2\rangle}{1+1+4}\langle-1,-1,2\rangle=\frac{1(-1)-2(-1)+3(2)}{6}\langle-1,-1,2\rangle \\
& =\frac{-1+2+6}{6}\langle-1,-1,2\rangle=\frac{7}{6}\langle-1,-1,2\rangle=\left\langle\frac{-7}{6}, \frac{-7}{6}, \frac{7}{3}\right\rangle
\end{aligned}
$$

(b) Find the area of the parallelogram with adjacent sides \mathbf{u} and \mathbf{v}.

Solution: The area of the parallelogram is $\|\mathbf{u} \times \mathbf{v}\|$. So we have:

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -2 & 3 \\
-1 & -1 & 2
\end{array}\right|=\langle-2(2)+1(3),-(1(2)+1(3)), 1(-1)+1(-2)\rangle=\langle-1,-5,-3\rangle \\
\Rightarrow \quad A=\|\mathbf{u} \times \mathbf{v}\| & =\sqrt{1+25+9}=\sqrt{35} .
\end{aligned}
$$

(c) Find all values of c such that the length of $\overrightarrow{A B}$ equals 5 .

Solution: We have

$$
\overrightarrow{A B}=\langle-2,4, c-2\rangle
$$

So,

$$
\begin{aligned}
\|\overrightarrow{A B}\|=5 & \Longleftrightarrow \sqrt{4+16+(c-2)^{2}}=5 \quad \Longleftrightarrow \quad 20+(c-2)^{2}=25 \\
& \Longleftrightarrow(c-2)^{2}=5 \Longleftrightarrow \Longleftrightarrow \quad c=2 \pm \sqrt{5} .
\end{aligned}
$$

(d) Find all values of c such that $\overrightarrow{A B}$ is parallel to \mathbf{u}.

Solution: $\overrightarrow{A B}$ is parallel to \mathbf{u} if there exists a real nonzero number k such that:

$$
\overrightarrow{A B}=k \mathbf{u} \Longleftrightarrow\left\{\begin{array}{l}
-2=k(1) \\
4=k(-2) \\
c-2=k(3)
\end{array}\right.
$$

From the first two equations, we get $k=-2$ and plugging it into the third, we have:

$$
c-2=(-2)(3) \quad \Longleftrightarrow \quad c=-4 .
$$

(e) Find all values of c such that $\overrightarrow{A B}$ is orthogonal to \mathbf{v}.

Solution: The vectors are orthogonal if their dot product is zero. So we have:

$$
\begin{aligned}
\overrightarrow{A B} \cdot \mathbf{v}=0 & \Longleftrightarrow\langle-2,4, c-2\rangle \cdot\langle-1,-1,2\rangle=0 \quad \Longleftrightarrow-2(-1)+4(-1)+2(c-2)=0 \\
& \Longleftrightarrow 2-4+2 c-4=0 \Longleftrightarrow 2 c=6 \Longleftrightarrow \gg 3 .
\end{aligned}
$$

2. Below is a sketch of the space curve:

$$
\mathbf{r}(t)=\langle t \cos t, t \sin t, t\rangle \quad, \quad 0 \leq t \leq \frac{7 \pi}{3}
$$

Solution:

(a) Draw on the above the position and velocity vectors for $t=\frac{3 \pi}{2}$. Solution: We need to compute both $\mathbf{r}\left(\frac{3 \pi}{2}\right)$ and $\mathbf{r}^{\prime}\left(\frac{3 \pi}{2}\right)$ then draw the first in standard position and the second starting at the tip of the first.

$$
\begin{aligned}
\mathbf{r}\left(\frac{3 \pi}{2}\right) & =\left\langle 0,-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right\rangle \\
\mathbf{r}^{\prime}(t) & =\langle\cos t-t \sin t, \sin t+t \cos t, 1\rangle \\
\Rightarrow \quad \mathbf{r}^{\prime}\left(\frac{3 \pi}{2}\right) & =\left\langle\frac{3 \pi}{2},-1,1\right\rangle
\end{aligned}
$$

(b) Find the speed at time t and simplify your result.

Solution:

$$
\begin{aligned}
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{(\cos t-t \sin t)^{2}+(\sin t+t \cos t)^{2}+1} \\
& =\sqrt{\cos ^{2} t-2 \cos t \sin t+t^{2} \sin ^{2} t+\sin ^{2} t+2 t \cos t \sin t+t^{2} \cos ^{2} t+1} \\
& =\sqrt{1+t^{2}\left(\sin ^{2} t+\cos ^{2} t\right)+1}=\sqrt{t^{2}+2}
\end{aligned}
$$

(c) At what time(s) is the acceleration horizontal (i.e. normal to \mathbf{k})?

Solution: We need to solve for t in $\mathbf{r}^{\prime \prime}(t) \cdot \mathbf{k}=0$ but any dot product with $\mathbf{k}=\langle 0,0,1\rangle$ only leaves you with the z-component of the vector. Here, since the z-component in $\mathbf{r}^{\prime}(t)$ is constant, then the z-component of $\mathbf{r}^{\prime \prime}(t)$ is zero for all t. So the acceleration is horizontal for all times t.
3. Time to sketch some surfaces!
(a) For $x^{2}+\frac{y^{2}}{4}-z^{2}=-1$, sketch the given traces, then the surface in 3D.

traces: $z=0, \pm \sqrt{5}$

trace: $y=0$

(b) Sketch the surface $y=z^{2}+1$.

Solution:

4. Consider the following point, line, and plane:

$$
\begin{gathered}
A=(3,-2,5), \\
\vec{\ell}(t)=\langle 1-2 t, t, 3+4 t\rangle, \\
P: \quad 2 x-3 y+z=-4,
\end{gathered}
$$

(a) Give the equation of a plane parallel to the plane P that passes through A.

Solution: The plane will have the same normal as P, i.e. $\mathbf{n}=\langle 2,-3,1\rangle$ and so using point A, we have:

$$
2(x-3)-3(y+2)+(z-5)=0 \quad \Longleftrightarrow \quad 2 x-3 y+z=17 \text {. }
$$

(b) Find the point of intersection of the line $\vec{\ell}(t)$ and the plane P.

Solution: Plug in the coordinates of the line $\vec{\ell}(t)$ into the plane and solve for t :

$$
\begin{aligned}
2(1-t)-3(t)+(3+4 t)=-4 & \Longleftrightarrow 2-4 t-3 t+3+4 t=-4 \\
& \Longleftrightarrow-3 t=-9 \quad \Longleftrightarrow \quad t=3
\end{aligned}
$$

So the position vector for the point is $\vec{\ell}(3)$ and thus in coordinate notation the point is $(-5,3,15)$.
(c) Find the angle the line $\vec{\ell}(t)$ makes with the normal to the plane P. (Your answer may involve an inverse trigonometric function.)
Solution: We need the consider the angle between the direction vector of the line: $\mathbf{u}=\langle-2,1,4\rangle$ and the normal $\mathbf{n}=\langle 2,-3,1\rangle$ to the plane. We have:

$$
\begin{aligned}
\cos \theta & =\frac{\mathbf{u} \cdot \mathbf{n}}{\|\mathbf{u}\|\|\mathbf{n}\|}=\frac{\langle-2,1,4\rangle \cdot\langle 2,-3,1\rangle}{\sqrt{4+1+16} \sqrt{4+9+1}} \\
& =\frac{-2(2)+1(-3)+4(1)}{\sqrt{21} \sqrt{14}}=\frac{-4-3+4}{7 \sqrt{3} \sqrt{2}} \\
& =\frac{-3}{7 \sqrt{6}}=-\frac{3 \sqrt{6}}{7(6)}=-\frac{\sqrt{6}}{14} \Longrightarrow \theta=\arccos \left(-\frac{\sqrt{6}}{14}\right)
\end{aligned}
$$

(d) Find an equation for the plane containing the point A and the line $\vec{\ell}(t)$.

Solution: We need two nonparallel vectors in the plane to cross. We already have $\mathbf{u}=\langle-2,1,4\rangle$ from the line, so now we pick a point $B(1,0,3)$ from the line to form $\overrightarrow{A B}=\langle-2,2,-2\rangle=-2\langle 1,-1,1\rangle$. So a normal vector to the plane is:

$$
\overrightarrow{A B} \times \mathbf{u}=-2\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -1 & 1 \\
-2 & 1 & 4
\end{array}\right|=-2\langle-4-1,-(4+2), 1-2\rangle=-2\langle-5,-6,-1\rangle
$$

and taking the scalar multiple $\langle 5,6,1\rangle$, we have the equation of the plane as:

$$
5(x-3)+6(y+2)+z-5=0 \quad \text { or } \quad 5 x+6 y+z=8 \text {. }
$$

5. A bicycle pedal is attached to a 17 cm crank. When the crank is at an angle of 30° with the vertical (as shown) a foot applies a downward force of 200 N .
(a) What is the resulting torque? Give your answer as a vector.

Solution: Set up the force as $\mathbf{G}=\langle 0,-200\rangle=-200\langle 0,1\rangle$ and then along the crank

$$
\overrightarrow{P Q}=\left\langle 0.17 \cos \left(120^{\circ}\right), 0.17 \sin \left(120^{\circ}\right)\right\rangle=0.17\left\langle-\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle=\frac{0.17}{2}\langle-1, \sqrt{3}\rangle
$$

Then add a zero \mathbf{k}-component to both to take the cross product for the torque:

$$
\begin{aligned}
\vec{\tau} & =\overrightarrow{P Q} \times \mathbf{G}=\frac{-200(0.17)}{2}\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & \sqrt{3} & 0 \\
0 & 1 & 0
\end{array}\right|=-100(0.17)\langle 0,0,-1-0\rangle \\
& =-17\langle 0,0,-1\rangle=17 \mathbf{k}=\langle 0,0,17\rangle .
\end{aligned}
$$

(b) What is the magnitude of the torque? Indicate units.

Solution:

$$
\|\vec{\tau}\|=\sqrt{0+0+17^{2}}=17 \mathrm{Nm}
$$

(c) What is the direction of the torque vector? (Into the page \otimes, or out of the page \odot, in the figure). Solution: By the right hand rule, the torque is coming out of the page, i.e. ©.
6. An object moves in the plane with acceleration

$$
\mathbf{a}(t)=\left\langle\frac{1}{t^{2}}, \frac{t}{\left(1+t^{2}\right)^{2}}\right\rangle .
$$

At time $t=1$ it is located at the point $(1,0)$ and has velocity $\langle 2,1\rangle$. Find a function $\mathbf{r}(t)$ giving its position at all times $t>0$.
Solution: We start integrating, first the acceleration to get the velocity for all times $t>0$:

$$
\begin{aligned}
& \mathbf{a}(t)=\left\langle\frac{1}{t^{2}}, \frac{t}{\left(1+t^{2}\right)^{2}}\right\rangle \\
& \Longrightarrow \quad \mathbf{v}(t)-\mathbf{v}(1)=\int_{1}^{t}\left\langle\frac{1}{u^{2}}, \frac{u}{\left(1+u^{2}\right)^{2}}\right\rangle d u=\left.\left\langle-\frac{1}{u},-\frac{1}{2\left(1+u^{2}\right)}\right\rangle\right|_{u=1} ^{u=t} \\
&=\left\langle-\frac{1}{t},-\frac{1}{2\left(1+t^{2}\right)}\right\rangle-\left\langle-1,-\frac{1}{4}\right\rangle=\left\langle-\frac{1}{t},-\frac{1}{2\left(1+t^{2}\right)}\right\rangle+\left\langle 1, \frac{1}{4}\right\rangle \\
& \Longleftrightarrow \quad \mathbf{v}(t)=\left\langle-\frac{1}{t},-\frac{1}{2\left(1+t^{2}\right)}\right\rangle+\left\langle 1, \frac{1}{4}\right\rangle+\langle 2,1\rangle=\left\langle 3-\frac{1}{t}, \frac{5}{4}-\frac{1}{2\left(1+t^{2}\right)}\right\rangle \\
& \Longrightarrow \quad \mathbf{r}(t)-\mathbf{r}(1)=\int_{1}^{t}\left\langle 3-\frac{1}{u}, \frac{5}{4}-\frac{1}{2\left(1+u^{2}\right)}\right\rangle d u=\left.\langle 3 u-\ln | u\left|, \frac{5 u}{4}-\frac{1}{2} \arctan u\right\rangle\right|_{u=1} ^{u=t} \\
&=\left\langle 3 t-\ln t, \frac{5 t}{4}-\frac{1}{2} \arctan t\right\rangle-\left\langle 3-0, \frac{5}{4}-\frac{1}{2}\left(\frac{\pi}{4}\right)\right\rangle \\
& \Longleftrightarrow \mathbf{r}(t)=\left\langle 3 t-\ln t, \frac{5 t}{4}-\frac{1}{2} \arctan t\right\rangle-\left\langle 3, \frac{5}{4}-\frac{\pi}{8}\right\rangle+\langle 1,0\rangle \\
& \Longrightarrow \quad \mathbf{r}(t)=\left\langle 3 t-\ln t-2, \frac{5}{4}(t-1)-\frac{1}{2} \arctan t+\frac{\pi}{8}\right\rangle
\end{aligned}
$$

7. A particle moves with velocity $\mathbf{v}(t)=\left\langle t^{2}, 2 t, 2\right\rangle$.
(a) Find the distance the particle travels between times $t=1$ and 2 .

Solution: The distance is the integral of the speed over time and since the speed is:

$$
\|\mathbf{v}(t)\|=\sqrt{t^{4}+4 t^{2}+4}=\sqrt{\left(t^{2}+2\right)^{2}}=\left|t^{2}+2\right|=t^{2}+2
$$

then the distance traveled is:

$$
\begin{aligned}
L & =\int_{1}^{2}\|\mathbf{v}(t)\| d t=\int_{1}^{2} t^{2}+2 d t \\
& =\left[\frac{t^{3}}{3}+2 t\right]_{1}^{2}=\frac{8}{3}+4-\left(\frac{1}{3}+2\right)=\frac{7}{3}+2=\frac{13}{3}
\end{aligned}
$$

(b) Calculate the curvature of the trajectory at time $t=1$.

Solution: The acceleration at time t is $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\langle 2 t, 2,0\rangle$ and so plugging in at $t=1$, we have:

$$
\mathbf{v}(1)=\langle 1,2,2\rangle \quad, \quad \mathbf{a}(1)=\langle 2,2,0\rangle=2\langle 1,1,0\rangle \quad, \quad\|\mathbf{v}(1)\|=t^{2}+\left.1\right|_{t=1}=3
$$

and the cross product is:

$$
\mathbf{v}(1) \times \mathbf{a}(1)=2\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 2 \\
1 & 1 & 0
\end{array}\right|=2\langle 0-2,-(0-2), 1-2\rangle=2\langle-2,2,-1\rangle
$$

Therefore, the curvature at $t=1$ is

$$
\kappa(1)=\frac{\|\mathbf{v}(1) \times \mathbf{a}(1)\|}{\|\mathbf{v}(1)\|^{3}}=\frac{2 \sqrt{4+4+1}}{3^{3}}=\frac{2(3)}{27}=\frac{2}{9}
$$

(c) Extra Credit (5pts) Find the unit tangent vector $\mathbf{T}(t)$ and the tangential component of acceleration $a_{\mathbf{T}}$ at $t=1$.
Solution: The unit tangent vector is the normalized velocity vector:

$$
\mathbf{T}(t)=\frac{\mathbf{v}(t)}{\|\mathbf{v}(t)\|}=\frac{\left\langle t^{2}, 2 t, 2\right\rangle}{t^{2}+2}=\left\langle\frac{t^{2}}{t^{2}+2}, \frac{2 t}{t^{2}+2}, \frac{2}{t^{2}+2}\right\rangle \Rightarrow \mathbf{T}(1)=\left\langle\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right\rangle
$$

and the tangential component of acceleration is:

$$
a_{\mathbf{T}}(t)=\|\mathbf{v}(t)\|^{\prime}=\left(t^{2}+2\right)^{\prime}=2 t \quad \Rightarrow \quad a_{\mathbf{T}}(1)=2 .
$$

We could also have used the formula:

$$
a_{\mathbf{T}}(1)=\left.\mathbf{a} \cdot \mathbf{T}\right|_{t=1}=2\langle 1,1,0\rangle \cdot\left\langle\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right\rangle=2\left(\frac{1}{3}+\frac{2}{3}+0\right)=2
$$

