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ABSTRACT

The multispecies coalescent model describes the generation of gene trees from a rooted
metric species tree and thus provides a framework for the inference of species trees from
sampled gene trees. We prove that the STAR method of Liu et al. (2009) and generalizations
of it, are statistically consistent methods of topological species tree inference under this
model. We discuss the impact of gene tree sampling schemes for species tree inference using
generalized STAR methods and reinterpret the original STAR as a consensus method based
on clades.
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1. INTRODUCTION

While not always emphasized in practical analyses of biological sequences, the gene trees that

standard phylogenetic methods infer may differ from the species tree relating the taxa from which the

samples are taken. A frequent reason for this incongruence between gene trees and species trees is the

population genetic effect of incomplete lineage sorting. Although this source of incongruence has been

recognized for many years, recently methods have been proposed to bring a statistical treatment of it into data

analysis through the framework of the multispecies coalescent model (Rannala and Yang, 2003; Liu and

Pearl, 2007; Kubatko et al., 2009; Liu et al., 2009; Heled and Drummond, 2010; Larget et al., 2010).

However, the subject is still young, with both theoretical issues concerning some of the methods not fully

established, and practical understanding of their appropriate application not yet developed.

Here we focus on the STAR (estimating Species Trees using Average Ranks) method of Liu et al. (2009)

for inferring a rooted topological species tree from rooted topological gene trees. It is a fast approach to

species tree construction that shows promise of good performance both in simulations (Liu et al., 2009) and

in empirical studies (Lee et al., 2012).

Since STAR bases its inference on topological gene trees, it discards all metric information one might

have on them. While at first this may seem wasteful, there are good reasons one might prefer such an

approach. In practice, the gene trees are likely to be themselves inferred by standard phylogenetic methods,

so their edge lengths are often considered to be less reliably known than their topological structure.

Moreover, modeling the evolution of sequences on gene trees that were produced under the coalescent
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model requires reconciling time units on gene trees (reflecting total amounts of substitution), with time units

on the species tree (reflecting population size and true time). This is usually resolved in part by assuming a

molecular clock, thus forcing gene trees to be ultrametric. Since variations in base substitution rates along

gene lineages can be large, and inferred metric gene trees are often far from ultrametric, it is unclear what

impact this approach has on data analysis. The authors of the Bayesian inference software BEST have, in fact,

warned that violations of the molecular clock could have ‘‘significant impacts’’ (Castillo-Ramı́rez et al.,

2010). By using only topological gene tree topologies, STAR circumvents such problems.

STAR proceeds by first combinatorially encoding each topological gene tree by a distance matrix.

Averaging these over all gene trees produces a distance matrix that is then used to build a species tree.

Finally, the metric information on the inferred species tree is discarded, so only its topology is retained.

Though Liu et al. (2009) suggest the unweighted pair group method with arithmetic mean (UPGMA) or

Neighbor Joining (NJ) for this step, in fact any distance method, including ones based on optimality criteria

such as Minimum Evolution, can be used. That an algorithmic tree construction process such as Neighbor

Joining is fast accounts only in part for the speed of STAR. Its avoidance of calculating the theoretical gene

tree probabilities that would be needed in either Maximum Likelihood or Bayesian analysis is also a major

factor in its speed, so use of other distance methods can still be expected to have computational advantages.

Although not investigated by Liu et al. (2009), it is a rather surprising fact that the expected distance

matrix obtained by STAR applied to the theoretical gene tree distribution under the multispecies coalescent

model will exactly fit a rooted tree with the same topology as the species tree. That this is true is crucial to

the claim that STAR is a statistically consistent method of inference. In this work we prove this claim, and

as a consequence establish the statistical consistency of the STAR method when any of a large class of

distance methods are used for the final selection of the species tree.

In the course of doing this, we also show that the method can be generalized into a parameterized family

of STAR methods that are all consistent. The parameters specify a node numbering scheme that controls the

way in which gene trees are encoded in distance matrices. [Although the particular node numbering scheme

of the original method is referred to as a ‘‘ranking’’ by Liu et al. (2009), we avoid that terminology as it

conflicts with the common use of the term ‘‘ranked tree’’ to indicate that internal nodes are assigned distinct

values, often to designate the temporal ordering of branching events in different parts of the tree (Semple

and Steel, 2003).] The original STAR method arises from one particular choice of these parameters.

Our work also shows that under the coalescent, the expected distance tables obtained in all generalized

STAR methods are ultrametric. This is important for understanding the behavior of UPGMA, Neighbor

Joining, or any distance method when applied to the expected distance table, a point that was not addressed

by Liu et al. (2009). It also suggests that from the average distances in the final selection of the species tree,

it might be preferable to use a method that enforces ultrametricity.

In closing, we show that the standard STAR method can be viewed as using only the clade structure of

the gene trees. This observation allows a reinterpretation of the STAR distance as one by which taxa are

viewed as close if they appear together in many clades across the gene trees. The STAR method can thus be

viewed as a type of greedy consensus method using the clade structure of gene trees to infer the species

tree. That it is a consensus method attuned in particular to the species tree/gene tree problem is the import

of the fact that STAR is consistent under the coalescent model.

Although our emphasis in this article is on theory, we also discuss some possible implications for data

analysis, focusing on various sampling schemes and how generalizations of the STAR method might

possibly be used to gain a measure of confidence in species tree estimates. Additional work is needed to

further develop the suggestions here.

2. THE STANDARD STAR NODE NUMBERING SCHEME AND VARIANTS

The encoding of an n-taxon binary rooted gene tree topology by a distance matrix in STAR is ac-

complished through first associating numbers to each node of the tree. The standard node numbering

scheme used by STAR is as follows: Assign n to the root of the tree. Then if an internal node has been

assigned a number m, assign to each of its children that are internal nodes the number m - 1. These numbers

are then interpreted as distances from the leaves in an ultrametric tree, so that the distance between two

leaves is twice the number assigned to their most recent common ancestor. In Figure 1, for example, the

distance between genes A and C is 6 on the left tree and 10 on the right tree.
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An alternative viewpoint is that the standard STAR metrization of a gene tree is obtained from the rooted

gene tree topology by assigning all internal edges length 1 and then choosing lengths of pendant edges so

that all leaves are distance n from the root.

It is immediately clear that some trivial variations on this numbering scheme will have no effect on the

output of STAR. For instance, suppose instead of assigning the root the number n, one assigned to it any

number ‘ ‡ n - 2 but otherwise followed the standard scheme. Then all internal branches would still have

length 1, and pendant ones would have non-negative length regardless of the topology of the gene tree.

Indeed pendant edge lengths would only change by the addition of ‘ - n. The net effect on the pairwise

distance matrix for each gene tree is to add 2(‘ - n) to each off-diagonal entry. Thus, the empirical average

of these matrices over a sample of gene trees and the theoretical expected distance matrix change in the

same way. (Note that these distance matrices will still have non-negative off-diagonal entries.) It is easy to

see that this will have no effect on the topology of the species tree output by methods such as UPGMA and

NJ. Similarly, assuming one chooses a sufficiently large number to assign to the root, one could number

descendant nodes by any constant decrement from their parents, with no effect on the output of the

topological species tree by UPGMA or NJ, since this would merely change the average distance matrix by a

rescaling and addition of a constant.

Thus, assuming the output of standard STAR from the theoretical gene tree distribution does agree

topologically with the species tree, there are certainly some variations on the numbering scheme that will

have the same property. Less obvious variations of node numberings that can also be used for species tree

inference in a generalized STAR method are the focus of the next section.

By way of contrast, one might consider the following seemingly natural node numbering: Assign to each

node the count of its leaf descendants. That this ‘‘descendant-count’’ numbering scheme behaves differ-

ently from the STAR scheme is seen by considering the 5-taxon caterpillar species tree

r = ((((a‚ b) :x‚ c) :y‚ d) :z‚ e)‚

where x, y, z are in coalescent units. Taking x = z = N and y = 0, the only gene trees with non-zero

probability under the coalescent model are

T1 = ((((a‚ b)‚ c)‚ d)‚ e)‚ Pr(T1) = 1=3‚

T2 = ((((a‚ b)‚ d)‚ c)‚ e)‚ Pr(T2) = 1=3‚

T3 = (((a‚ b)‚ (c‚ d))‚ e)‚ Pr(T3) = 1=3:

Using these probabilities as weights in averaging the distance matrices

DT1
=

0 4 6 8 10

4 0 6 8 10

6 6 0 8 10

8 8 8 0 10

10 10 10 10 0

0
BBBB@

1
CCCCA‚ DT2

=

0 4 8 6 10

4 0 8 6 10

8 8 0 8 10

6 6 8 0 10

10 10 10 10 0

0
BBBB@

1
CCCCA‚ DT3

=

0 4 8 8 10

4 0 8 8 10

8 8 0 4 10

8 8 4 0 10

10 10 10 10 0

0
BBBB@

1
CCCCA‚

we see

FIG. 1. Two 6-taxon gene trees

with a STAR node-numbering. Both

trees are drawn ultrametrically ac-

cording to the standard STAR num-

bering with (a0, a1, a2, a3, a4) = (6, 5,

4, 3, 2). Note that only the caterpillar

tree shape (left) has distinct number-

ings for each node. For a generalized

node numbering, the ai can be any non-

negative decreasing sequence with at

least two distinct terms. Node numbers

are interpreted as remetrizing the gene

tree by specifying distances of the

nodes from their descendant leaves.
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Er(DT ) =

0 4 22=3 22=3 10

4 0 22=3 22=3 10

22=3 22=3 0 20=3 10

22=3 22=3 20=3 0 10

10 10 10 10 0

0
BBBB@

1
CCCCA:

This expected distance matrix exactly fits the rooted tree

(((a :2‚ b :2) :5=3‚ (c :10=3‚ d :10=3) :1=3) :4=3‚ e :5)‚

which is topologically different from the species tree, even if both are treated as unrooted. Similar examples

with positive and finite edge lengths can easily be constructed by taking x, z to be large while y is small

since the expected distance matrix depends continuously on the edge lengths.

If, instead, the standard STAR numbering were used in the above example, DT1
and DT2

would be

unchanged, but in DT3
all entries of 4 would be replaced by 6. How this effects Er(DT ), and thus changes the

tree it fits, we leave as an easy exercise for the reader.

3. CONSISTENT NODE NUMBERING SCHEMES

We next show that any node numbering scheme with several simple properties, when used in STAR with

UPGMA, NJ, or any well-behaved distance method for the selection of the species tree, leads to consistent

inference. By ‘‘well-behaved’’ we simply mean that when applied to any distance table in some neigh-

borhood of one exactly fitting T will return the topology of T.

The properties we require for a node numbering scheme are:

1. The number assigned to any internal node on a gene tree depends only on the count of nodes between

it and the root in the topological gene tree. Thus the node numbers on all gene trees come from a

common node numbering sequence a0‚ a1‚ . . . ‚ aa - 2, with a0 assigned to all roots, a1 to their children,

and more generally ai to all internal nodes at depth i from the root.

2. A non-negative number is assigned to every node, with the number assigned to a child always less

than or equal to that assigned to its parent, with at least one instance of strict inequality. That is,

a0qa1q � � �qan - 2qan - 1 = 0 with some a‘ > a‘ + 1 for some ‘.

Equivalently, one could define an edge length sequence b1‚ b2‚ . . . ‚ bn - 1, where bi ‡ 0, and at least one

bi > 0, and then assign length bi to all internal edges at depth i from the root. If a pendant edge is at depth i,

it is assigned the length
P

j ‡ i bj. This is related to a node numbering sequence by defining bi = ai - 1 - ai.

Both of these properties are natural. Property (2) ensures all internal branch lengths are non-negative,

with at least one positive, while property (1) ensures a connection to the number of coalescent events in a

gene’s lineage that occur above (i.e., temporally before) the specified node.

Note that the standard STAR scheme is simply the special choice of the node numbering sequence

n‚ n - 1‚ n - 2‚ . . . ‚ 2, or, equivalently, of the edge length sequence 1‚ 1‚ 1‚ . . . ‚ 2. On the other hand, the

descendant-count scheme mentioned in the previous section fails to satisfy property (1). Though it is tied to

counting coalescent events, that scheme counts events below the node.

We consider first a generalized STAR method where for each gene exactly one individual is sampled per

taxon. Extensions to sampling multiple individuals will be discussed later.

Definition 3.1. A n · n numerical matrix, with rows and columns indexed by an n-element set of

taxa X , weakly fits a topological tree w on X if there is some assignment of non-negative lengths to the

edges of w such that the resulting pairwise tree distances between leaves give the entries of the matrix. If

the edge lengths are positive, then we say the matrix strongly fits w. If the assignment of edge lengths yields

an ultrametric tree, we say the matrix fits w ultrametrially.

For a complete presentation of the multispecies coalescent model, which describes the generation of gene

trees from a metric species tree, we refer to earlier works, for instance Allman et al. (2011b). The primary

feature of the coalescent model that we use is the exchangeability of lineages: for a collection of lineages

present in a population at a particular time, the probability of any pattern of coalescence (moving back-

wards in time) of these lineages is the same for all permutations of the lineages.
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We denote a species tree on a set of taxa X by r = (w, k), where w is a rooted topological tree and k is a

vector of edge lengths measured in coalescent units. We use lowercase letters i, j, k to denote taxa, and the

corrresponding uppercase letters I, J, K to denote gene samples from those taxa. For any Y � X , by the

most recent common ancestor of Y, MRCA(Y), we mean the vertex on w that is ancestral to all elements of

Y and a descendant of any other vertex ancestral to all of Y. Thus Y is always a subset of the set of

descendants of MRCA(Y). An MRCA on a gene tree is defined similarly.

Our main result is the following.

Theorem 3.2. Under the multispecies coalescent model on a metric species tree r = (w, k), let Pr(T)
denote the probability of a rooted topological gene tree T. For a node numbering sequence satisfying

properties (1) and (2), let DT denote the pairwise distance matrix obtained from applying the sequence to T.

Then for all ki 2 (0‚1), the expected value of this matrix

Er(DT ) =
X

T

Pr(T)DT

is a pairwise distance matrix that strongly fits w ultrametrically.

Of course the pairwise distance matrix Er(DT ) of this theorem does not generally match the pairwise

distances on the species tree r.

Proof of Theorem 3.2. For a binary topological species tree w with positive edge lengths ki, it

is enough to show that, for any three taxa i, j, k, if w displays the rooted triple ((i, j), k), then with

D = Er(DT ),

D(i‚ j)<D(i‚ k) = D(j‚ k):

This is simply the 3-point condition for a distance to determine an ultrametric tree (Semple and Steel,

2003).

So suppose w displays ((i, j), k), and let w = MRCA({i, j, k}) on r. Using shorthand such as C(I, J) < w

to mean the coalescence of the (gene) lineages of I and J occurs below node w in the species tree, and

Pr(T‚ C(I‚ J)<w) to mean the joint probability of the gene tree T and the event C(I, J) < w, we see

D(i‚ j) =
X

T

Pr(T)DT (i‚ j) (1)

=
X

T

Pr(T‚ C(I‚ J)<w)DT (i‚ j) +
X

T

Pr(T‚ C(I‚ J)>w)DT (i‚ j):

But we claim X
T

Pr(T‚ C(I‚ J)<w)DT (i‚ j)<
X

T

Pr(T‚ C(I‚ J)<w)DT (i‚ k): (2)

To see this, first note that if the lineages of I, J coalesce below w and a gene tree T is observed, then T must

display the rooted triple ((I, J), K). But for such gene trees, DT (i, j) £ DT (i, k). Thus a weak version of

inequality (2) holds termwise.

Note now that under the coalescent model on a species tree with finite edge lengths, if C(I, J) < w, then

every labeled gene tree T that displays ((I, J), K) is realizable. In particular, since a‘ > a‘+ 1, and there is a

gene tree displaying ((I, J), K) for which MRCA(I, J) is at depth ‘ + 1 or greater, and the MRCA(I, K) is at

depth ‘ or less, one has DT (i, j) < DT (i, k) for some gene tree T with Pr(T‚ C(I‚ J)<w)>0. Thus at least

one pair of corresponding terms in inequality (2) satisfies a strict inequality, and (2) is established.

We claim also that X
T

Pr(T‚ C(I‚ J)>w)DT (i‚ j) =
X

T

Pr(T‚ C(I‚ J)>w)DT (i‚ k): (3)

Indeed, up to multiplication by a positive constant, these sums respectively give the conditional expectation

of D(i, j) and D(i, k), given that the lineages of I, J, K are distinct at w. But by property (1) of the numbering

scheme, and the exchangeability of lineages under the coalescent, these conditional expectations are the

same.
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From Equations (1), (2), and (3), the inequality D(i, j) < D(i, k) now follows.

To see that D(i, k) = D(j, k), observe

D(i‚ k) =
X

T

Pr(T)DT (i‚ k)

=
X

T

Pr(T‚ C(I‚ J)<w)DT (i‚ k) +
X

T

Pr(T‚ C(I‚ J)>w)DT (i‚ k):

However

Pr(T‚ C(I‚ J)<w)DT (i‚ k) = Pr(T‚ C(I‚ J)<w)DT (j‚ k)‚

because if the probability appearing in this equation is non-zero then the MRCA of I,K on T is the same as

the MRCA of J, K. Moreover,X
T

Pr(T‚ C(I‚ J)>w)DT (i‚ k) =
X

T

Pr(T‚ C(I‚ J)>w)DT (j‚ k)

by an exchangeability argument similar to that used in establishing inequality (3). Thus D(i, k) = D(j, k),

and the 3-point condition is established.

For non-binary w, one must also check that if w displays the unresolved 3-taxon subtree (i, j, k), then

D(i‚ j) = D(i‚ k) = D(j‚ k):

This is done using exchangeability of lineages, as in the justification for Equation (3). -

Corollary 3.3. Consider the generalized STAR method using any node numbering sequence satisfying

properties (1) and (2), and any method of tree selection that, from a distance table strongly fitting a binary

tree, returns that tree, and whose output is continuous at such tables. Then under the multispecies coa-

lescent model on r = (w, k), with w binary and ki > 0, the method is statistically consistent for inferring the

species tree topology w.

Proof. Let N be the number of sampled gene trees, and e > 0. By the law of large numbers, as N/N,

the probability that the average distance matrix differs from Er(DT ) by more than e in any entry approaches

0. Thus, by continuity of the distance method of tree selection, as N/N, the probability that the inferred

tree will have the same topology as that from Er(DT )‚ w, approaches 1. -

Atteson (1997) showed that the Neighbor-Joining tree construction algorithm satisfies the continuity

hypothesis of this corollary. A proof that UPGMA is continuous is straightforward.

Example 3.4. As an extreme example of a node numbering scheme leading to consistent inference, for n

species let ai = 2 for 0 £ i < n - 2 and an - 2 = 1. Interpreting the ai values as distances from the leaves, this

scheme converts every non-caterpillar gene tree into a completely unresolved tree, and every caterpillar

gene tree into a gene tree with one non-trivial clade of two leaves. In effect, the resulting generalized STAR

method discards all information gathered from non-caterpillar gene trees yet, by Theorem 3.2, the species

tree topology can still be recovered. Thus it is possible, in principle, to reconstruct the species tree topology

using only caterpillar gene trees as input, even if the species tree is not a caterpillar. Of course, we do not

recommend this for practical inference.

It is natural to focus especially on node numbering sequences that are strictly decreasing. Indeed, if all

branch lengths on r = (w, k) are very long, then with high probability a finite sample of topological gene

trees will include only those matching w. If a node numbering is not strictly decreasing, however, then an

estimate of Er(DT ) from the sample would give Dw, which may only weakly fit w, leading to a poorly

resolved inferred species tree under STAR.

The next theorem shows that strictly decreasing node numbering sequences lead to better behavior of

generalized STAR methods, in the sense that longer internal branches on the species tree do not make it

more difficult to infer a fully resolved species tree from a fixed sample size of gene trees. Since longer

edges in a species tree increase the probability of the gene trees showing the associated split, this is

intuitively desirable and would certainly be a useful characteristic for data analysis.

Recall now that the probability of any gene tree under the coalescent is a polynomial in the transformed

species tree branch lengths, exp(- ki), as is explained, for instance, by Allman et al. (2011b). Thus for any
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collection {DT} of matrices associated with gene trees (whether or not it arises from a node numbering

sequence), the expected value Er(DT ) also has entries that are polynomial in the exp(- ki). As a result, the

expected value also makes sense for a branch length of N by setting the transformed branch length to 0.

(Treating a branch length of N in this way is equivalent to taking a limit as the branch length goes to N.)

While an infinite branch length of course has no real biological meaning, we will allow branch lengths in

(0, N] = (0, N) W {N}, both to simplify the presentation of arguments and to easily describe behavior as

branches grow long.

Note also that the strong fitting of w by Er(DT ) for finite k is expressible by equalities and strict

inequalities in the matrix entries, arising from the 3-point conditions. By continuity then, if some ki /N,

the same equalities and non-strict versions of the inequalities must hold. That is, if branch lengths are in

(0, N], then Er(DT ) will certainly weakly fit w. By requiring that the node numbering is strictly decreasing,

however, this can be improved.

Theorem 3.5. Suppose a node numbering sequence is strictly decreasing. Then for any w and all

ki 2 (0‚1], the expected distance matrix Er(DT ) strongly fits w, ultrametrically.

Moreover, if the node numbering sequence is not strictly decreasing, then there is a binary w and choices

of ki 2 (0‚1] for which Er(DT ) only weakly fits w.

Proof. The proof of the first claim follows the argument of Theorem 3.2. The primary modification is

in the justification of inequality (2), when some of the internal edge lengths are ki = N. But since a strictly

decreasing node numbering implies DT (i, j) < DT (i, k) for all gene trees T displaying ((I, J), K), the

inequality is immediately clear.

For the second claim, suppose a‘ = a‘+ 1 and pick any binary species tree w that has an internal edge

between nodes u of depth ‘ and v of depth ‘ + 1. Assign edge lengths of N to all edges incident to the

ancestors of u, to the edge descending from u that is not incident to v, and to the two edges descending from v.

Pick taxa i, j that are descendants of v through the two different edges, and taxon k that is a descendant of u

but not of v. Then, regardless of the other edge lengths, the only gene trees realizable under the coalescent will

be those with one of MRCA(I, J), MRCA(I, K), and MRCA(J, K) at depth ‘ + 1, say MRCA(I, J), and thus

MRCA(I, K) = MRCA(J, K) located at depth ‘ as the parent of MRCA(I, J). Since a‘= a‘+ 1, we have

Er(DT )(i‚ j) = Er(DT )(i‚ k) = Er(DT )(j‚ k) = 2a‘ are all equal, so Er(DT ) cannot strongly fit w. -

Remark. While we have established that properties (1) and (2) are sufficient for statistical consistency of

STAR, we have not shown they are necessary. In fact, addressing this question for the full STAR process,

which includes the selection of the species tree by some algorithm or optimality criterion, would be

difficult, since even if an expected distance matrix does not exactly fit a tree, the fitting processes in the

distance method may overcome the misfit.

Avoiding the impact of the final tree selection step, one can investigate the existence of alternative

schemes in which distance matrices might be assigned to gene trees in such a way that for any species tree

the expected distance matrix under the coalescent fits the topological species tree. Preliminary investiga-

tions indicate that at least for small trees such assignments exist that do not arise from generalized STAR

numbering schemes.

The theorems above were stated and proved under a gene tree sampling scheme in which one individual

is sampled per taxon. We next consider extensions to multi-individual sampling.

In the case of a sampling scheme in which ki individuals are sampled from taxon i for every gene, a

simple device for extending STAR is the extended species trees: At leaf i on the original species tree, attach

ki descendant edges in a multifurcation, leading to new taxa ij, 1 £ j £ ki. These new pendant edges need

not be assigned lengths, but all edges arising from the original species tree retain their lengths.

The coalescent model on the original species tree with multiple individuals sampled per taxon then

produces exactly the same distribution of gene trees as the coalescent on the extended species tree with one

sample per taxon. Thus, Theorem 3.2 applies.

Since this extended species tree is not binary if any ki > 2, Corollary 3.3 does not apply directly.

However, the procedure proposed by Liu et al. (2009) for multi-individual sampling is to first average over

these individuals so that a distance matrix relating the original taxa is obtained. We sketch an argument that

this leads to consistent inference. Since the average distance table for the gene trees will approximate the

expected one, which by Theorem 3.2 strongly fits the extended species tree ultrametrically, so will the
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result of further averaging this empirical distance table over its image under all permutations of individuals

within each taxon. In this averaged table, distances between individuals in different taxa depend only on the

two taxa and not the individuals. Deleting all but one individual per taxon from this table will then yield a

table that, in expectation, strongly fits the original species tree, and whose entries are those calculated by

the procedure of Liu et al. (2009). Thus, as long as the original species tree is binary, one still has a

consistent inference scheme. For an example of an empirical study that uses STAR with a variable number

of individuals per species, see Lee et al. (2012).

An even more general sampling scheme might vary the number of individuals sampled by both taxon and

gene. For instance, if taxon i is sampled kij times for locus j, we could define a sampling scheme for locus

j as kj = (k1j‚ . . . ‚ knj), where n is the number of species. Letting K = fkg be the finite set of all possible

schemes used in a particular study design, if each locus has a sampling scheme independently chosen from

some distribution on K, then as the number of loci approaches infinity, the average empirical distance table

for each sampling scheme approaches the expected distance table for that sampling scheme by the Law of

Large Numbers. Thus, the expected distance table over K is a weighted average over the expected distance

tables for each k 2 K, and hence also ultrametrically fits the species tree by the 3-point condition. Thus, the

multiple-allele version of STAR is a consistent method of inference even with different numbers of alleles

sampled at different loci.

Finally, one could generalize further to allow different STAR node numberings for different sampling

schemes. More precisely, if kj 2 K specifies both a sampling scheme and numbering scheme for locus j,

chosen according to some distribution on K, then the STAR method will still be statistically consistent. Of

course, with such an approach, an increased number of loci are likely to be needed for observed average

distances to be close to their expected values.

4. FINITE SAMPLES OF LOCI

The statistical consistency of STAR methods, as established in the preceding section, is a statement about

asymptotic behavior, as the number of sampled loci approaches infinity. In this section, we collect some

observations on possible pitfalls of naively applying STAR when the number of sampled loci is small.

We begin with issues concerning multiple samples of individuals within taxa, where the number of

individuals varies with the locus. First, imagine a rather extreme sampling scheme in which N loci are

sampled, but that at locus j, taxon i is sampled from i + j individuals. Thus each sampling scheme is used

for exactly one locus. The statistical consistency of STAR in this situation is not helpful to us, since without

multiple uses of every sampling scheme we do not expect to see asymptotic behavior. The Law of Large

Numbers does not apply, and the observed average distance table might be quite different from its

expectation.

If, in a real study, the number of sampling schemes used at different loci is very large in comparison to

the number of loci, an appeal to the Law of Large Numbers may be similarly questionable. For example, if

each of n species has between 1 and 3 individuals sampled at each locus, then there are potentially 3n

sampling schemes. We would need to sample enough loci to ensure that each of these exponentially many

sampling schemes is used many times for the asymptotic claim of consistency to give us much confidence

in an analysis.

If, on the other hand, a study is designed for three individuals sampled per species and sequenced at all

loci, a small amount of missing data might result in only a few of the 3n sampling schemes being used, with

each used repeatedly. Especially if the data were missing at random, it might be reasonable to use the

multiple-allele versions of STAR.

As another example of potentially problematic sampling, imagine sampling a large number of loci with

only one individual per taxon, and a single locus with one individual for most taxa but many individuals for

one taxon. (Such a data set is not far-fetched, especially if it were built from data originally collected for

other studies.) Then using the standard STAR numbering, the tree for this last locus will have a much larger

number assigned to its root. If there is substantial incomplete lineage sorting between the single-sample

taxa and the multi-sample one, then on this tree internode distances between coalescent events involving

only single-sample taxa will be larger than for the other trees. Thus, it appears that it might be desirable to

downweight this tree in the distance averaging to avoid overemphasizing the evidence for relationships

between the single-sample taxa that it offers. On the other hand, if there is little incomplete lineage sorting
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between the single-sample taxa and the multi-sample one, then downweighting will result in an undesirable

de-emphasis of the evidence of relationships between the single-sampled taxa given by this locus. It is

simply not clear how the anomalously sampled locus could be used without potentially biasing the analysis.

We note too that for finite sample sizes, the standard STAR numbering scheme and its variations may have

biases for tree shape. To illustrate this, consider the case of sampling a single individual per taxon for four taxa.

Now suppose UPGMA is applied to the average distance table using the standard STAR numbering with

(a0, a1, a2) = (4, 3, 2), with ties being resolved randomly. If there are exactly two input gene trees, then

STAR-UPGMA will return a symmetric tree in exactly the following cases:

(i) both input trees are symmetric;

(ii) one input tree is symmetric and one is asymmetric, and they share a cherry (a 2-taxon clade), in

which case a symmetric tree is returned with probability 1/2; and

(iii) both input trees are asymmetric, and their cherries do not have overlapping taxa, in which case a

symmetric tree is returned with probability 2/3.

In case (iii), for instance, if the input trees are (((AB)C)D) and (((CD)B)A), then the expected distance

table averaged over both loci is

E(DT ) =

0 6 7 8

6 0 6 7

7 6 0 6

8 7 6 0

0
BB@

1
CCA‚

which results in an asymmetric tree if B and C are clustered first (which occurs with probability 1/3), and

otherwise results in a symmetric tree.

Assuming that gene trees evolve on an unresolved species tree, unlabeled gene trees have a 1/3 prob-

ability of being symmetric and 2/3 probability of being asymmetric under the coalescent. The probability

that STAR-UPGMA returns a symmetric tree in this situation is therefore

1

3
� 1
3

+ 2 � 1
3
� 2
3
� 1
3
� 1
2

+
2

3
� 2
3
� 1
6
� 2
3

=
19

81
<

1

3
‚

indicating that there is some bias against symmetric trees in this case. (To understand the second summand

in the expression on the left, for example, notice that the two trees are symmetric and asymmetric with

probability 2 � 1
3

� �
2
3

� �
, that these two trees share a cherry with probability 1

3
, and that UPGMA will return the

symmetric tree with probability 1
2
.)

While these computations show bias is present, we note that this analysis has discarded the edge lengths

on the UPGMA tree, even though they carry information about when a tree is close to a different topo-

logical structure.

Now it is possible that numbering schemes can be chosen to reduce bias when only finitely many loci are

sampled. For example, for the numbering scheme (a0, a1, a2) = (4, 3, 1), case (iii) always results in STAR

returning a balanced tree, and the total probability of returning a symmetric tree is 21/81, suggesting less

bias than the standard STAR numbering, at least for this example.

Whether topological bias of STAR for small samples can be reduced for all species trees simultaneously,

or at least on average under some model of species tree generation, is an interesting topic for future

investigation.

5. STAR AND CLADES

The standard node numbering scheme, in which all internal edges on gene trees are given length 1,

produces distances on remetrized gene trees that have an interpretation regarding clades on gene trees. In

this section, we develop this connection.

As a consequence, we recover a previously known result that the topological rooted species tree can be

identified from the collection of gene clade probabilities (Allman et al., 2011a). Additionally, with this

viewpoint, we obtain an efficient algorithm for the identification.

This connection between STAR and clades makes it clear that whatever information STAR uses for

inference is found in the clade probabilities and not in the more detailed distribution of gene trees.
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Consider a gene tree T on a collection of taxa X . By a clade on T we mean a subset C � X for which the

set of descendants of MRCA(C) is precisely C. There is thus a bijection between nodes v of T and clades C,
by which v = MRCA(C). The trivial clades are X , with MRCA at the root of the tree, and singleton subsets

of X , with MRCAs at the leaves. The trivial clades occur on all gene trees on X .

Given any two leaves a, b of T, let Ha,b denote the set of non-trivial clades of T that contain both a and b,

and let cT (a, b) = jHa,bj. Elements of Ha,b correspond to the non-root vertices of T lying on the path from

the root to the MRCA({a, b}). Thus, cT (a, b) is simply the distance from the root to the MRCA({a, b}) in T

remetrized by the standard STAR numbering. Since this tree is ultrametric, with all leaves n = jXj from the

root, one finds

cT (a‚ b) = n -
DT (a‚ b)

2
: (4)

This shows that, at least on individual gene trees, the distances used in STAR are essentially counts of

clades, with gene samples being judged closer when they occur together in more clades.

Now fixing a species tree r, the coalescent model determines gene tree probabilities Pr(T). If C is a

non-trivial clade, and Pr(C) denotes the probability of clade C, then

Pr(C) =
X

T displaying C
Pr(T):

Proposition 5.1. Suppose r = (w, k) is an n-taxon rooted binary metric species tree. Then the clade

probabilities fPr(C)g determine Er(DT ).

Proof. Define two indicator functions:

IC(T) =
1 if T displays C‚

0 otherwise‚

(
and Ia‚b(C) =

1 if a‚ b 2 C‚

0 otherwise:

(

Then using Equation (4),

Er(DT (a‚ b)) =
X

T

Pr(T) 2 (n - cT (a‚ b))

= 2n - 2
X

T

Pr(T)cT (a‚ b)

= 2n - 2
X

T

Pr(T)

 X
non-trivial

clades C

IC(T)Ia‚b(C)
!

= 2n - 2
X

non-trivial
clades C

 X
T

Pr(T)IC(T)

!
Ia‚b(C)

= 2n - 2
X

non-trivial
clades C

Pr(C)Ia‚b(C)‚ (5)

and the expected STAR distance between a and b is computable from clade probabilities. -

Remark. Though this statement and proof involve theoretical distributions and expected STAR dis-

tances, a similar statement and argument also apply to empirical clade frequencies and empirical STAR

distances computed from a gene tree sample.

From Theorem 3.2 we immediately obtain the following:

Corollary 5.2. The rooted species tree topoogy w is identifiable from clade probabilities under the

multispecies coalescent.

Remark. Proposition 5.1 also suggests an efficient algorithm for computing w from fP(C)g, or an

estimate of w from estimates of fP(C)g.
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We note that the program BUCKy (Ané et al., 2007) uses estimated clade probabilities to construct a

concordance tree from the clades with highest estimated probabilities one clade at a time using a greedy

consensus approach. Motivated by the observation that this method can be misleading (Degnan et al.,

2009), a quartet version of BUCKy was developed that builds the species tree from the most supported

quartets (Larget et al., 2010). However, the observation that STAR distances can be computed from clade

probabilities suggests an alternative method for computing the concordance tree using Equation (5) that

would be consistent under the multispecies coalescent.

6. DISCUSSION

The main results of this article are that the STAR algorithm and its generalizations to other node

numbering schemes, using any well-behaved distance method for the selection of the species tree, do

provide statistically consistent methods of species tree inference. As demonstrated by Liu et al. (2009), the

method is also fast and, at least in simulations, exhibited good performance in comparison to some other

methods of species tree inference.

While our focus here has been theoretical, our work indicates several insights that may be helpful in

improving practical data analysis. First, because the expected distance tables under STAR are ultrametric, it

may be preferable to use UPGMA rather than Neighbor Joining as the tree-building method in STAR, as

UPGMA enforces an ultrametric assumption while NJ does not. Alternatively, if NJ is used, then even though

the reconstructed distances on the inferred species tree are ultimately discarded, it might be worthwhile to first

examine them to see if they roughly give ultrametricity. If not, then one might doubt either the fit of the

multispecies coalescent model to the gene tree data or that one had a sufficiently large sample of gene trees for

adequate inference. One should also consider using a more elaborate distance method based on an optimality

criterion, such as Minimum Evolution, although this would require a tree search and therefore should slow

runtimes. Fast heuristic searches under such a criterion, possibly adapted to enforce ultrametricity, might

improve STAR’s performance. Simulation studies are needed to further investigate these issues.

Second, the generalizations of the STAR method using alternate numbering schemes also need further

investigations. Although all such schemes lead to consistent inference, this is an asymptotic statement that

concerns behavior with large samples. It is still possible that some numbering schemes lead to more

efficient inference, in that with a small sample of gene trees they are more likely to return the correct

species tree, or one close to it. Understanding this issue, perhaps for specific species trees, or better still for

specific models of species tree generation, would be desirable.

Even without more detailed theoretical results on the behavior of the generalized STAR methods, they

might still be useful in data analysis. For instance, for a fixed sample of gene trees, one could repeatedly

infer a species tree using randomly chosen node numbering schemes satisfying the criteria in Section 3. If

all such species trees have the same topology, one might be more confident in the result. Significant

differences in the inferred topologies might lead one to doubt the validity of all the trees, again due to either

poor model fit of the coalescent or inadequate sample size. More minor variations in the inferred trees

might suggest which features of the species tree one might be confident with, based on their shared

characteristics. Because of the computational speed of STAR, calculations with many random node

numberings should be feasible.
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