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Species Tree Inference from Genomic Sequences Using the Log-Det Distance\ast 
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Abstract. The log-det distance between two aligned DNA sequences was introduced as a tool for statistically
consistent inference of a gene tree under simple nonmixture models of sequence evolution. Here
we prove that the log-det distance, coupled with a distance-based tree construction method, also
permits consistent inference of species trees under mixture models appropriate to aligned genomic-
scale sequences data. Data may include sites from many genetic loci, which evolved on different
gene trees due to incomplete lineage sorting on an ultrametric species tree, with different time-
reversible substitution processes. The simplicity and speed of distance-based inference suggest log-
det-based methods should serve as benchmarks for judging more elaborate and computationally
intensive species trees inference methods.
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1. Introduction. The main result of this work is that statistically consistent inference
of a species tree topology is possible using a very simple log-det distance method, for very
general mixture models appropriate to genomic data. Such mixtures not only take into ac-
count the coalescent process with fluctuating population sizes, but also allow for variation
in base-substitution models across the genome, and certain types of time-dependent hetero-
tachy. While these results require that the species tree be ultrametric when measured in
generations, this is plausible for many biological datasets. Since implementing species tree
inference through log-det distance computations and distance-based tree selection is both sim-
ple and fast, this method should provide a simple comparison for assessing the behavior of
more elaborate methods.

Log-det distances for a phylogenetic mixture model are computed from weighted sums of
the site-pattern frequency matrices associated with the component models. Thus the behavior
of the distance depends upon the behavior of the determinant on sums of matrices. Although
little can be said in general about determinants of sums, our approach is to first investigate
properties of the frequency matrices for single-class multispecies coalescent with general time-
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reversible substitution models. We show that these are symmetric and positive definite and
thus define positive definite quadratic forms. It is properties of these quadratic forms that
provide the algebraic means necessary to establish our main results. To our knowledge, this
connection to quadratic forms has not been used in phylogenetic work previously. This work
thus exposes new semialgebraic aspects of phylogenetics.

To place this work in context, the increasing availability of genomic-scale datasets of many
aligned gene sequences has made clear that the phylogenetic trees inferred for individual genes
often differ from one another and thus cannot be used as proxies for the species tree relating
the taxa as a whole. Although gene tree discordance might be due to errors in gene tree
inference, there are also important biological processes that can cause it, which should be
taken into account through appropriate modeling.

When the source of gene tree conflict is attributed to incomplete lineage sorting, the
multispecies coalescent (MSC) model [21, 22], combined with standard models of sequence
evolution by base substitutions, provides the accepted framework. Inference may be performed
with a Bayesian approach (e.g., MrBayes/BEST [14, 24], *BEAST [9]), in which a posterior
on gene trees and the species tree is computed from sequence data. However, this approach
is limited in the number of species and genes that can be practically analyzed due to the
heavy computational burden. Other methods and software (e.g., STEM [11], MP-EST [16],
STAR [1, 17], NJst /ASTRID [2, 15, 29], ASTRAL-II [20]) require less computation, by first
inferring individual gene trees, and then treating them as ``data"" for a second inference of a
species tree. Although the second stage of this analysis is generally provably consistent, the
impact of the error introduced by the first stage is poorly understood.

There are also statistically consistent methods based on the MSC model that avoid infer-
ring individual gene trees at all. Instead, these methods account for incomplete lineage sorting
by viewing concatenated aligned gene sequences as a coalescent mixture. (Concatenating gene
sequences and analyzing them as if they evolved on a common tree is not such a method and
is known to be statistically inconsistent for some parameter regions [12, 23].) The coalescent
mixture is described by integrating over all possible gene trees, weighted by their probabilities
under the MSC model. While this leads to a rather complex distribution, it has turned out to
be more amenable to analysis than one might naively expect. The first use of this viewpoint,
to our knowledge, was in the software SNAPP [4, 25], but it also underlies SVDQuartets [5]
and METAL [7].

The simplest of these last methods to describe, and the one our results extend, is the
METAL approach, in which gene sequences are concatenated, then pairwise distances are
computed on the alignment, and then a distance method, such as Neighbor Joining, is used
to produce an unrooted species tree. As the authors of [7] state, it is ``somewhat surprising""
that such an approach could be statistically consistent since the standard pairwise distance
formulas are derived under a single tree model, and nothing about their form suggests they
should apply to mixtures of any kind. Nonetheless, they provide proofs assuming a certain
coalescent mixture of Jukes--Cantor substitution processes and suggest that the Jukes--Cantor
assumption can be relaxed. While their focus is on theoretical understanding of the species
tree inference problem, and not on practical analysis, a comparative study on simulated gene
datasets in [26] found that the METAL protocol outperformed many other methods. (See also
the discussion in section 8 for more comments on appropriate simulation studies.)
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Making one seemingly small change to the METAL protocol, in using the log-det distance
[13, 18, 28], we show that the resulting inference scheme is a statistically consistent means of
inferring the species tree topology under a much broader model than that considered in [7].
Our model is much closer, in several aspects, to what might plausibly describe empirical data
than any of the models assumed in developing other methods for concatenated genomic-scale
data [4, 5, 7].

The model's most significant new feature is that rather than a base-substitution process
that is described by a single general time-reversible (GTR) rate matrix Q across the genome,
it allows for an arbitrary mixture with many different Q's. This framework is more in accord
with experience analyzing single gene sequences, where empiricists generally consider Q a
parameter to be inferred and find different values for different genes. Even in comparison to
the ``somewhat surprising"" result of [7], we believe this result is quite surprising. By using the
log-det distance, we do not need to make any assumptions on the number of distinct time-
reversible substitution processes, or on their individual forms, to ensure consistent inference.

Our model also relaxes the assumption made by many methods that the population size
and mutation rates on each edge of the species tree remain constant over time. We instead
allow population size to vary on each branch of the species tree (as a function of time, measured
in generations). Finally, for each Q, our model allows a changing mutation rate over time,
modeled either by a time-dependent scalar-valued rate multiplier, or a more complex process
that is also edge-dependent but exhibits a certain symmetry across the genome, giving a
relaxation of a molecular clock assumption. Our strongest results do, however, require that
the species tree be ultrametric when edge lengths are given in generations. While this last
assumption is not always met in empirical studies, it is one that biological observation can
provide justification for in many instances. If the species tree is not ultrametric in generations,
we still extend the results of [7], but statistical consistency for mixtures with several Q's does
not hold.

This paper is organized as follows: In section 2, we present our basic models and definitions.
Section 3 provides the algebraic lemma on quadratic forms and determinants that underlies
our results. In section 4, we obtain properties of the pattern frequency arrays arising from
a single rate-matrix coalescent mixture model so that the algebraic lemma can be applied.
Section 5 brings the earlier arguments together in our main results for an ultrametric species
tree.

In section 6, we show that our results also apply to an extended model allowing more
complicated scalar rate variation across edges of the tree, provided that rate variation satisfies
a certain symmetry property. Section 7 considers nonultrametric species trees, obtaining
weaker results and indicating through an example that the full mixture result does not hold.
Section 8 gives concluding remarks.

2. Definitions and basic lemmas. In this section, we define and establish basic facts about
sequence evolution models and coalescent models. While these involve the standard general
time-reversible (GTR) base-substitution models and the multispecies coalescent (MSC) model,
we emphasize aspects often omitted in species tree inference studies. In many other works
involving these models, even if population sizes or mutation rates are allowed to change, they
are assumed to be constant on each edge of the species tree, whether or not this is necessary.
To broaden this framework, we formalize time-dependent scalar-valued rate variation in the
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substitution processes and give an explicit treatment of changing population sizes in the
coalescent process. We avoid any detailed assumptions on the form of the population size
functions (e.g., exponential or linear growth), as these are not needed for our approach.

There are three time scales inherent in our models. First, on the species tree, time is
measured in the natural biological units of generations. Second, time in generations and
population size (which may vary with time) determine another time scale, in coalescent units
of generations inversely scaled by population size, which standardizes the rate of the coalescent
process. Third, time in generations together with a mutation rate (which may vary with time)
determines the third time scale, in substitution units of the expected number of substitutions
per site, which standardizes the rate of the mutation process. Since we will also allow the
mutation rate to differ for different classes in the mixture, the third scale can vary from class to
class. Since researchers in phylogenetics may choose any of these scales as the fundamental one,
we emphasize that our models will be formulated explicitly on the first scale, in generations.
While the other scales are present, they appear only implicitly in our development.

2.1. Coalescent process. Let (\sigma , \tau ) denote a rooted, ultrametric species tree, with topol-
ogy \sigma and branch lengths \tau measured in number of generations, as in Figure 1. Viewing time
t from the present, t = 0, to the past, t > 0, gene trees are formed within populations on the
species tree as modeled by the MSC model [21, 22].

Figure 1. A 5-taxon ultrametric species tree with time t in generations before the present, and population
functions Ne(t) on each edge depicted using widths of pipes. The edge lengths \tau are measured on the t-axis
between the dotted lines indicating speciation events.

On each edge e of the species tree, corresponding to an ancestral population, a time-
varying population size is modeled by a function Ne : [0, \tau e) \rightarrow \BbbR >0, where \tau e is the length of
e and Ne(t) denotes the population size at time t above the child node on e. For a nominal
edge e representing the population ancestral to the root of the tree, of length \infty , we also have
such a function. We require that population sizes are bounded above, Ne(t) \leq B, as this
ensures that with probability 1 lineages eventually coalesce, and it is a biological necessity.
We also require that 1/Ne(t) be integrable over finite intervals.

The MSC model can be succinctly summarized: If lineages are sampled from populations
at the leaves of a species tree, then, with time measured in generations into the past, (1) at
any time t \geq 0, if K lineages are present in a population of size N(t), then the instantaneous
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rate at which coalescent events occur is
\bigl( 
K
2

\bigr) 
/N(t); (2) when a coalescent event occurs, two of

the K lineages are chosen uniformly at random to be the pair that coalesce, so that K  - 1
lineages remain, beginning a new coalescent process; and (3) when lineages reach a node in
the species tree, with K1 and K2 lineages from the two child populations, then a new process
begins with the combined set of K1+K2 lineages. For simplicity, we use the notation MSC+N
for this coalescent process with changing population size.

Since our arguments focus on comparing only two sampled lineages at a time, we need an
explicit formula for the distribution of coalescent times for two lineages in a single population.
Although implicit in other works, we include its derivation for completeness.

Lemma 2.1. Suppose two lineages enter a population at t = 0 with size function N(t),
0 \leq t < \infty . Then the time to coalescence has probability density

c(t) = c(N ; t) = \ell (t) exp( - L(t)),

where \ell (t) := 1/N(t) is the inverse population size and L(t) :=
\int t
0 \ell (\tau )d\tau its integral.

Proof. In the MSC model, the instantaneous rate of coalescence for two lineages in a
population of size N is 1/N . Thus if p(t) denotes the probability that the two lineages have
not coalesced by time t, then

p\prime (t) =  - 1

N(t)
p(t),

and therefore

p(t) = exp

\biggl( 
 - 
\int t

0

1

N(\tau )
d\tau 

\biggr) 
.

Thus the density function for coalescent times is

c(t) =
d

dt
(1 - p(t)) =

1

N(t)
exp

\biggl( 
 - 
\int t

0

1

N(\tau )
d\tau 

\biggr) 
.

2.2. Substitution model. For modeling the evolution of sequences composed of k bases,
we use a continuous-time Markov process, with a k \times k instantaneous rate matrix Q such
that (1) the off-diagonal entries of Q are nonnegative, (2) the rows of Q sum to 0, and (3)
Q has stationary distribution \pi , with positive entries and \pi Q = 0. The GTR model includes
the additional assumption that (4) diag(\pi )Q is symmetric. At the root of a gene tree, sites
in the ancestral sequence have bases chosen independently with distribution \pi . The Markov
matrix M(\tau ) = exp(Q\tau ) describes the cumulative substitution process over the time span \tau 
in the absence of rate variation. Speed-ups and slow-downs in the substitution process are
introduced through a time-dependent scalar-valued rate function \mu : \BbbR \geq 0 \rightarrow \BbbR >0, which we
assume to be integrable. At any time t, the substitution process then has instantaneous rate
\mu (t)Q, with t measured in generations before the present. We denote this substitution model
by GTR+\mu .

The following is a standard result on the structure of time-reversible Markov models.

Lemma 2.2. Let Q be a GTR rate matrix with stationary distribution \pi . Then Q = S\Lambda S - 1,
where S = diag(\pi ) - 1/2U for some orthogonal matrix U , and \Lambda = diag(\lambda ) with \lambda 1 = 0, \lambda i \leq 0.
If Q \not = 0, then \lambda i < 0 for some i.
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Proof. The matrix A = diag(\pi )1/2Qdiag(\pi ) - 1/2 can be written as a convex sum of
negative-semidefinite matrices of the form  - eii+ eij + eji - ejj , where eij is the matrix whose
only nonzero entry is a 1 in the ij position. It follows that A is negative-semidefinite and
A = U\Lambda UT for some U orthogonal and \Lambda diagonal with nonpositive entries. Algebra gives
the claimed diagonalization of Q. Moreover, since rows of Q sum to 0, Q has at least one 0
eigenvalue. If all eigenvalues are 0, then Q = 0.

We next characterize the pairwise expected pattern frequencies for the GTR+\mu model.
For a vector v, we use exp(v) to denote the entrywise application of the exponential function.

Lemma 2.3. Let Q = S diag(\lambda )S - 1 be the diagonalization of a GTR rate matrix, and let
\mu (t) be a scalar-valued rate function. Then the Markov transition matrix M(x) = M(\mu ,Q, x)
describing cumulative base substitutions with rate \mu (t)Q for t \in [0, x] is

M(x) = S diag(exp(s(x)\lambda ))S - 1,

where s(x) =
\int x
0 \mu (t)dt. Thus the pairwise pattern frequency array F = diag(\pi )M is symmet-

ric positive definite.

Proof. Defining M(t) = S diag(exp(s(t)\lambda ))S - 1, one checks that

d

dt
M(t) = S diag(\mu (t)\lambda ) diag(exp(s(t)\lambda ))S - 1

= \mu (t)(S diag(\lambda )S - 1)(S diag(exp(s(t)\lambda ))S - 1) = \mu (t)QM(t)

and M(0) = I, so M(x) = M(\mu ,Q, x).
By Lemma 2.2, we may take S = diag(\pi ) - 1/2U for an orthogonal U . If y \in \BbbR k, defining

zT = yT diag(\pi )1/2U , we have yTFy = zT diag(exp(s(t)\lambda ))z. Thus F is symmetric positive
definite.

2.3. Coalescent mixture model, and mixtures of coalescent mixtures. By a coalescent
mixture model on a rooted metric species tree (\sigma , \tau ) on taxa X with population functions \{ Ne\} 
for each edge e of \sigma , GTR parameters Q and \pi , and scalar-valued rate function \mu we mean
the following model of sequence production: For each site, a gene tree is first independently
sampled according to the MSC+N model. Then bases for the various taxa in X are sampled
according to the base-substitution process GTR+\mu on the site's gene tree. This model or
variants of it, in which Ne is constant or edgewise constant and \mu may be edge dependent, is
used in [4, 5, 7, 19].

Note that in [19] an argument is given that by a reparameterization one can assume
\mu (t) = 1 for all t. While that also applies to the coalescent mixture model here, it will not
apply to the more general ``mixture of coalescent mixtures"" that will be our main focus since
one cannot in this way reparameterize all mixture classes simultaneously. While we could
instead reparameterize to make Ne(t) = 1 for all t, e, that is also problematic for our goals, as
it would potentially destroy the ultrametricity of the species tree.

Although the coalescent mixture gives each site its own gene tree, it is easy to see that
the same expected site pattern frequencies are produced when this assumption is relaxed to
the following model of site nonindependence that is more appropriate to genomic data: For
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multisite genes, suppose the gene length n (in sites) has distribution f , independent of all
other parameters. Genomic sequence data is then produced for each gene by first sampling
a gene length n via f , then sampling a gene tree by MSC+N , and finally sampling n sites
via GTR+\mu . While expected pattern frequencies under this gene-independent model and the
site-independent model are the same, convergence to the expected values from increasingly
large samples will generally be slower for the gene-independent model.

The more general model we study is a mixture of coalescent mixtures. We assume that in
addition to a species tree and population functions, there is some finite number m of classes,
and for each class 1 \leq i \leq m parameters Qi, \pi i are fixed. In addition, there is another
parameter, a distribution w, viewed as a nonnegative vector whose m entries sum to 1. The
data generation process is then that for each site, a class i is first chosen according to w.
Then MSC+N and GTR+\mu are used with parameters Qi, \pi i as in the coalescent mixture to
generate bases.

To avoid cumbersome notation, we simply designate this model, which is the main focus
of this work, by \scrM . Its parameters are (\sigma , \tau ), \{ Ne\} , w, \{ (Qi, \mu i)\} mi=1. As with the coalescent
mixture, one can see that the expected site pattern frequencies of this model are unchanged
if it is modified to describe concatenated genes whose lengths are independent of all other
parameters. We do not explicitly incorporate this into our model to simplify the presentation.
Our results would also extend easily to a model with infinitely many classes, including a
continuum of them, through primarily notational changes to our arguments.

Finally, we consider variants of these models, allowing more general rate variation and
nonultrametric species trees, but delay presentation of these extensions until sections 6 and 7.

2.4. Log-det distance. Given aligned sequence data for two taxa, with k possible bases,
the log-det distance between them is defined as follows: Let Fab be the k\times k matrix of relative
site-pattern frequencies, with the ij entry giving the proportion of sites in the sequences
exhibiting base i for a and base j for b. Let fa denote the vector of row sums of Fab, and fb
denote the vector of column sums, so that these marginalizations are simply the proportions
of various bases in the sequences of a and b. With ga and gb the products of the entries of
fa, fb, respectively,

(2.1) dLD(a, b) =  - 1

k

\biggl( 
ln | det(Fab)|  - 

1

2
ln(gagb)

\biggr) 
.

The log-det distance [28, 18], also known as the paralinear distance [13], was originally
developed in the context of the general Markov model, for which it was shown to give an
additive function on paths in trees. It is therefore additive on submodels, including the GTR
model. For GTR parameters Q, \pi and total time s between the two taxa along the species
tree, the formula for the log-det distance simplifies and the additive property is apparent:
Specifically, letting \lambda 1 = 0 \geq \lambda 2, . . . , \lambda k denote the eigenvalues of Q,

dLD(a, b) =  - 1

k
(\lambda 2 + \cdot \cdot \cdot + \lambda k)s.

For mixtures of GTR models, in which Fab becomes a sum of many F i
ab for different Qi,

we know of no such direct way to understand the log-det distance in terms of the parameters
since the determinant does not respect sums.
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2.5. Identifiability and inference. One of our main results (Theorem 1 of section 5) can
now be formally stated: Under the mixture of coalescent mixtures model \scrM on an ultrametric
species tree, the rooted species tree topology is identifiable from the expected log-det distances
for pairs of taxa. Similar theorems, for a more general model on an ultrametric tree and for
a restricted model on a nonultrametric tree, appear in sections 6 and 7. These results are
obtained by showing that either the 3-point or 4-point conditions [27] hold for the expected
distances in these settings.

Since the expected distances cannot be determined from a finite dataset, strictly speaking
the theorems are purely theoretical. However, as the size (number of sites) of a dataset
produced from the model increases to\infty , the empirical log-det distances approach the expected
ones in probability. Since standard distance-based methods (UPGMA for ultrametric trees;
NJ, BioNJ, Minimum Evolution, etc., for any metric trees) are known to correctly infer tree
topologies in the presence of a sufficiently small amount of noise, this implies that use of them
leads to statistically consistent inference of the tree topology.

3. An algebraic lemma. In this section, we establish the key lemma enabling an under-
standing of the log-det distance of (2.1) on mixture models. In general, it is not true that if
detFi > detGi, then det(

\sum 
iwiFi) > det(

\sum 
iwiGi), even when all wi > 0. This complicates

the analysis of the behavior of the log-det distance and cast doubts that it might have any
good properties for mixtures. However, GTR mixture components Fi, Gi, even with changing
population size, scalar-valued rates, and a coalescent process, turn out to be associated with
positive definite quadratic forms, as we see in section 4.

Lemma 3.1. Suppose that for each i, Fi and Gi are k \times k symmetric positive definite
matrices such that yTFiy \geq yTGiy for every y \in \BbbR k with the inequality strict for some i and
y. For wi > 0, let

F =

m\sum 
i=1

wiFi, G =

m\sum 
i=1

wiGi.

Then
detF > detG.

Proof. Since Fi, Gi are positive definite for each i, so are F,G. Write F = UDUT , where
D is diagonal and U is orthogonal. Denoting the ith column of U by ui, we have

(3.1) detG = det(UTGU) \leq 
k\prod 

i=1

(UTGU)ii =

k\prod 
i=1

uTi Gui,

where the inequality in (3.1) is Hadamard's for determinants of positive semidefinite matrices
[10]. But using that yTFiy \geq yTGiy for all y yields

(3.2)
k\prod 

i=1

uTi Gui \leq 
k\prod 

i=1

uTi Fui =
k\prod 

i=1

uTi UDUTui =
k\prod 

i=1

Dii = detF.

Thus
detG \leq detF.
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In fact, the inequality is strict since Hadamard's inequality (3.1) is strict unless UTGU is
diagonal. But in that case, F and G are simultaneously diagonalized by U , and the fact that
yTFiy \geq yTGiy for all y with a strict inequality for some i and y implies that eigenvalues of
F are at least as large as the corresponding eigenvalues of G, with at least one strictly larger.
This means that the inequality in (3.2) must be strict.

4. Expected pattern frequency matrix under a coalescent mixture. In this section, we
study the expected pattern frequency array for two sequences for a coalescent mixture model.
Thus we have only a single GTR+\mu process acting in concert with the MSC+N . Our goal is
to establish results enabling us to later apply Lemma 3.1 to mixtures of these models. Thus we
characterize the expected pattern frequency matrices in terms of associated quadratic forms.

Because we consider only two lineages at a time, these lineages are unable to coalesce
until some time after x > 0, where x is the time at which their most recent common ancestor
species exists. Since only the population sizes of their common ancestors above time x affect
the coalescence of the lineages, we can consider a single population size function N(t), t \geq 0,
where N(t) for t < x is irrelevant to the process.

Lemma 4.1. Consider a GTR rate matrix Q \not = 0, a scalar-valued rate function \mu (t), and
a population function N(t) for t \geq 0. For any x \geq 0, let C(x) = C(Q,\mu ,N, x) be the expected
site-pattern frequency array for two lineages that enter the population at time 0 and undergo
substitutions at rate \mu (t)Q, conditioned on the event that the lineages did not coalesce before
time x. Then, for all 0 \not = y \in \BbbR k, the function yTC(x)y is positive and decreasing in x, and
strictly decreasing for some y.

Proof. Let Nx(t) = N(x+ t) and \mu x(t) = \mu (x+ t), and let M(\mu ,Q, x) denote the Markov
matrix describing the substitution process on a single lineage from time 0 to x as in Lemma
2.3. Then, using the time reversibility of the substitution process and the commutativity of
the Markov matrices,

C(x) =

\int \infty 

0
diag(\pi )(M(\mu ,Q, x)M(\mu x, Q, z))2cx(z) dz

= diag(\pi )(M(\mu ,Q, x))2
\int \infty 

0
(M(\mu x, Q, z))2cx(z) dz,(4.1)

where cx(z) = \ell x(z) exp( - Lx(z)) is the PDF for coalescent times built from Nx, as in Lemma
2.1.

Since by Lemma 2.3 theM(\mu ,Q,w) are simultaneously diagonalizable by S = diag(\pi ) - 1/2U
with diagonalization \Lambda M(\mu ,Q,w), we find that

UT diag(\pi ) - 1/2C(x) diag(\pi ) - 1/2U = \Lambda 2
M(\mu ,Q,x)

\int \infty 

0
(\Lambda M(\mu x,Q,z))

2cx(z) dz.

Letting s(t1, t2) =
\int t2
t1

\mu (t)dt, it is enough to show that for every eigenvalue \lambda of Q, the
scalar-valued function

f(\lambda , \mu ,N, x) = exp(2s(0, x)\lambda )

\int \infty 

0
exp(2s(x, x+ z)\lambda )cx(z)dz

=

\int \infty 

0
exp(2s(0, x+ z)\lambda )cx(z)dz
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is a decreasing function of x and is strictly decreasing for some \lambda . This is established by
way of Lemmas 4.4 and 4.5 below, together with the fact that Q has at least one negative
eigenvalue.

Remark 4.2. The matrix factors in (4.1) have a nice interpretation: Consider a 2-taxon
species tree (a:x, b:x) with branch lengths in generations. If there were no coalescent process---
that is, gene lineages came together immediately when entering a population, so that all gene
trees exactly match the species tree---then the expected pattern frequency array for sequences
observed from a and b would be diag(\pi )M2(\mu ,Q, x), from the two branches of length x. The
coalescent process, however, means gene lineages are delayed in coming together, so extra
substitutions occur. The Markov matrix\int \infty 

0
(M(\mu x, Q, z))2cx(z) dz

describes those.

Remark 4.3. If the functions N and \mu are constant, then the matrix\int \infty 

0
(M(\mu x, Q, z))2cx(z) dz

is independent of x. Thus for an ultrametric species tree, pattern frequency arrays for every
pair of taxa are a particularly simple matrix product since the second matrix factor encoding
the extra substitutions due to the coalescent process is the same for all pairs of taxa. As
a result, appropriately calculated pairwise distances between taxa are simply inflated by a
constant from their values in the absence of the coalescent process. This is a main insight
behind the METAL method of [7], though in that work only the Jukes--Cantor model was
used, and a much more detailed quantitative study of the distances was undertaken.

In establishing that the function f(\lambda , \mu ,N, x) is decreasing through Lemmas 4.4 and 4.5
below, the approach used is to view an increase in x as imposing a further delay in the time to
coalescence. Such a delay can be accomplished by increasing the population size N(t) during
the period of the delay, with an increase to infinite population size necessary to prohibit
coalescence.

Lemma 4.4. For \lambda \leq 0, x \geq 0, population function N and scalar-valued rate function \mu ,
and s(t1, t2), cx(z) as in the proof of Lemma 4.1, let

f(\lambda , \mu ,N, x) =

\int \infty 

0
exp(2s(0, x+ z)\lambda )cx(z)dz.

If \=N(t) \geq N(t) for all t > 0, and \=N(t) > N(t) on some subset of [x,\infty ) of positive measure
and \lambda < 0, then

f(\lambda , \mu , \=N, x) < f(\lambda , \mu ,N, x)

for all x. If \lambda = 0, then f(\lambda , \mu ,N, x) = 1.
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Proof. Using Lemma 2.1 and integrating by parts, we have

f(\lambda , \mu ,N, x) =  - exp(2s(0, x+ z)\lambda ) exp( - Lx(z))| \infty z=0

+

\int \infty 

0
2\mu (x+ z)\lambda exp(2s(0, x+ z)\lambda ) exp( - Lx(z))dz

= exp(2s(0, x)\lambda ) +

\int \infty 

0
2\mu (x+ z)\lambda exp(2s(0, x+ z)\lambda ) exp( - Lx(z))dz

since the population function N is bounded above so that limz\rightarrow \infty L(z) = \infty .
For the case \lambda < 0, observe that \=\ell (t) \leq \ell (t) so that \=Lx(t) \leq Lx(t) for all t, while \=Lx(t) <

Lx(t) for all t sufficiently large so that

f(\lambda , \mu , \=N, x) < f(\lambda , \mu ,N, x).

The claim for \lambda = 0 is immediate.

Lemma 4.5. If \lambda < 0, the function f(\lambda , \mu ,N, x) of Lemma 4.4 is a strictly decreasing
function of x.

Proof. Let 0 \leq x < y. For any u > maxt\in [0,y]N(t), define \=Nu by

\=Nu(t) =

\Biggl\{ 
u if 0 \leq t < y,

N(t) if y \leq t.

Then

f(\lambda , \mu , \=Nu, x) =

\int \infty 

0
exp(2s(0, x+ z)\lambda )\=\ell ux(z) exp

\bigl( 
 - \=Lu

x(z)
\bigr) 
dz

>

\int \infty 

y - x
exp(2s(0, x+ z)\lambda )\=\ell ux(z) exp

\bigl( 
 - \=Lu

x(z)
\bigr) 
dz

=

\int \infty 

y - x
exp(2s(0, x+ z)\lambda )

1
\=Nu(x+ z)

exp

\biggl( 
 - 
\int z

0

1
\=Nu(x+ t)

dt

\biggr) 
dz

=

\int \infty 

0
exp(2s(0, y + z)\lambda )

1
\=Nu(y + z)

exp

\biggl( 
 - 
\int z+y - x

0

1
\=Nu(x+ t)

dt

\biggr) 
dz

=

\int \infty 

0
exp(2s(0, y + z)\lambda )\ell (y + z) exp

\biggl( 
 - 
\int z+y

x

1
\=Nu(t)

dt

\biggr) 
dz.

But \int y+z

x

1
\=Nu(t)

dt =

\int y

x

1

u
dt+

\int y+z

y

1

N(t)
dt

=
y  - x

u
+

\int y+z

y

1

N(t)
dt.
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Thus

f(\lambda , \mu , \=Nu, x)

> exp

\biggl( 
x - y

u

\biggr) \int \infty 

0
exp(2s(0, y + z)\lambda )\ell (y + z) exp

\biggl( 
 - 
\int y+z

y

1

N(t)
dt

\biggr) 
dz

= exp((x - y)/u)f(\lambda , \mu ,N, y).

Thus for any v > u, using Lemma 4.4, we have

f(\lambda , \mu ,N, x) > f(\lambda , \mu , \=Nu, x) > f(\lambda , \mu , \=Nv, x) > exp((x - y)/v)f(\lambda , \mu ,N, y).

Letting v \rightarrow \infty gives

f(\lambda , \mu ,N, x) > f(\lambda , \mu , \=Nu, x) \geq f(\lambda , \mu ,N, y),

establishing the claim.

5. Main result for ultrametric species trees. We now apply the results of sections 3 and
4 to the model \scrM of section 2.3.

Theorem 1. Under the mixture of coalescent mixtures model \scrM on an ultrametric species
tree measured in numbers of generations, the rooted species tree topology is identifiable from
the expected log-det distances for pairs of taxa.

Proof. Since a rooted tree is identifiable from its collection of induced rooted triples [27],
it will suffice to prove the result for 3-taxon trees. Without loss of generality, assume \sigma =
((a, b), c). We need only show that

dLD(a, b) < dLD(a, c) = dLD(b, c).

It is immediate that dLD(a, c) = dLD(b, c) since the model exhibits exchangeability of a and b.
Note that under this model, the frequency of bases at any taxon will be

\sum 
iwi\pi i, where

\pi i is the base frequency vector for class i. In particular, in the formula

dLD(u, v) =  - 1

4

\biggl( 
ln | det(Fuv)|  - 

1

2
ln(gugv)

\biggr) 
the last term is identical for all pairs of taxa u, v.

We must show, then, that detFab, detFac > 0, and

detFab > detFac.

In light of Lemma 3.1, it is enough to show that for a single class i, with parameters \{ Ne\} ,
Qi, \mu i, the pairwise frequency arrays Fi for the pair a, b and Gi for the pair a, c are positive
definite, and yTFiy \geq yTGiy for all y, with strict inequality for some y. But this is the content
of Lemma 4.1.
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Figure 2. The ultrametric species tree ((a:\tau 3, b:\tau 3):\tau 2, c:\tau 3 + \tau 2) with population functions Ne(t) depicted
using widths of pipes. The dashed lines at speciation times divide the t-axis into epochs 3, 2, and 1, with i
populations coexisting in epoch i of duration \tau i.

6. Symmetric rate variation on ultrametric trees. In this section, we extend the iden-
tifiability result of the previous section, by relaxing the assumption that in each mixture
component a single rate function \mu i(t) applies to all simultaneously existing populations. In-
stead, for each class i we allow rate functions \mu i

e(t) to be specified for each edge e of the tree.
We do, however, require a certain symmetry to the rate functions across classes, so that in
the full model, there is a ``balancing"" of the rates across mixture components.

To be precise, consider an ultrametric 3-taxon species tree with topology ((a, b), c) and
population functions Ne(t) for each edge e, as shown in Figure 2. With time t measured in
generations before the present, speciation events partition the time axis into three epochs,
indexed by the count of populations in the tree during the period. In Figure 2, epoch 3 is
[0, \tau 3), epoch 2 is [\tau 3, \tau 3 + \tau 2), and epoch 1 is [\tau 3 + \tau 2,\infty ), with epoch j of duration \tau j . It is
convenient to think of the two epochs in the pendant branch leading to c as corresponding to
actual edges in the tree, so that the species tree has six edges or populations in all, including
the one above the root.

If scalar-valued rate functions are independently chosen for each of these six edges, by
permuting the three rate functions for epoch 3, and the two for epoch 2, there are 12 assign-
ments of these functions to edges in the tree. For fixed GTR model parameters \pi , Q, we then
consider a 12-class equal-weight mixture where gene trees for each class are determined by the
MSC model, and sequence evolution is modeled using \pi , Q, and one of the 12 equally likely
assignments of rate functions to edges. Thus for each class we do not have a rate function de-
pendent only on t as in the previous section, but in the 12-class mixture the mutation process
is ``on average"" the same at all times across populations. For instance, in one class, during
epoch 3, the substitution process leading to taxon a may be faster than in the population
leading to b, but in another class this will be reversed.

We state a preliminary lemma on pairwise site-pattern frequency arrays for this model.

Lemma 6.1. Consider ultrametric species tree ((a:\tau 3, b:\tau 3):\tau 2, c:\tau 3+\tau 2) with branch lengths
in generations and population functions \{ Ne(t)\} . Fix GTR parameters \pi , Q and six scalar-
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valued rate functions

\mu 3
j (t), t \in [0, \tau 3), j = 1, 2, 3,

\mu 2
i (t), t \in [\tau 3, \tau 3 + \tau 2), i = 1, 2,

\mu 1(t), t \in [\tau 2 + \tau 3,\infty ).

Consider a coalescent+base-substitution model where gene trees arise from the MSC on
the species tree with population functions, and base substitutions occur on these gene trees
according to a 12-class uniform mixture where each class uses the rate function \mu 1 above the
root, a permutation of the rate functions \mu 2

i for the edges in epoch 2, and a permutation of
the \mu 3

j for the edges in epoch 3.
Then the pairwise pattern frequency arrays Fab and Fac arising from this model satisfy
1. Fab, Fac are positive definite, and
2. yTFaby \geq yTFacy for any y \in \BbbR k, with the inequality strict for some y.

Proof. With Sn denoting the symmetric group on \{ 1, 2, . . . , n\} , for \sigma \in S3, \rho \in S2, let
Fab(\sigma , \rho ) be the pattern frequency array from the coalescent+base-substitution model where
edges of the species tree are assigned rate functions as follows: \mu 3

\sigma (1), \mu 
3
\sigma (2), \mu 

3
\sigma (3) are assigned

to the edges in epoch 3 from left to right in Figure 2, \mu 2
\rho (1), \rho 

2
\rho (2) are assigned to edges in

epoch 2 from left to right in Figure 2, and \mu 1 is assigned to the edge above the root. Then

Fab =
\sum 
\sigma \in S3

\sum 
\rho \in S2

Fab(\sigma , \rho ), Fac =
\sum 
\sigma \in S3

\sum 
\rho \in S2

Fac(\sigma , \rho ).

Let v = MRCA(a, b), r = MRCA(a, c), Nv(t) be the population function defined piecewise
using Ne(t) for edges e above v, and let cv be the associated density of coalescent times. To
compute Fab(\sigma , \rho ), for i = 1, 2, define rate functions

\~\mu 2
i (t) =

\Biggl\{ 
\mu 2
i (t+ \tau 3) if 0 \leq t < \tau 2,

\mu 1(t+ \tau 3) if t \geq \tau 2.

Then

Fab(\sigma , \rho ) =

\int \infty 

0
diag(\pi )M(\mu 3

\sigma (1), Q, \tau 3)(M(\~\mu 2
\rho (1), Q, z))2M(\mu 3

\sigma (2), Q, \tau 3)cv(z) dz.

Since the matrix product in the integrand is a pattern frequency array from a GTR coalescent
mixture model, by Lemma 2.3 it is symmetric positive definite. As a convex combination of
such matrices, Fab(\sigma , \rho ) is as well. Claim 1 for Fab follows, with a similar argument applying
to Fac.

To simplify notation, let M(\mu j
i ) = M(\mu j

i , Q, \tau j) denote the Markov matrix describing the

base substitution process over an edge in epoch j with rate function \mu j
i and rate matrix Q, and

let MC(N,\mu ) = MC(N,\mu ,Q) denote the Markov matrix encoding substitutions arising from
the coalescent+base-substitution model for two lineages entering a population with population
function N , rate function \mu , and rate matrix Q.
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Since the M(\mu j
i ) and MC(Nv, \~\mu 

2
i ) are simultaneously diagonalizable, they commute, and

so

diag(\pi ) - 1Fab =
1

12

\sum 
\sigma \in S3

\sum 
\rho \in S2

M(\mu 3
\sigma (1))MC(Nv, \~\mu 

2
\rho (1))M(\mu 3

\sigma (2))

=
2

12

\bigl( 
M(\mu 3

1)M(\mu 3
2) +M(\mu 3

1)M(\mu 3
3) +M(\mu 3

2)M(\mu 3
3)
\bigr) 

(6.1)

\times 
\bigl( 
MC(Nv, \~\mu 

2
1) +MC(Nv, \~\mu 

2
2)
\bigr) 
.

Similarly, with \~\mu 1(t) = \mu 1(t+ \tau 2 + \tau 3),

diag(\pi ) - 1Fac =
1

12

\sum 
\sigma \in S3

\sum 
\rho \in S2

M(\mu 3
\sigma (1))M(\mu 2

\rho (1))MC(Nr, \~\mu 
1)M(\mu 2

\rho (2))M(\mu 3
\sigma (3))

=
4

12

\bigl( 
M(\mu 3

1)M(\mu 3
2) +M(\mu 3

1)M(\mu 3
3) +M(\mu 3

2)M(\mu 3
3)
\bigr) 

(6.2)

\times M(\mu 2
1)M(\mu 2

2)MC(Nr, \~\mu 
1).

Now Lemma 2.3 implies all matrices M(\cdot ) and MC(\cdot ) in (6.1) and (6.2) are simultaneously
diagonalizable by S = diag(\pi ) - 1/2U for some orthogonal U . Thus there are diagonalizations

diag(\pi ) - 1Fab = S\Lambda abS
 - 1, diag(\pi ) - 1Fac = S\Lambda acS

 - 1,

and so with R = diag(\pi )1/2U ,

Fab = R\Lambda abR
T , Fac = R\Lambda acR

T .

To establish claim 2, it is therefore enough to show that eigenvalues of diag(\pi ) - 1Fab are greater
than or equal to the corresponding ones for diag(\pi ) - 1Fac, with at least one strictly greater.

To facilitate our argument, we remove the common factor in (6.1) and (6.2) corresponding
to epoch 3, as well as a scalar 2/12, since this factor is diagonalizable by S and has positive
eigenvalues. It is thus sufficient to show that for

\~Fab = MC(Nv, \~\mu 
2
1) +MC(Nv, \~\mu 

2
2)

and
\~Fac = 2M(\mu 2

1)M(\mu 2
2)MC(Nr, \mu 

1),

eigenvalues of \~Fab are larger than those of \~Fac, with at least one strictly larger.
By Lemma 4.1, for any y \in \BbbR k, i = 1, 2,

yT diag(\pi )MC(Nv, \~\mu 
2
i )y \geq yT diag(\pi )M(\mu 2

i )
2MC(Nr, \mu 

1)y,

with a strict inequality for some y. But again using the relationship between the diagonaliza-
tions of the Markov matrices and of the quadratic forms, this implies that the eigenvalues of
MC(Nv, \~\mu 

2
i ) are larger than those of M(\mu 2

i )
2MC(Nr, \mu 

1), with at least one strictly larger.
Summing over i = 1, 2 gives the same relationship between eigenvalues of \~Fab and\bigl( 

M(\mu 2
1)

2 +M(\mu 2
2)

2
\bigr) 
MC(Nr, \mu 

1). Using the scalar inequality \alpha 2+\beta 2 \geq 2\alpha \beta on corresponding

eigenvalues of M(\mu 2
1) and M(\mu 2

2) gives the desired relationships on eigenvalues of \~Fab and
\~Fac.
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We now define a more general coalescent+base-substitution mixture model on an n-taxon
ultrametric tree denoted by \scrM sym: For each site, a gene tree is determined by the MSC
on an ultrametric species tree with populations functions \{ Ne\} . With edges subdivided into
epochs determined by speciation times, suppose for each class i with weight wi there are GTR
parameters \pi i, Qi and scalar-valued rate functions \mu i(e, t) for edges e within epochs. Assume,
in addition, the following symmetry condition: For any class i and any permutation of the
\mu i(e, t) within epochs, there is another class j with the same wi, \pi i, Qi but the permuted rate
functions.

A model in M sym on a large tree restricts us to a model in \scrM sym on any induced 3-taxon
subtree. This 3-taxon model is easily seen to be a mixture of models of the type in Lemma
6.1. Repeating the argument of Theorem 1, but using Lemma 6.1 in place of Lemma 4.1,
yields the following.

Theorem 2. Consider a model in \scrM sym on an ultrametric tree. Then the rooted species
tree topology is identifiable from the expected log-det distances between taxa.

7. Nonultrametric trees and edge dependent rate variation. Having so far only consid-
ered species trees that are ultrametric in units of generations, we turn now to nonultrametric
species trees. We will show that the log-det distance is poorly behaved on a model with a
mixture of coalescent mixtures. Nonetheless, for a single-class coalescent mixture model we
can still obtain strong results.

To explore the behavior of the log-det distance for nonultrametric trees, we focus on the 4-
point condition [27] to determine whether pairwise distances fit an unrooted tree. The 4-point
condition states that for each unrooted quartet tree wx| yz displayed on the species tree

(7.1) d(w, x) + d(y, z) < d(w, y) + d(x, z) = d(w, z) + d(x, y).

As the next example shows, for mixtures of coalescent mixtures on nonultrametric species
trees, inequality and equation (7.1) need not hold.

Example 3. Consider an MSC model on the 4-leaf nonultrametric rooted species tree
(\sigma , \tau ) = ((a:N, b:N/10):N/20, (c:N/10, d:N):N/20) with branch lengths in numbers of gen-
erations and N a constant population size over the entire tree. Let Q be a Jukes--Cantor rate
matrix with off-diagonal entries equal to .01/N , and suppose that for a 2-class mixture the
substitution process on each gene tree is chosen to be either Q or 20Q with equal probability.

Then the expected site-pattern probability distribution can be computed exactly, giving,
to several digits of accuracy,

dLD(a, c) + dLD(b, d) \approx 0.996,

dLD(a, d) + dLD(b, c) \approx 0.952,

dLD(a, b) + dLD(c, d) \approx 0.973.

Since dLD(a, c) + dLD(b, d) \not = dLD(a, d) + dLD(b, c), the 4-point equality fails. Moreover,
dLD(a, b) + dLD(c, d) fails to be the smallest of the three sums.

Indeed, the failure of the 4-point condition in this example is not linked to the inclusion of
the coalescent process in the model. For a simpler mixture, in which sequences are generated
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on a 2-class mixture on the metric gene tree (\sigma , \tau ), then using the mutation parameters given
above we find that

dLD(a, c) + dLD(b, d) \approx 0.605,

dLD(a, d) + dLD(b, c) \approx 0.534,

dLD(a, b) + dLD(c, d) \approx 0.566.

The fact that the two classes in this example differ only by a rescaling of substitution rates
suggests it would be hard to find any general circumstances on which log-det distances from
mixtures on nonultrametric trees behave well.

Consequently, we restrict our attention to a single-class coalescent mixture model on a pos-
sibly nonultrametric species tree, with GTR parameters Q, \pi . We allow population functions
to depend on edges in the species tree and, in addition, allow scalar-valued rate functions to
be edge-dependent too. That is, our model parameters are an arbitrary rooted metric species
tree \sigma in units of generations, GTR parameters Q, \pi , and a collection of population func-
tions Ne and rate functions \mu e for each edge of \sigma . We denote this model, which generalizes
MSC+N+GTR+\mu , by \scrN . We note also that this model is a generalization of that of [7],
in that it allows a GTR substitution model, time-varying population sizes, and scalar-valued
mutation rates on each edge of the species tree.

Theorem 4. Under the coalescent mixture model \scrN on a rooted metric species tree, the
unrooted tree topology is identifiable from the expected pairwise log-det distances.

Proof. It suffices to consider 4-taxon species trees and show that the expected log-det
distance satisfies the 4-point condition. Since pendant edges add the same values to all
pairwise distances, we can reduce to the case that all terminal branches of the species tree
have length 0. We therefore need only consider the two species trees ((a:0, b:0):x, (c:0, d:0):y)
and (((a:0, b:0):x, c:0):y, d:0).

For both these trees, the equality in the 4-point condition (7.1) is a consequence of the
exchangeability of taxa a and b in the model.

To prove the inequality, we begin with the caterpillar tree (((a:0, b:0):x, c:0):y, d:0). Num-
bering edge rate functions by the number of the edge's descendants, define the rate function

\mu (t) =

\left\{     
\mu 2(t) if 0 \leq t < x,

\mu 3(t) if x \leq t < x+ y,

\mu 4(t) if x+ y \leq t,

and a population function N(t) similarly from the edge population functions. In the notation
of Lemmas 2.3 and 4.1, pairwise pattern frequency arrays are then

Fab = C(Q,\mu ,N, 0),

Fcd = C(Q,\mu ,N, x+ y)M(\mu ,Q, x) - 1M(\mu ,Q, x+ y) - 1,

Fac = C(Q,\mu ,N, x)M(\mu ,Q, x) - 1,

Fbd = C(Q,\mu ,N, x+ y)M(\mu ,Q, x+ y) - 1.
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Using the formula for the log-det distance, one sees that the 4-point inequality will follow
from

det(C(Q,\mu ,N, 0)) > det(C(Q,\mu ,N, x)).

But this holds by Lemmas 4.1 and 3.1 (applied to a 1-class mixture).
For the balanced species tree ((a:0, b:0):x, (c:0, d:0):y), consider population and rate func-

tions N1, \mu 1, N2, \mu 2, where those with subscript 1 (respectively, 2) are defined piecewise using
all edges above the most recent common ancestor of a, b (respectively, c, d). Then

Fab = C(Q,\mu 1, N1, 0),

Fcd = C(Q,\mu 2, N2, 0),

Fac = Fbd = C(Q,\mu 1, N1, x)M(\mu 1, Q, x) - 1M(\mu 2, Q, y)

= C(Q,\mu 2, N2, y)M(\mu 2, Q, y) - 1M(\mu 1, Q, x).

Using the definition of the log-det distance, these expressions show that the 4-point inequality
will follow from showing both

det(C(Q,\mu 1, N1, 0)) > det(C(Q,\mu 1, N1, x))

and
det(C(Q,\mu 2, N2, 0)) > det(C(Q,\mu 2, N2, y)).

But these are established by Lemmas 4.1 and 3.1.

8. Discussion. We have proved that for an ultrametric species tree, using the log-det
distance and the 3-point condition, the rooted species tree topology is identifiable for very
general models of sequence evolution. These models include the coalescent process, with vary-
ing population sizes, modeling incomplete lineage sorting (ILS), and a many-class mixture of
base substitution processes with rate variation that is appropriate for genomic sequence data,
including one with a symmetric form of lineage-specific heterotachy. Although for nonultra-
metric species trees one must restrict oneself to a nonmixture model with only a single class for
the substitution process, even in this case we can establish the identifiability of the unrooted
species topology using the 4-point condition.

With identifiability proved, it follows easily that inference of the species tree by computing
the log-det distance from concatenated genomic data and then applying standard distance
methods of tree building or selection yields statistically consistent topology estimates for
these models. This includes using well-known methods such as UPGMA (for ultrametric trees
only), Neighbor Joining, and Minimum Evolution (though the last one is usually implemented
heuristically, rather than exactly). These results show both the potential (consistent estimates
of topologies can be computed quickly for a very general model) and pitfalls (nonultrametric
tree topology estimates are only consistent under a more restrictive model) of using log-det
distance-based tree construction for species tree inference.

Previous works addressing ILS in inference from aligned genomic data have typically
assumed a single base-substitution process with constant population sizes and constant scalar-
valued mutation rates on each edge of the tree. In addition to their being less plausible
biologically, models assuming constant population sizes and mutation rates on edges are not
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well behaved under passing to subsets of taxa, as edges of the induced tree are formed by
merging edges in the original tree and thus may not have constant populations and mutation
rates. To eliminate this, one can posit a model with a single population size and mutation rate
over the entire tree, but that further reduces biological plausibility. The modeling assumptions
behind a log-det approach do not have these weaknesses.

Moreover, our modeling assumption of ultrametricity of the species tree in generations
is one whose reasonableness can often be judged for biological datasets. For instance, for a
collection of insects with rigid life cycles of roughly equal duration, or even for larger organisms
known to have similar generation times at present, it may be quite plausible. Although some
species tree inference methods which infer individual gene trees can also avoid making strong
assumptions relating the three time scales inherent to the inference problem (in generations,
coalescent units, and substitution units), they do so at the cost of introducing either poorly
understood inference error in the gene trees or the computational burden of Bayesian methods.
In fact, Bayesian methods often restrict models of population size to quite simple families, and
little is done to judge their plausibility. Thus all current methods are built on assumptions
that may be seriously violated for some datasets.

In addition to ultrametricity, we made two other significant assumptions. One is that
heterotachy of substitution processes either must be time-dependent or at worst exhibit the
sort of ``average time dependence across the genome"" captured in Theorem 2. In particular, if
on species tree branches leading to some taxa the rate of mutation increased across the entire
genome, then our strongest result is Theorem 4, which does not allow a mixture of substitution
processes. The other assumption is that substitution processes are time-reversible. Of course
this is routinely invoked by standard methods of gene tree inference, as well as other methods
of species tree inference. Nonetheless, we highlight that our arguments using quadratic forms
require time reversibility for every substitution process, and the robustness of the inference
scheme to its violation has not been explored.

While the simulation study of [26] is not strictly applicable to testing the log-det distance
method of species tree inference studied here (as it used a GTR+Gamma distance rather
than log-det, with simulation conditions deviating from our model), our own investigations
(not shown) indicate similar strong performance of log-det, both on the same simulations and
others. However, adequate testing will require much careful thought in designing simulation
conditions that are plausible for genomic data. For instance, whether rate matrices for the
various classes should be sampled from a unimodal distribution, or deviations from a molecular
clock for individual genes can be modeled by independent scalings on edges, as they were in
the simulated data of [6] and [3] used in [26], may or may not be acceptable approximations
of empirical data. In our view, the results of [26] underscore that in current simulations of
genomic data it is not clear whether an ``easy"" or ``difficult"" region of parameter space is being
investigated. While the anomalous gene trees concept [8, 12] has illuminated how expected
gene tree topologies may make species tree inference difficult, the impact of variation in the
substitution process across the genome is largely unexplored.

Nonetheless, the generality of the model to which log-det distance-based inference can be
consistently applied, combined with its simplicity of implementation, speed on large datasets,
and preliminary indications of good performance in simulation, suggest this method should
provide a basic benchmark to which other species tree inference methods should be compared.
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